
1
c r e a t i n G Y o u r f i r s t
D a t a B a s e a n D t a B l e

SQL is more than just a means for extract-
ing knowledge from data. It’s also a lan-

guage for defining the structures that hold
data so we can organize relationships in the data.

Chief among those structures is the table.
A table is a grid of rows and columns that store data. Each row holds a

collection of columns, and each column contains data of a specified type:
most commonly, numbers, characters, and dates. We use SQL to define the
structure of a table and how each table might relate to other tables in the
database. We also use SQL to extract, or query, data from tables.

Understanding tables is fundamental to understanding the data in your
database. Whenever I start working with a fresh database, the first thing I
do is look at the tables within. I look for clues in the table names and their
column structure. Do the tables contain text, numbers, or both? How many
rows are in each table?

Next, I look at how many tables are in the database. The simplest
database might have a single table. A full-bore application that handles

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

2 Chapter 1

customer data or tracks air travel might have dozens or hundreds. The
number of tables tells me not only how much data I’ll need to analyze, but
also hints that I should explore relationships among the data in each table.

Before you dig into SQL, let’s look at an example of what the contents
of tables might look like. We’ll use a hypothetical database for managing a
school’s class enrollment; within that database are several tables that track
students and their classes. The first table, called student_enrollment, shows
the students that are signed up for each class section:

student_id class_id class_section semester
---------- ---------- ------------- ---------
CHRISPA004 COMPSCI101 3 Fall 2017
DAVISHE010 COMPSCI101 3 Fall 2017
ABRILDA002 ENG101 40 Fall 2017
DAVISHE010 ENG101 40 Fall 2017
RILEYPH002 ENG101 40 Fall 2017

This table shows that two students have signed up for COMPSCI101, and
three have signed up for ENG101. But where are the details about each stu-
dent and class? In this example, these details are stored in separate tables
called students and classes, and each table relates to this one. This is where
the power of a relational database begins to show itself.

The first several rows of the students table include the following:

student_id first_name last_name dob
---------- ---------- --------- ----------
ABRILDA002 Abril Davis 1999-01-10
CHRISPA004 Chris Park 1996-04-10
DAVISHE010 Davis Hernandez 1987-09-14
RILEYPH002 Riley Phelps 1996-06-15

The students table contains details on each student, using the value in the
student_id column to identify each one. That value acts as a unique key that
connects both tables, giving you the ability to create rows such as the follow-
ing with the class_id column from student_enrollment and the first_name and
last_name columns from students:

class_id first_name last_name
---------- ---------- ---------
COMPSCI101 Davis Hernandez
COMPSCI101 Chris Park
ENG101 Abril Davis
ENG101 Davis Hernandez
ENG101 Riley Phelps

The classes table would work the same way, with a class_id column and
several columns of detail about the class. Database builders prefer to orga-
nize data using separate tables for each main entity the database manages
in order to reduce redundant data. In the example, we store each student’s
name and date of birth just once. Even if the student signs up for multiple

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

Creating Your First Database and Table 3

classes—as Davis Hernandez did—we don’t waste database space entering
his name next to each class in the student_enrollment table. We just include his
student ID.

Given that tables are a core building block of every database, in this
chapter you’ll start your SQL coding adventure by creating a table inside a
new database. Then you’ll load data into the table and view the completed
table.

creating a database
The PostgreSQL program you downloaded in the Introduction is a database
management system, a software package that allows you to define, manage,
and query databases. When you installed PostgreSQL, it created a database
server—an instance of the application running on your computer—that
includes a default database called postgres. The database is a collection
of objects that includes tables, functions, user roles, and much more.
According to the PostgreSQL documentation, the default database is
“meant for use by users, utilities and third party applications” (see https://
www.postgresql.org/docs/current/static/app-initdb.html). In the exercises in this
chapter, we’ll leave the default as is and instead create a new one. We’ll do
this to keep objects related to a particular topic or application organized
together.

To create a database, you use just one line of SQL, shown in Listing 1-1.
This code, along with all the examples in this book, is available for down-
load via the resources at https://www.nostarch.com/practicalSQL/.

CREATE DATABASE analysis;

Listing 1-1: Creating a database named analysis

This statement creates a database on your server named analysis using
default PostgreSQL settings. Note that the code consists of two keywords—
CREATE and DATABASE—followed by the name of the new database. The state-
ment ends with a semicolon, which signals the end of the command. The
semicolon ends all PostgreSQL statements and is part of the ANSI SQL
standard. Sometimes you can omit the semicolon, but not always, and par-
ticularly not when running multiple statements in the admin. So, using the
semicolon is a good habit to form.

Executing SQL in pgAdmin
As part of the Introduction to this book, you also installed the graphical
administrative tool pgAdmin (if you didn’t, go ahead and do that now). For
much of our work, you’ll use pgAdmin to run (or execute) the SQL state-
ments we write. Later in the book in Chapter 16, I’ll show you how to run
SQL statements in a terminal window using the PostgreSQL command line
program psql, but getting started is a bit easier with a graphical interface.

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

4 Chapter 1

We’ll use pgAdmin to run the SQL statement in Listing 1-1 that creates
the database. Then, we’ll connect to the new database and create a table.
Follow these steps:

1. Run PostgreSQL. If you’re using Windows, the installer set PostgreSQL
to launch every time you boot up. On macOS, you must double-click
Postgres.app in your Applications folder.

2. Launch pgAdmin. As you did in the Introduction, in the left verti-
cal pane (the object browser) expand the plus sign to the left of
the Servers node to show the default server. Depending on how you
installed PostgreSQL, the default server may be named localhost or
PostgreSQL x, where x is the version of the application.

3. Double-click the server name. If you supplied a password during
installation, enter it at the prompt. You’ll see a brief message that
pgAdmin is establishing a connection.

4. In pgAdmin’s object browser, expand Databases and click once on the
postgres database to highlight it, as shown in Figure 1-1.

5. Open the Query Tool by choos-
ing Tools4Query Tool.

6. In the SQL Editor pane (the top
horizontal pane), type or copy
the code from Listing 1-1.

7. Click the lightning bolt icon
to execute the statement.
PostgreSQL creates the data-
base, and in the Output pane in
the Query Tool under Messages
you’ll see a notice indicating the
query returned successfully, as
shown in Figure 1-2.

Figure 1-2: Creating the analysis database

Figure 1-1: Connecting to the default
postgres database

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

Creating Your First Database and Table 5

8. To see your new database, right-
click Databases in the object
browser. From the pop-up menu,
select Refresh, and the analysis
database will appear in the list,
as shown in Figure 1-3.

Good work! You now have a
database called analysis, which
you can use for the majority of the
exercises in this book. In your own
work, it’s generally a best practice to
create a new database for each proj-
ect to keep tables with related data
together.

Connecting to the Analysis Database
Before you create a table, you must ensure that pgAdmin is connected to
the analysis database rather than to the default postgres database.

To do that, follow these steps:

1. Close the Query Tool by clicking the X at the top right of the tool. You
don’t need to save the file when prompted.

2. In the object browser, click once on the analysis database.

3. Reopen the Query Tool by choosing Tools4Query Tool.

4. You should now see the label analysis on postgres@localhost at the top of
the Query Tool window. (Again, instead of localhost, your version may
show PostgreSQL.)

Now, any code you execute will apply to the analysis database.

creating a table
As I mentioned earlier, tables are where data lives and its relationships are
defined. When you create a table, you assign a name to each column (some-
times referred to as a field or attribute) and assign it a data type. These are the
values the column will accept—such as text, integers, decimals, and dates—
and the definition of the data type is one way SQL enforces the integrity of
data. For example, a column defined as date will take data in one of several
standard formats, such as YYYY-MM-DD. If you try to enter characters not in a
date format, for instance, the word peach, you’ll receive an error.

Data stored in a table can be accessed and analyzed, or queried, with
SQL statements. You can sort, edit, and view the data, and easily alter the
table later if your needs change.

Let’s make a table in the analysis database.

Figure 1-3: The analysis database dis-
played in the object browser

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

6 Chapter 1

The CREATE TABLE Statement
For this exercise, we’ll use an often-discussed piece of data: teacher salaries.
Listing 1-2 shows the SQL statement to create a table called teachers:

 CREATE TABLE teachers (
 id bigserial,
 first_name varchar(25),
 last_name varchar(50),
 school varchar(50),
 hire_date date,
 salary numeric
);

Listing 1-2: Creating a table named teachers with six columns

This table definition is far from comprehensive. For example, it’s
missing several constraints that would ensure that columns that must be
filled do indeed have data or that we’re not inadvertently entering duplicate
values. I cover constraints in detail in Chapter 7, but in these early chapters
I’m omitting them to focus on getting you started on exploring data.

The code begins with the two SQL keywords CREATE and TABLE that,
together with the name teachers, signal PostgreSQL that the next bit of
code describes a table to add to the database. Following an opening paren-
thesis, the statement includes a comma-separated list of column names
along with their data types. For style purposes, each new line of code is on
its own line and indented four spaces, which isn’t required, but it makes the
code more readable.

Each column name represents one discrete data element defined by a
data type. The id column is of data type bigserial, a special integer type
that auto-increments every time you add a row to the table. The first row
receives the value of 1 in the id column, the second row 2, and so on. The
bigserial data type and other serial types are PostgreSQL-specific imple-
mentations, but most database systems have a similar feature.

Next, we create columns for the teacher’s first and last name, and the
school where they teach . Each is of the data type varchar, a text column
with a maximum length specified by the number in parentheses. We’re
assuming that no one in the database will have a last name of more than
50 characters. Although this is a safe assumption, you’ll discover over time
that exceptions will always surprise you.

The teacher’s hire_date is set to the data type date, and the salary
column is a numeric. I’ll cover data types more thoroughly in Chapter 3,
but this table shows some common examples of data types. The code block
wraps up with a closing parenthesis and a semicolon.

Now that you have a sense of how SQL looks, let’s run this code in
pgAdmin.

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

Creating Your First Database and Table 7

Making the teachers Table
You have your code and you’re connected to the database, so you can make
the table using the same steps we did when we created the database:

1. Open the pgAdmin Query Tool (if it’s not open, click once on the
analysis database in pgAdmin’s object browser, and then choose
Tools4Query Tool).

2. Copy the CREATE TABLE script from Listing 1-2 into the SQL Editor.

3. Execute the script by clicking the lightning bolt icon.

If all goes well, you’ll see a mes-
sage in the pgAdmin Query Tool’s
bottom output pane that reads, Query
returned successfully with no result

in 84 msec. Of course, the number of
milliseconds will vary depending on
your system.

Now, find the table you created.
Go back to the main pgAdmin
window and, in the object browser,
right-click the analysis database
and choose Refresh. Choose
Schemas4public4Tables to
see your new table, as shown in
Figure 1-4.

Expand the teachers table node
by clicking the plus sign to the left of
its name. This reveals more details
about the table, including the col-
umn names, as shown in Figure 1-5.
Other information appears as well,
such as indexes, triggers, and con-
straints, but I’ll cover those in later
chapters. Clicking on the table name
and then selecting the SQL menu
in the pgAdmin workspace will dis-
play the SQL statement used to make
the teachers table.

Congratulations! So far, you’ve
built a database and added a table to
it. The next step is to add data to the
table so you can write your first query.

Figure 1-4: The teachers table in the
object browser

Figure 1-5: Table
details for teachers

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

8 Chapter 1

inserting rows into a table
You can add data to a PostgreSQL table in several ways. Often, you’ll work
with a large number of rows, so the easiest method is to import data from a
text file or another database directly into a table. But just to get started, we’ll
add a few rows using an INSERT INTO ... VALUES statement that specifies the
target columns and the data values. Then we’ll view the data in its new home.

The INSERT Statement
To insert some data into the table, you first need to erase the CREATE TABLE
statement you just ran. Then, following the same steps as you did to create
the database and table, copy the code in Listing 1-3 into your pgAdmin
Query Tool:

 INSERT INTO teachers (first_name, last_name, school, hire_date, salary)
 VALUES ('Janet', 'Smith', 'F.D. Roosevelt HS', '2011-10-30', 36200),

 ('Lee', 'Reynolds', 'F.D. Roosevelt HS', '1993-05-22', 65000),
 ('Samuel', 'Cole', 'Myers Middle School', '2005-08-01', 43500),
 ('Samantha', 'Bush', 'Myers Middle School', '2011-10-30', 36200),
 ('Betty', 'Diaz', 'Myers Middle School', '2005-08-30', 43500),
 ('Kathleen', 'Roush', 'F.D. Roosevelt HS', '2010-10-22', 38500);

Listing 1-3: Inserting data into the teachers table

This code block inserts names and data for six teachers. Here, the
PostgreSQL syntax follows the ANSI SQL standard: after the INSERT INTO
keywords is the name of the table, and in parentheses are the columns to be
filled . In the next row is the VALUES keyword and the data to insert into each
column in each row . You need to enclose the data for each row in a set of
parentheses, and inside each set of parentheses, use a comma to separate
each column value. The order of the values must also match the order of the
columns specified after the table name. Each row of data ends with a comma,
and the last row ends the entire statement with a semicolon .

Notice that certain values that we’re inserting are enclosed in single
quotes, but some are not. This is a standard SQL requirement. Text and
dates require quotes; numbers, including integers and decimals, don’t
require quotes. I’ll highlight this requirement as it comes up in examples.
Also, note the date format we’re using: a four-digit year is followed by the
month and date, and each part is joined by a hyphen. This is the interna-
tional standard for date formats; using it will help you avoid confusion.
(Why is it best to use the format YYYY-MM-DD? Check out https://xkcd.com/1179/
to see a great comic about it.) PostgreSQL supports many additional date
formats, and I’ll use several in examples.

You might be wondering about the id column, which is the first column
in the table. When you created the table, your script specified that column
to be the bigserial data type. So as PostgreSQL inserts each row, it automat-
ically fills the id column with an auto-incrementing integer. I’ll cover that in
detail in Chapter 3 when I discuss data types.

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

Creating Your First Database and Table 9

Now, run the code. This time the message in the Query Tool should
include the words Query returned successfully: 6 rows affected.

Viewing the Data
You can take a quick look at the data you just loaded into the teachers table
using pgAdmin. In the object browser, locate the table and right-click. In
the pop-up menu, choose View/Edit Data4All Rows. As Figure 1-6 shows,
you’ll see the six rows of data in the table with each column filled by the
values in the SQL statement.

Figure 1-6: Viewing table data directly in pgAdmin

Notice that even though you didn’t insert a value for the id column,
each teacher has an ID number assigned.

You can view data using the pgAdmin interface in a few ways, but we’ll
focus on writing SQL to handle those tasks.

when code goes bad
There may be a universe where code always works, but unfortunately, we
haven’t invented a machine capable of transporting us there. Errors hap-
pen. Whether you make a typo or mix up the order of operations, com-
puter languages are unforgiving about syntax. For example, if you forget
a comma in the code in Listing 1-3, PostgreSQL squawks back an error:

ERROR: syntax error at or near "("
LINE 5: ('Samuel', 'Cole', 'Myers Middle School', '2005-08-01', 43...
 ^
********** Error **********

Fortunately, the error message hints at what’s wrong and where: a syn-
tax error is near an open parenthesis on line 5. But sometimes error mes-
sages can be more obscure. In that case, you do what the best coders do: a
quick internet search for the error message. Most likely, someone else has
experienced the same issue and might know the answer.

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

10 Chapter 1

Formatting sql for readability
SQL requires no special formatting to run, so you’re free to use your own
psychedelic style of uppercase, lowercase, and random indentations. But
that won’t win you any friends when others need to work with your code
(and sooner or later someone will). For the sake of readability and being a
good coder, it’s best to follow these conventions:

•	 Uppercase SQL keywords, such as SELECT. Some SQL coders also upper-
case the names of data types, such as TEXT and INTEGER. I use lowercase
characters for data types in this book to separate them in your mind
from keywords, but you can uppercase them if desired.

•	 Avoid camel case and instead use lowercase_and_underscores for object
names, such as tables and column names (see more details about case
in Chapter 7).

•	 Indent clauses and code blocks for readability using either two or four
spaces. Some coders prefer tabs to spaces; use whichever works best for
you or your organization.

We’ll explore other SQL coding conventions as we go through the
book, but these are the basics.

wrapping up
You accomplished quite a bit in this first chapter: you created a database
and a table, and then loaded data into it. You’re on your way to adding
SQL to your data analysis toolkit! In the next chapter, you’ll use this set
of teacher data to learn the basics of querying a table using SELECT.

t rY i t Yourse l f

Here are two exercises to help you explore concepts related to databases,
tables, and data relationships:

1 . Imagine you’re building a database to catalog all the animals at your local
zoo . You want one table to track the kinds of animals in the collection and
another table to track the specifics on each animal . Write CREATE TABLE
statements for each table that include some of the columns you need . Why
did you include the columns you chose?

2 . Now create INSERT statements to load sample data into the tables . How
can you view the data via the pgAdmin tool? Create an additional INSERT
statement for one of your tables . Purposely omit one of the required commas
separating the entries in the VALUES clause of the query . What is the error
message? Would it help you find the error in the code?

www.itbook.store/books/9781593278274

https://itbook.store/books/9781593278274

