
1
B l o c k B i n d i n g s

Traditionally, the way variable declara-
tions work has been one tricky part of pro-

gramming in JavaScript. In most C-based
languages, variables (more formally known as

bindings, as a name is bound to a value inside a scope)
are created at the spot where the declaration occurs.
In JavaScript, however, this is not the case. Where
your variables are actually created depends on how you declare them,
and ECMAScript 6 offers options to make controlling scope easier. This
chapter demonstrates why classic var declarations can be confusing, intro-
duces block-level bindings in ECMAScript 6, and then offers some best
practices for using them.

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

2 Chapter 1

var Declarations and Hoisting
Variable declarations using var are treated as if they’re at the top of the func-
tion (or in the global scope, if declared outside of a function) regardless of
where the actual declaration occurs; this is called hoisting. For a demonstra-
tion of what hoisting does, consider the following function definition:

function getValue(condition) {

 if (condition) {
 var value = "blue";

 // other code

 return value;
 } else {

 // value exists here with a value of undefined

 return null;
 }

 // value exists here with a value of undefined
}

If you are unfamiliar with JavaScript, you might expect the variable
value to be created only if condition evaluates to true. In fact, the vari-
able value is created regardless. Behind the scenes, the JavaScript engine
changes the getValue function to look like this:

function getValue(condition) {

 var value;

 if (condition) {
 value = "blue";

 // other code

 return value;
 } else {

 return null;
 }
}

The declaration of value is hoisted to the top, and the initialization
remains in the same spot. That means the variable value is still accessible
from within the else clause. If accessed from the else clause, the variable
would just have a value of undefined because it hasn’t been initialized in the
else block.

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

Block Bindings 3

It often takes new JavaScript developers some time to get used to dec-
laration hoisting, and misunderstanding this unique behavior can end up
causing bugs. For this reason, ECMAScript 6 introduces block-level scoping
options to give developers more control over a variable’s life cycle.

Block-Level Declarations
Block-level declarations declare bindings that are inaccessible outside a
given block scope. Block scopes, also called lexical scopes, are created in the
following places:

•	 Inside a function

•	 Inside a block (indicated by the { and } characters)

Block scoping is how many C-based languages work, and the introduc-
tion of block-level declarations in ECMAScript 6 is intended to provide that
same flexibility (and uniformity) to JavaScript.

let Declarations
The let declaration syntax is the same as the syntax for var. You can basi-
cally replace var with let to declare a variable but limit the variable’s scope
to only the current code block (there are a few other subtle differences,
which are discussed in “The Temporal Dead Zone” on page 6). Because
let declarations are not hoisted to the top of the enclosing block, it’s best
to place let declarations first in the block so they’re available to the entire
block. Here’s an example:

function getValue(condition) {

 if (condition) {
 let value = "blue";

 // other code

 return value;
 } else {

 // value doesn't exist here

 return null;
 }

 // value doesn't exist here
}

This version of the getValue function behaves more similarly to how
you’d expect it to in other C-based languages. Because the variable value
is declared using let instead of var, the declaration isn’t hoisted to the top

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

4 Chapter 1

of the function definition, and the variable value is no longer accessible
once execution flows out of the if block. If condition evaluates to false, then
value is never declared or initialized.

No Redeclaration
If an identifier has already been defined in a scope, using the identifier
in a let declaration inside that scope causes an error to be thrown. For
example:

var count = 30;

// throws an error
let count = 40;

In this example, count is declared twice: once with var and once with
let. Because let will not redefine an identifier that already exists in the
same scope, the let declaration will throw an error. Conversely, no error is
thrown if a let declaration creates a new variable with the same name as a
variable in its containing scope, as demonstrated in the following code:

var count = 30;

if (condition) {

 // doesn't throw an error
 let count = 40;

 // more code
}

This let declaration doesn’t throw an error because it creates a new
variable called count within the if statement instead of creating count in the
surrounding block. Inside the if block, this new variable shadows the global
count, preventing access to it until execution exits the block.

const Declarations
You can also define bindings in ECMAScript 6 with the const declaration
syntax. Bindings declared using const are considered constants, meaning
their values cannot be changed once set. For this reason, every const bind-
ing must be initialized on declaration, as shown in this example:

// valid constant
const maxItems = 30;

// syntax error: missing initialization
const name;

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

Block Bindings 5

The maxItems binding is initialized, so its const declaration will work
without a problem. However, the name binding would cause a syntax error
if you tried to run the program containing this code because name is not
initialized.

Constants vs. let Declarations

Constants, like let declarations, are block-level declarations. That means
constants are no longer accessible once execution flows out of the block
in which they were declared, and declarations are not hoisted, as demon-
strated in this example:

if (condition) {
 const maxItems = 5;

 // more code
}

// maxItems isn't accessible here

In this code, the constant maxItems is declared within an if statement.
After the statement finishes executing, maxItems is not accessible outside that
block.

In another similarity to let, a const declaration throws an error when
made with an identifier for an already defined variable in the same scope.
It doesn’t matter whether that variable was declared using var (for global or
function scope) or let (for block scope). For example, consider this code:

var message = "Hello!";
let age = 25;

// each of these throws an error
const message = "Goodbye!";
const age = 30;

The two const declarations would be valid alone, but given the previous
var and let declarations in this case, they are syntax errors.

Despite those similarities, there is one significant difference between
let and const. Attempting to assign a const to a previously defined constant
will throw an error in both strict and non-strict modes:

const maxItems = 5;

// throws an error
maxItems = 6;

Much like constants in other languages, the maxItems variable can’t
be assigned a new value later on. However, unlike constants in other lan-
guages, the value a constant holds can be modified if it is an object.

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

6 Chapter 1

Object Declarations with const

A const declaration prevents modification of the binding, not of the value.
That means const declarations for objects don’t prevent modification of
those objects. For example:

const person = {
 name: "Nicholas"
};

// works
person.name = "Greg";

// throws an error
person = {
 name: "Greg"
};

Here, the binding person is created with an initial value of an object
with one property. It’s possible to change person.name without causing an
error because this changes what person contains but doesn’t change the
value that person is bound to. When this code attempts to assign a value to
person (thus attempting to change the binding), an error will be thrown.
This subtlety in how const works with objects is easy to misunderstand. Just
keep in mind that const prevents modification of the binding, not modifica-
tion of the bound value.

The Temporal Dead Zone
A variable declared with either let or const cannot be accessed until after the
declaration. Attempting to do so results in a reference error, even when using
normally safe operations, such as the typeof operation in this if statement:

if (condition) {
 console.log(typeof value); // throws an error
 let value = "blue";
}

Here, the variable value is defined and initialized using let, but that
statement is never executed because the previous line throws an error.
The issue is that value exists in what the JavaScript community has dubbed
the temporal dead zone (TDZ). The TDZ is never named explicitly in the
ECMAScript specification, but the term is often used to describe why let
and const bindings are not accessible before their declaration. This sec-
tion covers some subtleties of declaration placement that the TDZ causes,
and although the examples shown use let, note that the same information
applies to const.

When a JavaScript engine looks through an upcoming block and finds
a variable declaration, it either hoists the declaration to the top of the func-
tion or global scope (for var) or places the declaration in the TDZ (for let
and const). Any attempt to access a variable in the TDZ results in a runtime

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

Block Bindings 7

error. That variable is only removed from the TDZ, and therefore is safe to
use, once execution flows to the variable declaration.

This is true anytime you attempt to use a variable declared with let or
const before it’s been defined. As the previous example demonstrated, this
even applies to the normally safe typeof operator. However, you can use
typeof on a variable outside the block where that variable is declared with-
out throwing an error, although it may not produce the results you’re after.
Consider this code:

console.log(typeof value); // "undefined"

if (condition) {
 let value = "blue";
}

The variable value isn’t in the TDZ when the typeof operation executes
because it occurs outside the block in which value is declared. That means
there is no value binding, and typeof simply returns "undefined".

The TDZ is just one unique aspect of block bindings. Another unique
aspect has to do with their use inside loops.

Block Bindings in Loops
Perhaps one area where developers most want block-level scoping of vari-
ables is within for loops, where the throwaway counter variable is meant to
be used only inside the loop. For instance, it’s not uncommon to see code
like this in JavaScript:

for (var i = 0; i < 10; i++) {
 process(items[i]);
}

// i is still accessible here
console.log(i); // 10

In other languages where block-level scoping is the default, this example
should work as intended—only the for loop should have access to the i vari-
able. However, in JavaScript, the variable i is still accessible after the loop
is completed because the var declaration is hoisted. Using let instead, as in
the following code, should produce the intended behavior:

for (let i = 0; i < 10; i++) {
 process(items[i]);
}

// i is not accessible here - throws an error
console.log(i);

In this example, the variable i exists only within the for loop. When the
loop is complete, the variable is no longer accessible elsewhere.

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

8 Chapter 1

Functions in Loops
The characteristics of var have long made creating functions inside loops
problematic, because the loop variables are accessible from outside the
scope of the loop. Consider the following code:

var funcs = [];

for (var i = 0; i < 10; i++) {
 funcs.push(function() {
 console.log(i);
 });
}

funcs.forEach(function(func) {
 func(); // outputs the number "10" ten times
});

You might ordinarily expect this code to print the numbers 0 to 9, but
it outputs the number 10 ten times in a row. The reason is that i is shared
across each iteration of the loop, meaning the functions created inside the
loop all hold a reference to the same variable. The variable i has a value
of 10 when the loop completes, so when console.log(i) is called, that value
prints each time.

To fix this problem, developers use immediately invoked function expres-
sions (IIFEs) inside loops to force a new copy of the variable they want to
iterate over to be created, as in this example:

var funcs = [];

for (var i = 0; i < 10; i++) {
 funcs.push((function(value) {
 return function() {
 console.log(value);
 }
 }(i)));
}

funcs.forEach(function(func) {
 func(); // outputs 0, then 1, then 2, up to 9
});

This version uses an IIFE inside the loop. The i variable is passed to
the IIFE, which creates its own copy and stores it as value. This is the value
used by the function for that iteration, so calling each function returns
the expected value as the loop counts up from 0 to 9. Fortunately, block-
level binding with let and const in ECMAScript 6 can simplify this loop
for you.

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

Block Bindings 9

let Declarations in Loops
A let declaration simplifies loops by effectively mimicking what the IIFE
does in the previous example. On each iteration, the loop creates a new
variable and initializes it to the value of the variable with the same name
from the previous iteration. That means you can omit the IIFE altogether
and get the results you expect, like this:

var funcs = [];

for (let i = 0; i < 10; i++) {
 funcs.push(function() {
 console.log(i);
 });
}

funcs.forEach(function(func) {
 func(); // outputs 0, then 1, then 2, up to 9
})

This loop works exactly like the loop that used var and an IIFE but is
arguably cleaner. The let declaration creates a new variable i each time
through the loop, so each function created inside the loop gets its own
copy of i. Each copy of i has the value it was assigned at the beginning of
the loop iteration in which it was created. The same is true for for-in and
for-of loops, as shown here:

var funcs = [],
 object = {
 a: true,
 b: true,
 c: true
 };

for (let key in object) {
 funcs.push(function() {
 console.log(key);
 });
}

funcs.forEach(function(func) {
 func(); // outputs "a", then "b", then "c"
});

In this example, the for-in loop shows the same behavior as the for
loop. Each time through the loop, a new key binding is created, so each
function has its own copy of the key variable. The result is that each func-
tion outputs a different value. If var were used to declare key, all functions
would output "c".

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

10 Chapter 1

n o t e It’s important to understand that the behavior of let declarations in loops is a spe-
cially defined behavior in the specification and is not necessarily related to the non-
hoisting characteristics of let. In fact, early implementations of let did not exhibit
this behavior, because it was added later in the process.

const Declarations in Loops
The ECMAScript 6 specification doesn’t explicitly disallow const declara-
tions in loops; however, const behaves differently based on the type of loop
you’re using. For a normal for loop, you can use const in the initializer,
but the loop will throw a warning if you attempt to change the value. For
example:

var funcs = [];

// throws an error after one iteration
for (const i = 0; i < 10; i++) {
 funcs.push(function() {
 console.log(i);
 });
}

In this code, the i variable is declared as a constant. The first iteration
of the loop, where i is 0, executes successfully. An error is thrown when i++
executes because it’s attempting to modify a constant. As such, you can only
use const to declare a variable in the loop initializer if you’re not modifying
that variable.

On the other hand, when used in a for-in or for-of loop, a const vari-
able behaves similarly to a let variable. Therefore, the following should not
cause an error:

var funcs = [],
 object = {
 a: true,
 b: true,
 c: true
 };

// doesn't cause an error
for (const key in object) {
 funcs.push(function() {
 console.log(key);
 });
}

funcs.forEach(function(func) {
 func(); // outputs "a", then "b", then "c"
});

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

Block Bindings 11

This code functions almost the same as the second example in “let
Declarations in Loops” on page 9. The only difference is that the value
of key cannot be changed inside the loop. The for-in and for-of loops
work with const because the loop initializer creates a new binding on each
iteration through the loop rather than attempting to modify the value of an
existing binding (as was the case in the for loop example).

Global Block Bindings
Another way in which let and const are different from var is in their global
scope behavior. When var is used in the global scope, it creates a new global
variable, which is a property on the global object (window in browsers). That
means you can accidentally overwrite an existing global using var, as this
code does:

// in a browser
var RegExp = "Hello!";
console.log(window.RegExp); // "Hello!"

var ncz = "Hi!";
console.log(window.ncz); // "Hi!"

Even though the RegExp global is defined on the window object, it is not
safe from being overwritten by a var declaration. This example declares
a new global variable RegExp that overwrites the original. Similarly, ncz is
defined as a global variable and then defined as a property on window imme-
diately afterward, which is the way JavaScript has always worked.

If you instead use let or const in the global scope, a new binding is
created in the global scope but no property is added to the global object.
That also means you cannot overwrite a global variable using let or const
declarations; you can only shadow it. Here’s an example:

// in a browser
let RegExp = "Hello!";
console.log(RegExp); // "Hello!"
console.log(window.RegExp === RegExp); // false

const ncz = "Hi!";
console.log(ncz); // "Hi!"
console.log("ncz" in window); // false

A new let declaration for RegExp creates a binding that shadows the global
RegExp. Because window.RegExp and RegExp are not the same, there is no disrup-
tion to the global scope. Also, the const declaration for ncz creates a binding
but does not create a property on the global object. This lack of global object
modification makes let and const much safer to use in the global scope when
you don’t want to create properties on the global object.

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

12 Chapter 1

n o t e You might still want to use var in the global scope if you have code that should be
available from the global object. This is most common in a browser when you want to
access code across frames or windows.

Emerging Best Practices for Block Bindings
While ECMAScript 6 was in development, there was widespread belief you
should use let by default instead of var for variable declarations. For many
JavaScript developers, let behaves exactly the way they thought var should
have behaved, so the direct replacement made logical sense. In this case,
you would use const for variables that needed modification protection.

However, as more developers migrated to ECMAScript 6, an alternate
approach gained popularity: use const by default, and only use let when you
know a variable’s value needs to change. The rationale is that most variables
should not change their value after initialization because unexpected value
changes are a source of bugs. This idea has a significant amount of traction
and is worth exploring in your code as you adopt ECMAScript 6.

Summary
The let and const block bindings introduce lexical scoping to JavaScript.
These declarations are not hoisted and only exist within the block in which
they’re declared. Block bindings offer behavior that is more like other lan-
guages and less likely to cause unintentional errors, because variables can
now be declared exactly where they’re needed. As a side effect, you cannot
access variables before they’re declared, even with safe operators, such as
typeof. Attempting to access a block binding before its declaration results in
an error due to the binding’s presence in the TDZ.

In many cases, let and const behave in a manner similar to var; however,
this is not true in loops. Inside for-in and for-of loops, both let and const
create a new binding with each iteration through the loop. As a result, func-
tions created inside the loop body can access the loop bindings’ current
values rather than their values after the loop’s final iteration (the behav-
ior with var). The same is true for let declarations in for loops, whereas
attempting to use a const declaration in a for loop may result in an error.

The current best practice for block bindings is to use const by default
and only use let when you know a variable’s value needs to change. Doing
so ensures a basic level of immutability in code that can help prevent cer-
tain types of errors.

www.itbook.store/books/9781593277574

https://itbook.store/books/9781593277574

