
8
The SparkFun Guide to Processing: Create Interactive Art with Code!

© 2015 Derek Runberg
www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

TWO DRAWING
PROGRAMS
IN PROJECT 5, YOU STAMPED
SHAPES BASED ON YOUR
MOUSE’S POSITION, AND IN
PROJECT 7, YOU CREATED A
SIMPLE PROGRAM TO DISPLAY
TYPED TEXT. BOTH PROJECTS
RELIED ON USER INPUT, AND
FOR THE NEXT FEW CHAPTERS,
WE’LL EXPLORE MORE INPUT
OPTIONS, ORGANIZED BY
THE TYPES OF PERIPHERALS
YOU CAN USE WITH YOUR
COMPUTER AND THEIR LEVEL
OF DIFFICULTY.

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

1 36 • PROJECT 8

In this project, I’ll introduce you to two more mouse input
variables, after which we’ll cover event functions. Event functions
will launch you to the next level in Processing, as they allow you to
create much more robust functionality while reducing the amount of
code you have to write. Finally, you’ll learn to harness mouse clicks to
create two simple drawing programs that work a lot more efficiently
than what you’ve created in previous chapters.

MORE MOUSE VARIABLES
You’ve already used a few of Processing’s built-in system variables,
but there are others that can make your sketches respond to physical
inputs, including mousePressed and mouseButton.

The mousePressed variable is similar to the keyPressed variable
from Project 7: it returns True if either mouse button was pressed
and False if neither button was pressed. The mouseButton variable
tells you which button (LEFT or RIGHT) was pressed.

These variables are handy when you only need to detect button
presses, but as you’re about to learn, event functions offer even more
input-based functionality.

EVENT FUNCTIONS
An event function executes only when a certain event happens. You
implement your event function outside the basic draw() loop in your
sketch, and when it is triggered by the event (i.e., the user input), it
will run in parallel with the draw() loop until the event is no longer
active. Then the sketch should return to solely running the draw()
loop. Figure 8-1 illustrates this process.

Event functions allow your sketch to listen for user input while
executing a draw() loop. They reduce the number of if() state-
ments you need, and they’re much more responsive because they’re
always listening for an input. By contrast, if() statements are run
only once per draw() loop, and they must wait for the draw() loop to
repeat to check again for the input.

Your mouse has several event functions associated with it,
including the following:

mouseClicked() The event triggers when the mouse button is clicked.
mouseDragged() The event triggers when the mouse moves while a
button is held down.

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

1 37 • PROJECT 8

mouseMoved() The event triggers when the mouse moves.
mousePressed() The event triggers when the mouse button is
pressed.
mouseReleased() The event triggers when the mouse button is
released.

When you want to use an event function, just create another
function of the void type underneath your draw() function. A com-
plete Processing program with an event function would follow this
structure:

void setup()
{
 //your usual setup code goes here
}

Figure 8-1:

Flow of an event function

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

1 38 • PROJECT 8

void draw()
{
 background(255); //the background is white
}

void mouseClicked()
{
 background(0); //the background turns black!
}

In this example, I used only the mouseClicked() function, but
you can add multiple event functions, as I’ll show next.

RAINBOW DOODLES
In this section, we’ll explore the mouseDragged() and mousePressed()
event functions to write a program that lets you create rainbow-
colored drawings.

Implementing mouseDragged()
First, add the usual setup() and draw() sections, and then imple-
ment the mouseDragged() event function outside of your draw() loop
as follows:

void setup()
{
 size(850,1100);
 background(255);
}

void draw()
{
 //no code needed here!
}

void mouseDragged()
{
 strokeWeight(50);
 stroke(random(255),random(255),random(255));
 line(pmouseX,pmouseY,mouseX,mouseY);
}

Inside mouseDragged(), set a stroke weight, apply a random()
stroke color, and call the line() function to draw your line.
Pass line() the previous and current mouse coordinates—
(pmouseX,pmouseY) and (mouseX,mouseY), respectively—as its start

NOTe

If you place an event func-

tion within the draw() loop,

you’ll just get an error.

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

1 39 • PROJECT 8

and end points. You should have no code inside of your draw()
loop, because your line should be drawn only when you click and
drag your mouse.

You might be wondering, if there’s no code in the draw() loop,
then why include the loop at all? The reason is that if you have no
draw() loop, your sketch will just run your setup() function and then
stop. Your sketch needs to be actively running for event functions to
work. An empty draw() loop lets your sketch actively wait for some-
thing to happen.

Click the Run button to run your code. You should be able to
click and drag when you want to draw, and release the mouse button
to pick up your pen. Now, move the mouse to a different spot, press
the button to put your pen down, and draw again. For my first draw-
ing, I made a horrible version of the SparkFun flame logo (Figure 8-2).

The only problem is that you have to start your sketch over to
erase anything. Let’s add another event function to fix that!

NOTe

Some programmers like to

leave a single semicolon in

an empty draw() loop to

show that the loop is meant

to be blank.

Figure 8-2:

A rainbow-colored drawing

in Processing

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

140 • PROJECT 8

Implementing mousePressed()
We’ll use the mousePressed() event function, paired with your right
mouse button, to redraw the background and clear your drawing.
Add the new function after mouseDragged().

void mouseDragged()
{
 if(mouseButton == LEFT)
 {
 strokeWeight(50);
 stroke(random(255),random(255),random(255));
 line(pmouseX,pmouseY,mouseX,mouseY);
 }
}

void mousePressed()
{
 if(mouseButton == RIGHT)
 {
 background(255);
 }
}

The mousePressed() event function has an if() statement that
checks which mouse button you’re pressing, left or right. It redraws
the background only when the right mouse button is pressed. Run
your code again, and any time you want to start over, just click the
right mouse button!

Save your project now, because you’ll enhance it in the next
section.

A SIMPLE PAINTING PROGRAM
Now that we’ve explored mouse event functions, let’s make our
drawing application a little more useful and creative. We’ll tweak the
draw() loop to let you change the color of your pen on the fly from
the keyboard.

To add this functionality, start with the code you had at the
end of “Rainbow Doodles” on page 138. First, add three integer
variables as global variables, named r, g, and b, at the top of your
sketch:

int r = 10;
int g = 10;
int b = 10;

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

141 • PROJECT 8

Each new integer represents one piece of an RGB color: r is red,
g is green, and b is blue. I gave them all an arbitrary starting value of 10.

After creating these new variables, we’ll modify the draw() loop
to create a feedback box that shows our current pen color and its
RGB value.

Creating a Color-Changing Feedback Box
Inside the draw() loop, create a small feedback box that displays the
current pen color and its RGB setting as follows:

void draw()
{
 fill(r,g,b);
 noStroke();

 rect(0,0,100,12);
 fill(255);

 text((r + "," + g + "," + b),10,10);
}

Set a fill color using the variables r, g, and b, and draw a rect-
angle in the upper-left corner of the sketch. This rectangle’s color
will change when you press the R, G, and B keys. To display the cur-
rent RGB setting, pick another fill color and call the text() function ;
this prints the RGB values as a concatenated string inside the new
rectangle. You can see the finished product of this nifty feedback tool
in Figure 8-3.

The rectangle and text will display the hardcoded color values,
but how do you change the color on the fly? We’ll put if() state-
ments to good use to increment the color variables r, g, and b. Add
the following code to your draw() loop:

 if(key == 'r')
 {
 r++;

Figure 8-3:

The RGB color setting for

your pen. Use the R, G,

and B keys to change the

color.

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

142 • PROJECT 8

 key = ' ';
 if(r > 255)
 {
 r = 0;
 }
 }

 else if(key == 'g')
 {
 g++;
 key = ' ';
 if(g > 255)
 {
 g = 0;
 }
 }

 else if(key == 'b')
 {
 b++;
 key = ' ';
 if(b > 255)
 {
 b = 0;
 }
 }

These if() and else if() statements check which key is being
pressed. If it’s one of the color keys (R, G, or B), then we increment
the corresponding color variable. If any of the values becomes greater
than 255, then it is reset to 0, because Processing has no RGB values
greater than 255.

Notice, too, that once you increment r, g, or b, key is set to ' '
(the space character). This funky assignment is a quick hack, and
without it in the if() statement, the color variable you just changed
would continue to increment until you pressed another key. By set-
ting key to ' ' (or really, anything but 'r', 'g', or 'b'), you stop the
incrementing process and gain more control over the color.

Run your sketch to make sure that you can change the color of
the rectangle. You may notice that your pen color doesn’t change
yet; we’ll add that functionality next.

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

143 • PROJECT 8

Changing the Pen Color
To change the color of your pen, find the stroke() function in the
mouseDragged() event function and modify it to use your new color
variables:

void mouseDragged()
{
 if(mouseButton == LEFT)
 {
 strokeWeight(50);

 stroke(r,g,b);
 line(pmouseX,pmouseY,mouseX,mouseY);
 }
}

Set a stroke weight you like, and replace the three random()
arguments to stroke() with r, g, and b . Since these three vari-
ables are global, you can use them in any function, anywhere in your
sketch.

Now when you run your sketch, you should be able to change
the color of your pen using the R, G, and B keys, and make the most
beautiful drawing ever. Figure 8-4 is a drawing of my friend Brian.

Figure 8-4:

A lovely picture of Brian,

created with the paint tool

from this project by our

senior designer Pete Holm

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

144 • PROJECT 8

TAKING IT FURTHER
Think about other drawing programs you’ve used, and reproduce
some of their tools in your sketch. For example, you could use event
functions to change the background color, add an eraser to one of
your drawing programs, or even change the stroke weight.

To get you started, I’ve provided some skeleton code to add a
way to change the pen size in your project. Processing actually has
another mouse event function, called mouseWheel(). I left it out of
the discussion in “Event Functions” on page 136 because not every
mouse has a scroll wheel, but if your mouse does, you could use
mouseWheel() to change your pen size.

First, create a global variable called penSize at the top of the
sketch you finished in “A Simple Painting Program” on page 140
and initialize penSize to 2, a good standard line thickness. Next,
below your existing event functions, create the mouseWheel() event
function:

void mouseWheel(MouseEvent event)
{
 penSize = penSize + event.getCount();
 println(penSize);
}

This code simultaneously creates and passes the mouseWheel()
function a MouseEvent object called event. You can then set your
penSize to event.getCount(), which returns the number of mouse
wheel clicks. Scrolling away from yourself increases the value, and
scrolling toward yourself decreases the value.

Even once you add this new variable and event function to the
drawing program, it won’t quite work. How will you make penSize
become the stroke weight of your pen? Watch penSize change in
the console; how can you limit penSize to only positive numbers to
prevent your sketch from crashing?

I leave both of these questions as exercises for you to answer.
Have fun, and please share your beautiful drawings with SparkFun at
processing.book@sparkfun.com!

The SparkFun Guide to Processing: Create Interactive Art with Code!
© 2015 Derek Runberg

www.itbook.store/books/9781593276126

https://itbook.store/books/9781593276126

