
8
I ’ V E G O T T H E P O W E R :

I N T R O D U C T I O N T O
P O W E R A N A LY S I S

You’ll often hear that cryptographic algo-
rithms are unbreakable, regardless of the

huge advances in computing power. That is
true. However, as you’ll learn in this chapter,

the key to finding vulnerabilities in cryptographic
algorithms lies in their implementation, no matter
how “military grade” they are.

That said, we won’t be discussing crypto implementation errors, such as
failed bounds checks, in this chapter. Instead, we’ll exploit the very nature
of digital electronics using side channels to break algorithms that, on paper,
appear to be secure. A side channel is some observable aspect of a system that
reveals secrets held within that system. The techniques we describe leverage
vulnerabilities that arise from the physical implementation of these algorithms
in hardware, primarily in the way that digital devices use power. We’ll start
with data-dependent execution time, which we can determine by monitoring
power consumption, and then we’ll move on to monitoring power consump-
tion as a means to identify key bits in cryptographic processing functions.

www.itbook.store

https://itbook.store

246 Chapter 8

Considerable historical precedence exists for side-channel analysis.
For example, during the Second World War, the British were interested in
estimating the number of tanks being produced by the Germans. The most
reliable way to do so turned out to be a statistical analysis of the sequence
of serial numbers from captured or disabled tanks, assuming that serial
numbers typically increment in a straightforward manner. The attacks we’ll
present in this chapter mirror this so-called German Tank Problem: they com-
bine statistics with assumptions and ultimately use a small amount of data
that our adversary unknowingly leaked to us.

Other historical side-channel attacks monitor unintended electronic
signals emanating from the hardware. In fact, almost as soon as electronic
systems were used to pass secure messages, they were subject to attack.
One such famous early attack was the TEMPEST attack, launched by Bell
Labs scientists in WWII to decode electronic typewriter key presses from
80 feet away with a 75 percent accuracy (see “TEMPEST: A Signal Problem”
by the USA’s National Security Agency). TEMPEST has since been used to
reproduce what is being displayed on a computer monitor by picking up
the monitor’s radio signal emissions from outside the building (see, for
instance, Wim van Eck’s “Electromagnetic Radiation from Video Display
Units: An Eavesdropping Risk?”). And while the original TEMPEST attack
used CRT-type monitors, this same vulnerability has been demonstrated
on more recent LCD displays by Markus G. Kuhn in “Electromagnetic
Eavesdropping Risks of Flat-Panel Displays,” so it’s far from outdated.

We’ll show you something even more surreptitious than TEMPEST,
though: a way to use unintended emissions from hardware to break otherwise
secure cryptographic algorithms. This strategy covers both software running
on hardware (such as firmware on a microcontroller) and pure hardware
implementations of the algorithms (such as cryptographic accelerators).
We’ll describe how to measure, how to process your measurement to improve
leakage, and how to extract secrets. We’ll cover topics that have their roots in
areas ranging all the way from chip and printed circuit board (PCB) design,
through electronics, electromagnetism, and (digital) signal processing, to
statistics, cryptography, and even to common sense.

Timing Attacks
Timing is everything. Consider what happens when implementing a per-
sonal identification number (PIN) code check, like one you’d find on a wall
safe or door alarm. The designer allows you to enter the complete PIN (say,
four digits) before comparing the entered PIN with the stored secret code.
In C code, it could look something like Listing 8-1.

int checkPassword() {
 int user_pin[] = {1, 1, 1, 1};
 int correct_pin[] = {5, 9, 8, 2};

 // Disable the error LED
 error_led_off();

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 247

 // Store four most recent buttons
 for(int i = 0; i < 4; i++) {
 user_pin[i] = read_button();
 }

 // Wait until user presses 'Valid' button
 while(valid_pressed() == 0);

 // Check stored button press with correct PIN
 for(int i = 0; i < 4; i++) {
 if(user_pin[i] != correct_pin[i]) {
 error_led_on();
 return 0;
 }
 }

 return 1;
}

Listing 8-1: Sample PIN code check written in C

It looks like a pretty reasonable piece of code, right? We read in four
digits. If they match the secret code, the function returns a 1; otherwise, it
returns a 0. Ultimately, we can use this return value to open a safe or disarm
the security system by pressing the valid button after the four digits have
been entered. A red error LED illuminates to show that the PIN is incorrect.

How might this safe be attacked? Assuming that the PIN accepts the
numbers 0 through 9, testing all possible combinations would require a
total of 10 × 10 × 10 × 10 = 10,000 guesses. On average, we would have to
perform 5,000 guesses to find the PIN, but that would take a long time, and
the system might limit the speed at which we can repeatedly enter guesses.

Fortunately, we can reduce the number of guesses to 40 using a tech-
nique called a timing attack. Assume we have the keypad shown in Figure 8-1.
The C key (for clear) clears the entry, and the V key (for valid) validates it.

1 2 3

4 5 6

7 8 9 V

C

ACME Secur-it-y

Figure 8-1: A simple keypad

To perform the attack, we connect two oscilloscope probes to the key-
pad: one to the connecting wire on the V button and the other to the con-
necting wire on the error LED. We then enter PIN 0000. (Of course, we are
assuming we have access to a copy of this PIN pad that we’ve now dissected.)
We press the V button, watch our oscilloscope trace, and measure the time

www.itbook.store

https://itbook.store

248 Chapter 8

difference between the V button being pressed and the error LED illumi-
nating. The execution of the loop in Listing 8-1 tells us that the function
will take longer to return a failed result if the first three numbers in the
PIN are correct and only the final check fails than it would take if the first
number had been incorrect from the start.

The attack cycles through all possibilities for the first digit of the PIN
(0000, 1000, 2000, through 9000) while recording the time delay between
pressing the V button and the error LED illuminating. Figure 8-2 shows the
timing sequence.

Time

V
o
lt
a
g
e

Error LED

Valid button

tbad

Time

V
o
lt
a
g
e

Error LED

Valid button

tcorrect

Figure 8-2: Determination of loop delay time

We expect that when the first PIN digit is correct (let’s say it’s a 1), the
delay will increase before the error LED goes high, which happens only
after the second digit has been compared to correct_pin[]. We now know
the correct first digit. The top part of Figure 8-2 shows that when the valid
button is pressed after a completely incorrect sequence, the error LED
turns on within a short amount of time (tbad). Compare this to the valid
button being pressed after a partially correct sequence (the first button was
correct in this partial sequence). Now the error LED takes a longer amount
of time (tcorrect) since the first number was correct, but upon comparing the
second number, it turns on the error LED.

We continue the attack by trying every possibility for the second digit:
entering 1000, 1100, 1200 through 1900. Once again, we expect that for the
correct digit (let’s say it’s 3), the delay will increase before the error LED
goes high.

Repeating this attack for the third digit, we determine that the first
three digits are 133. Now it’s a simple matter of guessing the final digit and
seeing which one unlocks the system (let’s say it’s 7). The PIN combination
is, thus, 1337. (Considering the audience of this book, we realize we may
have just published your PIN. Change it now.)

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 249

The advantage to this method is that we discover the digits incremen-
tally by knowing the position in the PIN sequence of the incorrect digit.
This little bit of information has a big impact. Instead of a maximum of
10 × 10 × 10 × 10 guesses, we now need to make no more than 10 + 10 + 10
+ 10 = 40 guesses. If we are locked out after three unsuccessful attempts, the
probability of guessing the PIN has been improved from 3/1000 (0.3 per-
cent) to 3/40 (7.5 percent). Further, assuming the PIN is selected randomly
(which in reality is a poor assumption), we would on average find the guess
halfway through our guessing sequence. This means, on average, we need
to guess only five numbers for each digit, so we have an average total of
20 guesses with our assisted attack.

We call this a timing attack. We measured only the time between two
events and used that information to recover part of the secret. Can it really
be as easy in practice? Here’s a real-life example.

Hard Drive Timing Attack
Consider a hard drive enclosure with a PIN-protected partition—in particu-
lar, the Vantec Vault, model number NSTV290S2.

N O T E Although this product is no longer available in stores, you may still find some old
stock. For full details of this attack, see the freely available PoC || GTFO 0x04, avail-
able from online mirrors such as https://archive.org/stream/pocorgtfo04#page/
n36/mode/1up/ (and also available in bound format from No Starch Press in
PoC || GTFO).

The Vault hard drive enclosure works by messing with the drive’s parti-
tion table so that it doesn’t appear in the host operating system; the enclo-
sure doesn’t actually encrypt anything. When the correct PIN is entered
into the Vault, valid partition information is made accessible to the operat-
ing system.

The most obvious way to attack the Vault might be to repair the parti-
tion table manually on the drive, but we can also use a timing attack against
its PIN-entry logic—one that’s more in line with our side-channel power
analysis.

Unlike the PIN pad example discussed earlier, we first need to deter-
mine when a button is read, because in this device, the microcontroller only
occasionally scans the buttons. Each scan requires checking the status of
each button to determine whether it has been pressed. This scanning tech-
nique is standard in hardware that must receive input from buttons. It frees
the microcontroller in the hardware to do work in the 100ms or so between
checking for button presses, which maintains the illusion of instantaneous
response to us comparatively slow and clumsy humans.

When performing a scan, the microcontroller sets some line to a posi-
tive voltage (high). We can use this transition as a trigger to indicate when
a button is being read. While a button is pressed, the time delay from
this line going high to the error event gives us the timing information we
need for our attack. Figure 8-3 shows that line B goes high only when the

www.itbook.store

https://itbook.store

250 Chapter 8

microcontroller is reading the button status and the button is being pressed
at the same time. Our primary challenge is to trigger the capture when
that high value propagates through the button, not just when the button is
pushed.

0 50 100

Time (ms)

V
o
lt
a
g
e

A

B

Button pressed here

A B

Figure 8-3: Hard drive attack timing diagram

This simple example shows how the microcontroller checks the state
of the button only every 50ms, as shown by the upper timing line A. It can
detect the button press only during brief high pulses at those 50ms inter-
vals. The presence of a button press is indicated by the correspondingly
brief high pulse that the A line pulse allows through onto the B line.

Figure 8-4 shows the buttons along the right-hand side of the hard
drive enclosure by which a six-digit PIN code is entered. Only once the
entire correct PIN is entered does the hard drive reveal its contents to the
operating system.

It so happens that the correct PIN code in our hard drive is 123456 (the
same combination as on our luggage), and Figure 8-5 demonstrates how we
can read this out.

The top line is the error signal, and the bottom line is the button scan sig-
nal. The vertical cursors are aligned to the rising edge of the button scan signal
and to the falling edge of the error signal. We’re interested in the time differ-
ence between those cursors, which corresponds to the time the microcontroller
needs to process the PIN entry before it responds with an error.

Looking at the top part of the figure, we see the timing information
where the first digit is incorrect. The time delay between the first rising
edge of the button scan and the falling edge of the error signal gives us the
processing time. By comparison, the bottom part of the figure shows the
same waveforms when the first digit is correct. Notice that the time delay
is slightly longer. This longer delay is due to the password-checking loop
accepting the first digit and then going to check the next digit. In this way,
we can identify the first digit of the password.

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 251

Buttons

Figure 8-4: Vantec Vault NSTV290S2 hard drive enclosure

0–6–6–6–6–6

1–6–6–6–6–6

Figure 8-5: Hard drive timing measurement

www.itbook.store

https://itbook.store

252 Chapter 8

The next stage of the attack is to iterate through all options for the
second digit (that is, testing 106666, 116666 . . . 156666, 166666) and
looking for a similar jump in processing delay. This jump in delay again
indicates that we have found the correct value of a digit and can then
attack the next digit.

We can use a timing attack to guess the password for the Vault in (at
most) 60 guesses (10 + 10 + 10 + 10 + 10 + 10), which should take no longer
than 10 minutes doing it manually. Yet, the manufacturer claims that the
Vault has one million combinations (10 × 10 × 10 × 10 × 10 × 10), which is
true when entering guesses of the PIN. However, our timing attack reduces
the number of combinations we actually need to try to 0.006 percent of the
total number of combinations. No countermeasures such as random delays
complicate our attack, and the drive doesn’t provide a lock-out mechanism
that prevents the user from entering an unlimited number of guesses.

Power Measurements for Timing Attacks
Let’s say that in an attempt to thwart a timing attack, someone has inserted
a small random delay before illuminating the error LED. The underlying
password check is the same as that in Listing 8-1, but now the time delay
between pressing the V button and the error LED illuminating no longer
clearly indicates the position of an incorrect digit.

Now assume we’re able to measure the power consumption of the
microcontroller that’s executing the code. (We’ll explain how to do this
in the section “Preparing the Oscilloscope” in Chapter 9.) The power con-
sumption might look something like Figure 8-6, which shows the power
trace of a device while it’s performing an operation.

BA

Figure 8-6: A sample power consumption trace of a device performing an operation

Notice the repetitive nature of the power consumption trace. Oscillations
will occur at a rate similar to the microcontroller’s operating frequency.
Most transistor-switching activity on the chip happens at the edges of the
clock, and thus the power consumption also spikes close to those moments.
The same principle applies even to high-speed devices, such as Arm micro-
controllers or custom hardware.

We can glean some information about what a device is doing based
on this power signature. For example, if the random delay discussed ear-
lier is implemented as a simple for loop that counts from 0 to a random
number n, it will appear as a pattern that is repeated n times. In window
B of Figure 8-6, a pattern (in this case, the simple pulse) is repeated four
times, so if we expect a random delay, that sequence of four pulses may be
the delay. If we record a few of these power traces using the same PIN, and

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 253

all patterns are the same except for different numbers of pulses similar to
window B, that would indicate a random process around window B. This
randomness could be either a truly random process or some pseudorandom
process (pseudorandom normally being a purely deterministic process gen-
erating the “randomness”). For example, if you reset the device, you might
see the same consecutive repetitions in window B, which indicates it’s not
truly random. But of more interest, if we vary the PIN and see the number
of patterns that look like those in window A change, we have a good idea
that the power sequence around window A represents the comparison func-
tion. Thus, we can focus our timing attack on that section of the power
trace.

The difference between this approach and previous timing attacks is
that we don’t have to measure timing over an entire algorithm but instead
can choose specific parts of an algorithm that happen to have a characteris-
tic signal. We can use similar techniques to break cryptographic implemen-
tations, as we’ll describe next.

Simple Power Analysis
Everything is relative, and so is the simplicity of simple power analysis (SPA)
with respect to differential power analysis (DPA). The term simple power analy-
sis has its origins in the 1998 paper “Differential Power Analysis” by Paul
Kocher, Joshua Jaffe, and Benjamin Jun, where SPA was coined along with
the more complex DPA. Bear in mind, however, that performing SPA can
sometimes be more complex than performing DPA in some leakage sce-
narios. You can perform an SPA attack by observing a single execution of
the algorithm, whereas a DPA attack involves multiple executions of an
algorithm with varying data. DPA generally analyzes statistical differences
between hundreds to billions of traces. While you can perform SPA in a sin-
gle trace, it may involve a few to thousands of traces—the additional traces
are included to reduce noise. The most basic example of an SPA attack is to
inspect power traces visually, which can break weak cryptographic imple-
mentations or PIN verifications, as shown earlier in this chapter.

SPA relies on the observation that each microcontroller instruction has
its own characteristic appearance in power consumption traces. For example,
a multiplication operation can be distinguished from a load instruction:
micro controllers use different circuitry to handle multiplication instructions
from the circuitry they use when performing load instructions. The result is
a unique power consumption signature for each process.

SPA differs from the timing attack discussed in the previous section,
in that SPA allows you to examine the execution of an algorithm. You can
analyze the timing of both individual operations and identifiable power
profiles of operations. If any operation depends on a secret key, you may be
able to determine that key. You can even use SPA attacks to recover secrets
when you can’t interact with a device and can observe it only while it’s per-
forming the cryptographic operation.

www.itbook.store

https://itbook.store

254 Chapter 8

Applying SPA to RSA
Let’s apply the SPA technique to a cryptographic algorithm. We’ll concen-
trate on asymmetric encryption, where we’ll look at operations using the
private key. The first algorithm to consider will be the RSA cryptosystem,
where we’ll investigate a decryption operation. At the core of the RSA
crypto system is the modular exponentiation algorithm, which calculates
me = c mod n, where m is the message, c is the ciphertext, and mod n is the
modulus operation. If you aren’t familiar with RSA, we recommend picking
up Serious Cryptography by Jean-Philippe Aumasson (also published by No
Starch Press), which covers the theory in an approachable manner. We also
provided a quick overview of RSA in Chapter 6, but for the following side-
channel work, you don’t need to understand anything about RSA besides
the fact that it processes data and a secret key.

This secret key is part of the processing done in the modular exponen-
tiation algorithm, and Listing 8-2 shows one possible implementation of a
modular exponentiation algorithm.

unsigned int do_magic(unsigned int secret_data, unsigned int m, unsigned int n) {
 unsigned int P = 1;
 unsigned int s = m;
 unsigned int i;

 for(i = 0; i < 10; i++) {
 if (i > 0)
 s = (s * s) % n;

 if (secret_data & 0x01)
 P = (P * s) % n;

 secret_data = secret_data >> 1;
 }

 return P;
}

Listing 8-2: An implementation of the square-and-multiply algorithm

This algorithm happens to be at the heart of an RSA implementation
you might find as taught from a classic textbook. This particular algorithm is
called a square-and-multiply exponentiation, hard-coded for a 10-bit secret key,
represented by the secret_data variable. (Usually the secret_data would be a
much longer key in the range of thousands of bits, but for this example, we’ll
keep it short.) Variable m is the message we are trying to decrypt. The system
defenses will have been penetrated at the point when an attacker determines
the value of secret_data. Side-channel analysis on this algorithm is a tactic
that can break the system. Note that we skip the square on the first iteration.
The first if (i > 0) is not part of the leakage we are attacking; it’s just part of
the algorithm construction.

SPA can be used to look at the execution of this algorithm and deter-
mine its code path. If we can recognize whether P * s has been executed,

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 255

we can find the value of one bit of secret_data. If we can recognize this
for every iteration of the loop, we may be able to literally read the secret
from a power consumption oscilloscope trace during code execution (see
Figure 8-7).

Before we explain how to read this trace, take a good look at the trace
and try to map the execution of the algorithm onto it.

*10 mVolt
35
30
25
20
15
10

5
0 10 20 30 40 50 60 70 80 90 100 110 120

*100
μsec

Figure 8-7: Power consumption trace of a square-and-multiply execution

Notice some interesting patterns between roughly 5ms and 12ms
(between 50 and 120 on the 100µs unit x-axis): blocks of approxi-
mately 0.9ms and 1.1ms interspersed among each other. We can refer
to the shorter blocks as Q (quick) and to the longer blocks as L (long).
Q occurs 10 times, and L occurs four times; in sequence, they are
QLQQQQLQLQQQQL. This is the visualization part of SPA signal
analysis.

Now we need to interpret this information by relating it to something
secret. If we assume that s * s and P * s are the computationally expen-
sive operations, we should see two variations of the outer loop: some with
only a square (S, (s * s)) and others that are both a square and a multiply
(SM, (s * s) followed by (P * s)). We’ve carefully ignored the i = 0 case,
which doesn’t have (s * s), but we’ll get to that.

We know that S is executed when a bit is 0, and SM is executed when a bit
equals 1. There is just one missing piece: does each block in the trace equate
to a single S or single M operation, or does each block in the trace equate to a
single loop iteration, and thus either a single S or combined SM operation? In
other words, is our mapping {Q → S, L → M} or {Q → S, L → SM}?

A hint to the answer lies in the sequence QLQQQQLQLQQQQL. Note
that every L is preceded by a Q, and there are no LL sequences. Per the
algorithm, every M has to be preceded by an S (except in the first iteration),
and there are no MM sequences. This indicates {Q → S, L → M} is the right
mapping as the {Q → S, L → SM} mapping would likely have also given rise
to an LL sequence.

This allows us to map the patterns to operations and operations to
secret bits, which means QLQQQQLQLQQQQL becomes the operations
SM,S,S,S,SM,SM,S,S,S,SM. The first bit processed by the algorithm is the
least significant bit of the key, and the first sequence we observe is SM.
Since the algorithm skips the S for the least significant bit, we know the ini-
tial SM must come from the next loop iteration and thus the next bit. With
that knowledge, we can reconstruct the key: 10001100010.

www.itbook.store

https://itbook.store

256 Chapter 8

Applying SPA to RSA, Redux
The implementation of modular exponentiation in RSA implementations
will vary, and some variants may require more effort to break. But funda-
mentally, finding differences in processing a 0 or 1 bit is the starting point
for an SPA attack. As an example, the RSA implementation of ARM’s open
source MBED-TLS library uses something called windowing. It processes
multiple bits of the secret at a time (a window), which theoretically means
the attack is more complicated because the algorithm does not process indi-
vidual bits. Praveen Kumare Vadnala and Lukasz Chmielewski’s “Attacking
OpenSSL Using Side-Channel Attacks: The RSA Case Study” describes a
complete attack on the windowing implementation used by MBED-TLS.

We specifically call out that having a simple model is a good starting
point, even when the implementation isn’t exactly the same as the model,
because even the best implementations may have flaws that can be explained/
exploited by the simple model. The implementation of the windowing modu-
lar exponentiation function used by MBED-TLS version 2.26.0 in the RSA
decryption is such an example. In the following discussion, we’ve taken the
bignum.c file from MBED-TLS and simplified part of the mbedtls_mpi_exp_mod
function to produce the code in Listing 8-3, which assumes we have a secret
_key variable holding the secret key, and a secret_key_size variable holding the
number of bits to process.

 int ei, state = 0;
 1 for(int i = 0; i < secret_key_size; i++){
 2 ei = (secret_key >> i) & 1;
 3 if(ei == 0 && state == 0)
 // Do nothing, loop for next bit
 else
 4 state = 2;
 }
--snip--

Listing 8-3: Pseudocode of bignum .c showing part of the mbedtls_mpi_exp_mod
implementation flow

We’ll refer you to original line numbers of the bignum.c file in MBED-
TLS version 2.26.0 in case you want to find the specific implementation. To
start, the outer for() loop 1 from Listing 8-3 is implemented as a while(1)
loop in MBED-TLS and can be found at line 2227.

One bit of the secret key is loaded into the ei variable 2 (line 2241 in
original file). As part of the modular exponentiation implementation, the
function will process the secret key bits until the first bit with a value of 1
is reached. To perform this processing, the state variable is a flag indicat-
ing whether we are done processing all the leading zeros. We can see the
comparison at 3, which skips to the next iteration of the loop if state == 0
(meaning we haven’t seen a 1 bit yet) and the current secret key bit (ei) is 0.

Interestingly, the order of operations in the comparison 3 turns out to
be a completely fatal flaw for this function. The trusty C compiler will often
first perform the ei == 0 comparison before the state == 0 comparison. The

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 257

ei comparison always leaks the value of the secret key bit 4, for all of the
key bits. It turns out you can pick this up with SPA.

If the state comparison was done first instead, the comparison would
never even reach the point of checking the ei value once the state variable
was nonzero (the state variable becomes nonzero after processing the first
secret key bit set to 1). The simple fix (which may not work with every com-
piler) is to swap the order of the comparison to be state == 0 && ei == 0. This
example shows the importance of checking your implementation as a devel-
oper and the value in making basic assumptions as an attacker.

As you can see, SPA exploits the fact that different operations introduce
differences in power consumption. In practice, you should easily be able to
see different instruction paths when they differ by a few dozen clock cycles,
but those differences will become harder to see as the instruction paths
get closer to taking only a single cycle. The same limitation holds for data-
dependent power consumption: if the data affects many clock cycles, you
should be able to read the path, but if the difference is just a small power
variation at an individual instruction, you’ll see it only on particularly leaky
targets. Yet, if these operations directly link to secrets, as in Figure 8-7, you
should still be able to learn those secrets.

Once the power variations dip below the noise level, SPA has one more
trick up its sleeve before you may want to switch to DPA: signal processing. If
your target executes its critical operations in a constant time with constant
data and a constant execution path, you can rerun the SPA operations
many times and average the power measurements in order to counter noise.
We’ll discuss more elaborate filtering in Chapter 11. However, sometimes
the leakage is so small that we need heavy statistics to detect it, and that’s
where DPA comes in. You’ll learn more about DPA in Chapter 10.

CRY P TOGR A PHIC T IMING AT TACKS

Just as the PIN code example shown in Listing 8-1 has an execution time that
depends on the input data (and thus leaks internal secret variables), crypto-
graphic algorithms also can be vulnerable to timing attacks . We are concentrat-
ing on power side-channel analysis in this chapter instead of on pure timing
techniques, so we’ll give only brief overview of cryptographic timing attacks
here .

A great reference for cryptographic timing attacks is a paper by Paul
Kocher released in 1996, titled “Timing Attacks on Implementations of Diffie
Hellman, RSA, DSS, and Other Systems .” The timing attack uses the fact that
the execution time of certain operations depends on the key bits (the secret
data) . For example, Listing 8-2 presents a chunk of code that might be found
in an RSA implementation . Notice that the execution path branches differently
depending on whether bits are set, which therefore likely affects the total execu-
tion time . Timing attacks exploit this branching to determine which key bits have
been set .

(continued)

www.itbook.store

https://itbook.store

258 Chapter 8

Also very relevant in more complex systems are cache timing attacks .
Specifically, algorithms that use lookup tables for certain operations can leak
information revealing which element is being accessed when a timing variation
analysis is performed . The basic premise is that the time it takes to access a cer-
tain memory address depends on whether that address is in a memory cache .
If we can measure that time and relate memory accesses to secrets being
processed, we’re in business . Daniel J . Bernstein’s 2005 paper “Cache-Timing
Attacks on AES” demonstrates an attack against an OpenSSL implementation of
AES . This attack vector can be completely executed from software, presenting
an opportunity for not only the attacker of physically accessible hardware, but
also for attacks over remote networks .

Later we’ll see a better way to determine the encryption key bits for this
same algorithm using simple power analysis, so we won’t discuss further details
of the timing attack in this chapter . For most embedded system hardware, it’s
much more practical and effective to attack using power analysis .

SPA on ECDSA
This section uses the companion notebook for this chapter (available at
https://nostarch.com/hardwarehacking/). Keep it handy, as we’ll reference it
throughout this section. The section titles in this book match the section
titles in the notebook.

Goal and Notation

The Elliptic Curve Digital Signature Algorithm (ECDSA) uses elliptic curve cryp-
tography (ECC) to generate and verify secure signature keys. In this context,
a digital signature applied to a computer-based document is used to verify
cryptographically that a message is from a trusted source or hasn’t been
modified by a third party.

N O T E ECC is becoming a more popular alternative to RSA-based crypto, mostly because ECC
keys can be much shorter while maintaining cryptographic strength. The math behind
ECC is way beyond the scope of this book, but you don’t need to understand it fully in
order to perform an SPA attack on it. Case in point: neither of the authors fully under-
stand ECC. We just need to know the implementation to understand the attack.

The goal is to use SPA to recover the private key d from the execution of
an ECDSA signature algorithm so that we can use it to sign messages pur-
porting to be the sender. At a high level, the inputs to an ECDSA signature
are the private key d, the public point G, and a message m, and the output
is a signature (r,s). One weird thing about ECDSA is that the signatures
are different every time, even for the same message. (You’ll see why in a
moment.) The ECDSA verification algorithm verifies a message by taking the

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 259

public point G, public key pd, message m, and the signature (r,s) as inputs. A
point is nothing more than a set of xy-coordinates on a curve—hence the C
in ECDSA.

In developing our attack, we rely on the fact that the ECDSA signature
algorithm internally uses a random number k. This number must be kept
secret, because if the value of k of a given signature (r,s) is revealed, you
can solve for d. We’re going to extract k using SPA and then solve for d. We’ll
refer to k as a nonce, because besides requiring secrecy, it must also remain
unique (nonce is short for “number used once”).

As you can see in the notebook, a few basic functions implement ECDSA
signing and verification, and some lines exercise these functions. For the
remainder of this notebook, we create a random public/private key pd/d. We
also create a random message hash e (skipping the actual hashing of a mes-
sage m, which is not relevant here). We perform a signing operation and veri-
fication operation, just to check that all is well. From here on, we’ll use only
the public values, plus a simulated power trace, to recover the private values.

Finding a Leaky Operation

Now, let’s tickle your brain. Check the functions leaky_scalar_mul() and
ecdsa_sign_leaky(). As you know, we’re after nonce k, so try to find it in the
code. Pay specific attention to how nonce k is processed by the algorithm
and come up with some hypotheses on how it may leak into a power trace.
This is an SPA exercise, so try to spot the secret-dependent operations.

As you may have figured out, we’ll attack the calculation of the nonce k
multiplied by public point G. In ECC, this operation is called a scalar multi-
plication because it multiplies a scalar k with a point G.

The textbook algorithm for scalar multiplication takes the bits of k
one by one, as implemented in leaky_scalar_mul(). If the bit is 0, only a
point- doubling is executed. If the bit is 1, both a point-addition and a point-
doubling are executed. This is much like textbook RSA modular exponen-
tiation, and as such, it also leads to an SPA leak. If you can differentiate
between point-doubling only and point-addition followed by point-doubling,
you can find the individual bits of k. As mentioned before, we can then cal-
culate the full private key d.

Simulating SPA Traces of a Leaky ECDSA

In the notebook, ecdsa_sign_leaky() signs a given message with a given pri-
vate key. In doing so, it leaks the simulated timing of the loop iterations in
the scalar multiplication implemented in leaky_scalar_mul(). We’re obtain-
ing this timing by randomly sampling a normal distribution. In a real
target, the timing characteristics will be different from what we do here.
However, any measurable timing difference between the operations will be
exploitable in the same way.

Next, we turn the timings into a simulated power trace using the func-
tion timeleak_to_trace(). The start of such a trace will be plotted in the note-
book; Figure 8-8 also shows an example.

www.itbook.store

https://itbook.store

260 Chapter 8

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1

1.2

V
o
lt

1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 00 1 0

Figure 8-8: Simulated ECDSA power consumption trace showing nonce bits

In this simulated trace, you can see an SPA timing leakage where the
loops performing point-doublings (secret nonce k bit = 0) are shorter in
duration than loops that perform both point-addition and point-doubling
(secret nonce k bit = 1).

Measuring Scalar Multiplication Loop Duration

When attacking an unknown nonce, we’ll have a power trace, but we don’t
know the bits for k. Therefore, we analyze the distances between the peaks
using trace_to_difftime() in the notebook. This function first applies a verti-
cal threshold to the traces to get rid of amplitude noise and turn the power
trace into a “binary” trace. The power trace is now a sequence of 0 (low)
and 1 (high) samples.

We’re interested in the duration of all sequences of ones because they
measure the duration of the scalar multiplication loop. For example, the

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 261

sequence [1, 1, 1, 1, 1, 0, 1, 0, 1, 1] turns into the durations [5, 1, 2], corre-
sponding to the number of sequential ones. We apply some NumPy magic
(explained in more detail in the notebook) to accomplish this conversion.
Next, we plot these durations on top of the binary trace; Figure 8-9 shows
the result.

0 50 100 150 200

Time

0

0.2

0.4

0.6

0.8

1
B
in

a
ry

10 9 10 12 13 7 11 8 12 12 7 9 10 14 12 25 15 4

Figure 8-9: Binary ECDSA power consumption trace showing SPA timing leakage

From Durations to Bits

In an ideal world, we would have “long” and “short” durations as well as one
cutoff that correctly separates the two. If a duration is below the cutoff, we
would have only point-doubling (secret bit 0), or as shown earlier, we would
have both point-addition and point-doubling (secret bit 1). Alas, in reality,
timing jitter will cause this naive SPA to fail because the cutoff is not able to
separate the two distributions perfectly. You can see this effect in the note-
book and Figure 8-10.

www.itbook.store

https://itbook.store

262 Chapter 8

2 4 6 8 10 12 14 16

Duration

0

10

20

30
C
o
u
n
t

Figure 8-10: The distribution of the durations for a double-only (left) and a double-and-
add (right) overlap, disallowing the duration to be a perfect predictor.

How do you solve for this? An important insight is that we have a good
idea of which bits are likely incorrect: namely, the ones that are closest to
the cutoff. In the notebook, the simple_power_analysis() function analyzes the
duration for each operation. Based on this analysis, it generates a guessed
value for k and a list of bits in k that are closest to the cutoff. The cutoff is
determined as the mean of the 25th and 75th percentiles in the duration
distribution, as this is more stable than taking the average.

Brute-Forcing the Way Out

Since we have an initial guess of k and the bits closest to the cutoff, we can
simply brute-force those bits. In the notebook, we do this in the bruteforce()
function. For all candidates for k, a value of the private key d is calculated.

The function has two means of verifying whether it found the correct d.
If it has access to the correct d, it can cheat by comparing the calculated d
with the correct d. If it doesn’t have access to the correct d, it calculates the

www.itbook.store

https://itbook.store

I’ve Got the Power: Introduction to Power Analysis 263

signature (r,s) from the guessed k and calculated d and then checks that
this signature is correct. This process is much, much slower, but it’s some-
thing you’ll face when doing this for real.

Even this brute-force attack won’t always yield the correct nonce, so
we’ve put it in a giant loop for you. Let it run for a while, and it will recover
the private key simply from only SPA timings. After some time, you’ll see
something like Listing 8-4.

Attempt 16
Guessed k: 0b1111111100011001010111100001101011000111000000110011110100110011
1101000100001011011011001001100100110000001110100011011101010101101000111001
100001000110000001010000110111101000000001001001000011011011110000110100111101
0110001000110011101000010010100101101
Actual k: 0b1111111100011001010111100001101011000111000010110011110100110011
1101000100001011011011001001111100110000001110100011011101010101101000111001
100001000110000001010000110111101000000001001001000011111011110000110100111101
0110001000110011101000010010100101101
Bit errors: 4
Bruteforcing bits: [241 60 209 160 161 212 34 21]
No key for you.

Attempt 17
Guessed k: 0b1111101110111000100101000010000110101100000010011100000101101001
1010010000110110000110010010011111000110110111011100110001110101010110000000
100110001111101000110010001101001100011101101010111000110111110011101001011110
010100011101100011100011011000100
Actual k: 0b1111101110111000100101000010000110101100000011011100000101101001
1010010000110110000110010110011111000110110111011101110001110101010110000000
100110011111101000111010001101001100011101101010111000110111110011101001011110
010100011101101011100011011000100
Bit errors: 6
Bruteforcing bits: [103 185 135 205 18 161 90 98]
Yeash! Key found:0b11010100100000000001000110001100001010010110101110000110100
110001011101110111100001110011110110100001010000011100100111111001011110000101
000100101001011110011010010000000100111000101011110010000010010101001010111010
1001110110100010011100000001100101110

Listing 8-4: Output of the Python ECDSA SPA attack

Once you see this, the SPA algorithm has successfully recovered the key
only from some noisy measurements of the simulated durations of the sca-
lar multiplication.

This algorithm has been written to be fairly portable to other ECC (or
RSA) implementations. If you’re going after a real target, first creating a
simulation like this notebook that mimics the implementation is recom-
mended just to show that you can positively do key extraction. Otherwise,
you’ll never know whether your SPA failed because of the noise or because
you have a bug somewhere.

www.itbook.store

https://itbook.store

264 Chapter 8

Summary
Power analysis is a powerful form of a side-channel attack. The most basic
type of power analysis is a simple extension of a timing side-channel attack,
which gives better visibility into what a program is executing internally. In
this chapter, we showed how simple power analysis could break not only
password checks but also some real cryptographic systems, including RSA
and ECDSA implementations.

Performing this theoretical and simulated trace might not be enough
to convince you that power analysis really is a threat to a secure system.
Before going further, next we’ll take you through the setup for a basic lab.
You’ll get your hands on some hardware and perform basic SPA attacks,
allowing you to see the effect of changing instructions or program flow in
the power trace. After exploring how power analysis measurement works,
we’ll look at advanced forms of power analysis in subsequent chapters.

www.itbook.store

https://itbook.store

