
Appendix C 

Answers to Exercises 

Part I, Introduction to Probability 

Chapter 1 

Q1. Rewrite the following statements as equations using the mathematical notation you 

learned in this chapter:  

The probability of rain is low 

The probability of rain given that it is cloudy is high 

The probability of you having an umbrella given it is raining is much greater than the 

probability of you having an umbrella in general. 

A1.  

𝑃(rain) = low 

𝑃(rain | cloudy) = high 

𝑃(umbrella | rain) >> 𝑃(umbrella) 

Q2. Organize the data you observe in the following scenario into a mathematical notation, 

using the techniques we’ve covered in this chapter. Then come up with a hypothesis to 

explain this data: 

You come home from work and notice that your front door is open and the side 

window is broken. As you walk inside you immediately notice that your laptop 

is missing. 

A2. We first want to describe our data with a variable: 

𝐷 = door open, window broken, laptop missing 

Our data represents three facts you observed upon arriving home. An immediate 

explanation for this data is that you’ve been robbed! We would express this mathematically 

as: 

𝐻1 = you’ve been robbed! 

Now we can express this as “The probability of seeing all these things, given that you’ve 

been robbed ” as: 
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𝑃(𝐷 | 𝐻1) 

Q3. The following scenario adds data to the previous one. Demonstrate how this new 

information changes your beliefs and come up with a second hypothesis to explain the data, 

using the notation you’ve learned in this chapter.  

A neighborhood child runs up to you and apologizes profusely for accidentally 

throwing a rock through your window. They claim that they saw the laptop and 

didn’t want it stolen so they opened the front door to grab it, and your laptop is 

safe at their house. 

A3. Now we have another hypothesis for the things you observed: 

𝐻2 = child accidentally broke your window   and took the laptop for safekeeping 

We can express this as: 

𝑃(𝐷 | 𝐻2) >> 𝑃(𝐷 | 𝐻1) 

And we would expect: 

𝑃(𝐷 | 𝐻2)

𝑃(𝐷 | 𝐻1)
= a large number 

Of course, you might think that this child is untrustworthy and notorious for causing 

trouble, which might change your mind about how likely their explanation is and lead you to 

hypothesize that they have robbed you! As you move through this book, you’ll learn more 

about how you can reflect that mathematically. 

Chapter 2 

Q1. What is the probability of rolling two six-sided dice and getting a value greater than 7? 

A1. There are 36 possible ways that we could roll the two dice (if we consider 1 and 6 

different from 6 and 1). You can list this all out on paper (or find a way to do it in code, 

which will be faster). Fifteen of these 36 pairs are greater than 7. So the probability that 

you’ll get a value greater than 7 is 
15

36
. 

Q2. What is the probability of rolling three six-sided dice and getting a value greater than 

7? 

A2. With three rolls there are 216 different possible outcomes. You can write these out on a 

sheet of paper, which is fine but will take you quite a while. You can see why learning the 

basics of coding is helpful, as there are various programs (even messy ones) you can write to 
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solve this problem. For example, we can find the answer with this simple set of for loops in 

R: 

count <- 0 

for(roll1 in c(1:6)){ 

  for(roll2 in c(1:6)){ 

    for(roll3 in c(1:6)){ 

      count <- count + ifelse(roll1+roll2+roll3 > 7,1,0) 

    } 

  } 

} 

Here you can see the count is 181, so the probability of the rolls totaling more than 7 is 

181

216
. As noted, however, there are many ways to compute this. One alternative is this single 

(difficult to read!) line of R, which does the same thing as the for loops: 

sum(apply(expand.grid(c(1:6),c(1:6),c(1:6)),1,sum) > 7) 

When learning to code, you should focus on getting the correct answer over using a 

particular approach to arrive at it. 

Q3. The Yankees are playing the Red Sox. You’re a diehard Sox fan and bet your friend 

they’ll win the game. You’ll pay your friend $30 if the Sox lose and your friend will have to 

pay you only $5 if the Sox win. What is the probability you have intuitively assigned to the 

belief that the Red Sox will win? 

A3. We can see that the odds you’ve given for the Red Sox to win is: 

𝑂(Red Sox win) =
30

5
= 6 

Recalling our formula for converting odds to probabilities, we can translate the odds into 

a probability that the Red Sox will win: 

𝑃(Red Sox win) =
𝑂(Red Sox win)

1 + 𝑂(Red Sox win)
=

6

7
 

So, based on the bet you take, you would say there’s about an 86 percent chance that the 

Red Sox will win! 

Chapter 3 
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Q1. What is the probability of rolling a 20 three times in a row on a 20-sided die? 

A1. The probability of rolling a 20 is 
1

20
, and to determine the probability of rolling three in a 

row, we must use our product rule: 

𝑃(three 20s)  =  
1

20
 × 

1

20
 ×  

1

20
 =  

1

8,000
 

Q2. The weather report says there’s a 10 percent chance of rain tomorrow, and you forget 

your umbrella half the time you go out. What is the probability that you’ll be caught in the 

rain without an umbrella tomorrow? 

A2. Again, we can use the product rule to solve this problem. We know that P(rain) = 0.1 and 

P(forgetting umbrella) = 0.5, so: 

𝑃(rain, forget umbrella) = 𝑃(rain)  ×  𝑃(forget umbrella) = 0.05 

As you can see, there’s only a 5 percent chance that you’ll find yourself caught in the rain 

without an umbrella. 

Q3. Raw eggs have a 1/20,000 probability of having salmonella. If you eat two raw eggs, 

what is the probability you ate a raw egg with salmonella? 

A3. For this question, we need to use the sum rule because if either egg has salmonella, 

you’ll get sick: 

𝑃(egg1)  +  𝑃(egg2)  −  𝑃(egg1)  ×  𝑃(egg2)  =  
1

20,000
 +  

1

20,000
 − 

1

20,000
 ×  

1

20,000
 

=  
39,999

400,000,000
 

…which is just a hair under 
1

10,000
. 

Q4. What is the probability of either flipping two heads in two coin tosses or rolling three 

6s in three six-sided dice rolls? 

A4. For this exercise, we need to combine our product rule and our sum rule. First let’s 

calculate P(two heads) and P(three 6s) separately. Each probability uses the product rule: 

𝑃(two heads) =
1

2
 ×  

1

2
 =  

1

4
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𝑃(three 6s)  =  
1

6
 ×  

1

6
 × 

1

6
 =  

1

216
 

Now we need to use the sum rule to figure out the probability of either of these 

happening, P(two heads or three 6s): 

𝑃(two heads)  +  𝑃(three 6s)  −  𝑃(two heads)  ×  𝑃(three 6s)  

=  
1

4
 +  

1

216
 −  

1

4
 ×  

1

216
 =  

73

288
 

…which is just a little bit more than a 25 percent chance. 

Chapter 4 

Q1. What are the parameters of the binomial distribution for the probability of rolling 

either a 1 or a 20 on a 20-sided die, if we roll the die 12 times? 

A1. We’re looking for an event to happen 1 time out of 12 trials, so n = 12, and k = 1. We 

have 20 sides and care about 2 of them, so 𝑝 =
2

20
=

1

10
. 

Q2. There are four aces in a deck of 52 cards. If you pull a card, return the card, then 

reshuffle and pull a card again, how many ways can you pull just one ace in five pulls? 

A2. We don’t even need combinatorics for this one. There are five possible cases, if we 

imagine A stands for “ace” and x for anything else: 

Axxxx 

xAxxx 

xxAxx 

xxxAx 

xxxxA 

We could just call this (5
1
) or, in R, choose(5,1). Either way, the answer is 5. 

Q3. For the example in question 2, what is the probability of pulling five aces in 10 pulls 

(remember the card is shuffled back in the deck when it is pulled)? 

A3. This is the same as 𝐵(5; 10,
1

23
) 

As expected, the probability of this is extremely low: about 
1

32,000
. 
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Q4. When you’re searching for a new job, it’s always helpful to have more than one offer 

on the table so you can use it in negotiations. If you have a 1/5 probability of receiving a job 

offer when you interview, and you interview with seven companies in a month, what is the 

probability you’ll have at least two competing offers by the end of that month? 

A4. We can use the following R code to compute this answer: 

> pbinom(1,7,1/5,lower.tail = FALSE) 

 0.4232832 

As you can see, there’s about a 42 percent chance of receiving two or more job offers if 

you interview at seven companies. 

Q5. You get a bunch of recruiter emails and find out you have 25 interviews lined up in the 

next month. Unfortunately, you know this will leave you exhausted, and the probability of 

getting an offer will drop to 1/10 if you’re tired. You really don’t want to go on this many 

interviews unless you are at least twice as likely to get at least two competing offers. Are 

you more likely to get at least two offers if you go for 25 interviews, or stick to just 7? 

A5. Let’s write a bit more R code to sort this out: 

p.two.or.more.7 <- pbinom(1,7,1/5,lower.tail = FALSE) 

p.two.or.more.25 <- pbinom(1,25,1/10,lower.tail = FALSE) 

Even with the reduced probability of an offer, your probability of getting at least two 

offers in 25 interviews is 73 percent. However, you’ll go this route only if you are twice as 

likely. As we can see in R: 

> p.two.or.more.25/p.two.or.more.7 

[1] 1.721765 

you’re only 1.72 times more likely to get two or more offers, so all the hassle isn’t worth 

it. 

Chapter 5 

Q1. You want to use the beta distribution to determine whether or not a coin you have is a 

fair coin—meaning that the coin gives you heads and tails equally. You flip the coin 10 

times and get 4 heads and 6 tails. Using the beta distribution, what is the probability that 

the coin will land on heads more than 60 percent of the time? 
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A1. We would model this as Beta(4,6). We want to calculate the integral from 0.6 to 1, which 

we can do in R like so: 

integrate(function(x) dbeta(x,4,6),0.6,1) 

This tells us there is about a 10 percent chance that the true probability of getting heads is 

60 percent or greater. 

Q2. You flip the coin 10 more times and now have 9 heads and 11 tails total. What is the 

probability that the coin is fair, using our definition of fair, give or take 5 percent? 

A2. Our beta distribution is now Beta(9,11). But we want to know the probability that the 

coin is fair, meaning the chance of getting heads is 0.5, within 0.05 probability either way. 

This means we need to integrate our new distribution between 0.45 and 0.55. We can do so 

with this line of R: 

integrate(function(x) dbeta(x,9,11),0.45,0.55) 

Now we find that there’s a 30 percent chance that our coin is fair, given the new data we 

have. 

Q3. Data is the best way to become more confident in your assertions. You flip the coin 200 

more times and end up with 109 heads and 111 tails. Now what is the probability that the 

coin is fair, give or take 5 percent? 

A3. Given the previous question, this answer is pretty straightforward: 

integrate(function(x) dbeta(x,109,111),0.45,0.55) 

Now we’re 86 percent certain that the coin is reasonably fair. Notice that the key to 

becoming more certain was to include more data. 

Part II, Bayesian Probability and Prior Probabilities 

Chapter 6 

Q1. What piece of information would we need in order to use Bayes’ theorem to determine 

the probability that someone in 2010 who had GBS also had the flu vaccine that year? 

A1. We want to figure out P(flu vaccines | GBS). We can solve this using Bayes’ theorem, 

provided we have all these pieces of information: 
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𝑃(flu vaccine | GBS) =
𝑃(flu vaccine)  ×  𝑃(GBS | flu vaccine)

𝑃(GBS)
 

Of these pieces of information, the only one we don’t know is the probability of getting 

the flu vaccine in the first place. We could probably get this information from the Centers for 

Disease Control and Prevention or another national data collection service. 

Q2. What is the probability that a random person picked from the population is female and 

is not color blind? 

We know that P(female) = 0.5 and that P(color blind | female) = 0.005, but we want to know 

the probability that someone is female and not color blind, which is 1 – P(color blind | 

female) = 0.995. So: 

𝑃(female, not color blind) = 𝑃(female)  ×  𝑃(not color blind | female) = 0.5 ×  0.995

= 0.4975 

Q3. What is the probability that a male who received the flu vaccine in 2010 is either color 

blind or has GBS? 

A3. This problem may initially seem complex, but we can simplify it a bit. Let’s start by just 

working on the probability of being color blind given someone is male, and the probability of 

having GBS given they’ve received the flu vaccine. Notice that we’re taking a bit of a 

shortcut, since being male is independent from GBS (as far as we’re concerned here) and 

having a flu vaccine has no impact on being color blind. We’ll make each of these into a 

separate probability: 

𝑃(𝐴) = 𝑃(color blind |male) 

𝑃(𝐵) = 𝑃(GBS | flu vaccine) 

Luckily we already did all this work earlier in the chapter, so we know that 𝑃(𝐴) =
4

1000
 

and 𝑃(𝐵) =
3

100,000
. 

Now we can just use our sum rule to solve this: 

𝑃(A or B) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴)  ×  𝑃(𝐵 | 𝐴) 

And because the probability of being color blind, as far as we know, has nothing to do 

with the probability of GBS, we know that P(B | A) = P(B). Plugging in our numbers, we get 
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an answer of 
100,747

25,000,000
 or 0.00403. This is just bit larger than the chance of being color blind 

given someone is male, because the probability of GBS is so small. 

Chapter 7 

Q1. Kansas City, despite its name, sits on the border of two US states: Missouri and 

Kansas. The Kansas City metropolitan area consists of 15 counties, 9 in Missouri and 6 in 

Kansas. The entire state of Kansas has 105 counties and Missouri has 114. Use Bayes’ 

theorem to calculate the probability that a relative who just moved to a county in the 

Kansas City metropolitan area also lives in a county in Kansas. Make sure to show 

P(Kansas) (assuming your relative lives either in Kansas or Missouri), P(Kansas City 

metropolitan area), and P(Kansas City metropolitan area | Kansas). 

A1. Hopefully it is pretty clear that there are 15 counties in the Kansas City metro area, and 6 

of them are in Kansas, so the probability of being in Kansas, given you know someone lives 

in the Kansas City metro area, should be 
6

15
, which is equivalent to 

2

5
. The purpose of this 

question, however, is not just to get an answer but to show that Bayes’ theorem provides the 

tools to solve it. When we work on harder problems, it will be very helpful to have 

established trust in Bayes’ theorem. 

So, to solve P(Kansas | Kansas City), we can use Bayes’ theorem as follows: 

𝑃(Kansas | Kansas City) =
𝑃(Kansas City | Kansas) ×  𝑃(Kansas)

𝑃(Kansas City)
 

From our data we know that of the 105 counties in Kansas, 6 are in the Kansas City 

metro area: 

𝑃(Kansas City | Kansas) =
6

105
 

And between Missouri and Kansas there are 219 counties, 105 of which are in Kansas: 

𝑃(Kansas) =
105

219
 

And of this total of 219 counties, 15 are in the Kansas City metro area: 

𝑃(Kansas City) =
15

219
 

Filling in all of the parts of Bayes’ theorem, then, gives us: 
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𝑃(Kansas | Kansas City) =

6
105

 × 
105
219

15
219

=
2

5
 

Q2. A deck of cards has 52 cards with suits that are either red or black. There are four aces 

in a deck of cards: two red and two black. You remove a red ace from the deck and shuffle 

the cards. Your friend pulls a black card. What is the probability that it is an ace? 

A2. As with the previous question, we can easily see there are 26 black cards and 2 of them 

are aces, so there is a 
2

26
 or 

1

13
 probability of getting an ace if we have a black card. But, 

again, we want to establish some trust in Bayes’ theorem and not take so many mathematical 

mental shortcuts. Using Bayes’ theorem we get: 

𝑃(ace | black card) =
𝑃(black card | ace)  ×  𝑃(ace)

𝑃(black card)
 

There are 26 black cards in the deck, out of what is now 51 cards since we removed 1 red 

ace. If we know that we have an ace, the probability it is black is: 

𝑃(black card | ace)  =  
2

3
 

In this deck there are now 51 cards, only 3 of which are aces, so we have: 

𝑃(ace)  =  
3

51
 

Finally, we know that of the remaining 51 cards, 26 of them are black, so: 

𝑃(black card =  
26

51
) 

Now we have enough information to solve our problem: 

𝑃(ace | black card)  =  

2
3 ×  

3
51

26
51

  =   
1

13
 

Chapter 8 

Q1. As mentioned, you might disagree with the our original probability assigned to the 

likelihood:  

P(broken window, open front door, missing laptop | robbed) = 3/10 
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How much does this change our strength in believing H1 over H2? 

A1. To start, remember that: 

𝑃(broken window, open front door, missing laptop │ robbed) = 𝑃(𝐷 | 𝐻1) 

To see how this changes our beliefs, all we have to do now is replace this part in our 

ratio: 

𝑃(𝐻1)  ×  𝑃(D | H1)

𝑃(𝐻2)  ×  𝑃 (𝐷 | 𝐻2)
 

We already know that the denominator of our formula is 
1

21,900,000
 and that 𝑃(𝐻1) =

1

1000
, 

so to get our answer we just have to add our changed belief in P(D | H1): 

1
1,000 ⋅

3
100

1
21,900,000

= 657 

So when we believe (D | H1) is 10 times less likely, our ratio is 10 times smaller (though 

still very much in favor of H1). 

Q2. How unlikely would you have to believe being robbed is—our prior for H1—in order 

for the ratio of H1 to H2 to be even? 

A2. In the previous answer, decreasing our probability in P(D | H1) by 10 times reduced our 

ratio 10 times. This time, we want to change P(H1) so that our ratio is 1, which means we 

need to make it 657 times smaller: 

1
1,000  ×   657

  ×   
3

100
1

21,900,000

 =  1 

So our new P(H1) needs to be
1

657,000
, which is a pretty extreme belief in the unlikeliness 

of getting robbed! 

Chapter 9 

Q1. A friend finds a coin on the ground, flips it, and gets six heads in a row and then one 

tails. Give the beta distribution that describes this. Use integration to determine the 

www.itbook.store

https://itbook.store/


probability that the true rate of flipping heads is between 0.4 and 0.6, reflecting that the 

coin is reasonably fair. 

A1. We can represent this as a beta distribution with α = 6 and β = 1, since we have six 

heads and one tail. In R we can integrate this as follows: 

> integrate(function(x) dbeta(x,6,1),0.4,0.6)  

0.04256 with absolute error < 4.7e-16 

With about a 4 percent chance this coin is fair, based on likelihood alone we would consider 

it unfair. 

Q2. Come up with a prior probability that the coin is fair. Use a beta distribution such that 

there is at least a 95 percent chance that the true rate of flipping heads is between 0.4 and 

0.6. 

A2. Any αprior = βprior will give us a “fair” prior; and the larger those values are, the 

stronger that prior is. For example, if we use 10 we get: 

> prior.val <- 10 

> integrate(function(x) dbeta(x,6+prior.val,1+prior.val),0.4,0.6) 

0.4996537 with absolute error < 5.5e-15 

But of course that’s only a 50 percent chance that the coin is fair. Using a bit of trial and 

error, we can find a number that works for us. Using αprior = βprior = 55, we find that this gives 

a prior that achieves our goal: 

> prior.val <- 55 

> integrate(function(x) dbeta(x,6+prior.val,1+prior.val),0.4,0.6) 

0.9527469 with absolute error < 1.5e-11 

Q3. Now see how many more heads (with no more tails) it would take to convince you that 

there is a reasonable chance that the coin is not fair. In this case, let’s say that this means 

that our belief in the rate of the coin being between 0.4 and 0.6 drops below 0.5. 

A3. Again, we can solve this problem simply through trial and error until we get an answer 

that works. Remember that we’re still using Beta(55,55) as our prior. This time, we want to 

see how much we can add to our α in order to change the probability of a fair coin to around 

50 percent. We can see that with five more heads, our posterior drops to 90 percent: 
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> more.heads <- 5 

> integrate(function(x) dbeta(x,6+prior.val+more.heads,1+prior.val),0.4,0.6) 

0.9046876 with absolute error < 3.2e-11 

And if we got 23 more heads, we’d find that the probability of the coin being fair now 

would be about 50 percent. This shows that even a strong prior belief can be overcome with 

more data. 

Part III, Parameter Estimation 

Chapter 10 

Q1. It’s possible to get errors that don’t quite cancel out the way we want. In the 

Fahrenheit temperature scale, 98.6 degrees is the normal body temperature and 100.4 

degrees is the typical threshold for a fever. Say you are taking care of a child that feels 

warm and seems sick, but you take repeated readings from the thermometer and they all 

read between 99.5 and 100.0 degrees: warm, but not quite a fever. You try the 

thermometer yourself and get several readings between 97.5 and 98. What could be wrong 

with the thermometer? 

A1. It looks like the thermometer might be giving biased measurements that tend to be off by 

1 degree F. If you added 1 degree to your results, you’d see that they were between 98.5 and 

99, which seems correct for someone that normally has a 98.6 degree body temperature. 

Q2. Given that you feel healthy and have traditionally had a very consistently normal 

temperature, how could you alter the measurements 100, 99.5, 99.6, and 100.2 to estimate if 

the child has a fever? 

A2. If measurements are biased, it means that they are systematically wrong, so no amount of 

sampling will correct this on its own. To correct our original measurements, we could just 

add 1 degree to each. 

Chapter 11 

Q1. One of the benefits of variance is that squaring the differences makes the penalties 

exponential. Give some examples of when this would be a useful property. 

A1. Exponential penalties are very useful for many everyday situations. One of the most 

obvious is physical distance. Suppose someone invents a teleporter that can transport you to 
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another location. If you miss the mark by 3 feet, that’s fine; 3 miles might be okay; but 30 

miles could be incredibly dangerous. In this case, you want the penalty for being far away 

from your target to get much more severe as it grows. 

Q2. Calculate the mean, variance, and standard deviation for the following values: 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10. 

A1. Mean = 5.5, variance = 8.25, standard deviation = 2.87. 

Chapter 12 

A Note on Standard Deviation 

R has a built-in function, , that computes the sd  standard deviation, rather than the sample

standard deviation we’ve discussed in the book. The idea of sample standard deviation is that 

you average by  – 1 instead of . Sample standard deviation is used in classical statistics to n n

make estimates about population means given data. Here, the function  computes the my.sd

standard deviation used in this book: 

my.sd <- function(val){ 

  val.mean <- mean(val) 

  sqrt(mean((val.mean-val)^2)) 

} 

As your data set grows in size, the difference between sample standard deviation and the true 

standard deviation will become irrelevant. But for the small data sizes in these examples, it will 

make a small difference. For all the examples in Chapter 12 I’ve used , but sometimes for my.sd

convenience I’ll just use the default, . sd

Q1. What is the probability of observing a value five sigma greater than the mean or more? 

A1. We can use integrate() on a normal distribution with a mean of 0 and standard 

deviation of 1. Then we just integrate from 5 to some reasonably large number like 100: 

> integrate(function(x) dnorm(x,mean=0,sd=1),5,100) 

2.88167e-07 with absolute error < 5.6e-07 

Q2. A fever is any temperature greater than 100.4 degrees Fahrenheit. Given the following 

measurements, what is the probability that the patient has a fever? 

100.0, 99.8, 101.0, 100.5, 99.7 
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A2. We’ll start by figuring out the mean and standard deviation of our data: 

temp.data <- c(100.0, 99.8, 101.0, 100.5, 99.7) 

temp.mean <- mean(temp.data) 

temp.sd <- my.sd(temp.data) 

Then we just use integrate() to find out the probability that the temperature is over 

100.4: 

> integrate(function(x) dnorm(x,mean=temp.mean,sd=temp.sd),100.4,200) 

0.3402821 with absolute error < 1.1e-08 

Given these measurements, there’s about a 34 percent chance of fever. 

Q3. Suppose in Chapter 11 we tried to measure the depth of a well by timing coin drops 

and got the following values:  

2.5, 3, 3.5, 4, 2 

The distance an object falls can be calculated (in meters) with the following formula: 

distance = 1/2 × G × 𝐭𝐢𝐦𝐞𝟐 

where G is 9.8 m/s/s. What is the probability that the well is over 500 meters deep? 

A3. Let’s start by putting our time data in R: 

time.data <- c(2.5,3,3.5,4,2) 

time.data.mean <- mean(time.data) 

time.data.sd <- my.sd(time.data) 

Next we need to figure out how much time it takes to reach 500 meters. We need to 

solve: 

1

2
 ×  𝐺 ×  𝑡2 = 500 

If G is 9.8, we can work out that time (t) is about 10.10 seconds (you can also solve this 

by making a function in R and just manually iterating, or look up the solution on something 

like Wolfram Alpha). Now we just have to integrate our normal distribution to beyond 10.1: 

> integrate(function(x)  

dnorm(x,mean=time.data.mean,sd=time.data.sd),10.1,200) 

2.056582e-24 with absolute error < 4.1e-24 
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This is basically 0 probability, so we can be pretty certain that the well is not 500 meters 

deep. 

Q2. What is the probability there is no well (i.e., the well is really 0 meters deep)? You’ll 

notice that probability is higher than you might expect, given your observation that there is 

a well. There are two good explanations for this probability being higher than it should be. 

The first is that the normal distribution is a poor model for our measurements; the second 

is that, when making up numbers for an example, I chose values that you likely wouldn’t 

see in real life. Which is more likely to you? 

A2. If we do the same integration but with –1 to 0, we get: 

integrate(function(x) 

dnorm(x,mean=time.data.mean,sd=time.data.sd),-1,0)  

1.103754e-05 with absolute error < 1.2e-19 

It’s small, but the probability that there is no well is greater than 1 in 100,000. But you 

can see a well! It’s right in front of you! So, even if the probability is small, it’s not really 

that close to zero. Now should we question the model, or should we question the data? As a 

Bayesian, generally you should favor questioning the model over the data. For example, 

movement in stock prices will typically have very high σ events during financial crises. This 

means that the normal distribution is a bad model for stock movements. However, in this 

example, there’s no reason to question the assumptions of the normal distribution, and in fact 

these are the original numbers that I picked for the previous chapter until my editor pointed 

out that the values seemed too spread out. 

One of the greatest virtues in statistical analysis is skepticism. In practice I have been 

given bad data to work with on a few occasions. Even though models are always imperfect, 

it’s very important to make sure that you can trust your data as well. See if the assumptions 

you have about the world hold up and, if they don’t, see if you can be convinced that you still 

trust your model and your data. 

Chapter 13 

Q1. Using the code example for plotting the PDF on page 127, plot the CDF and quantile 

functions. 
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A1. Taking the code from the chapter, you just need to substitute dbeta() with pbeta() for 

the CDF like so: 

xs <- seq(0.005,0.01,by=0.00001) 

plot(xs,pbeta(xs,300,40000-300),type='l',lwd=3, 

     ylab="cumulative probability", 

     xlab="probability of subscription", 

     main="CDF Beta(300,39700)") 

 

And for quantile we need to change the xs to the actual quantiles: 

xs <- seq(0.001,0.99,by=0.001) 

plot(xs,qbeta(xs,300,40000-300),type='l',lwd=3,  

     ylab="probability of subscription", 

     xlab="quantile", 

     main="Quantile of Beta(300,39700)") 
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Q2. Returning to the task of measuring snowfall from Chapter 10, say you have the 

following measurements (in inches) of snowfall:  

7.8, 9.4, 10.0, 7.9, 9.4, 7.0, 7.0, 7.1, 8.9, 7.4 

What is your 99.9 percent confidence interval for the true value of snowfall? 

A2. We’ll calculate the mean and standard deviation for this data first: 

snow.data <- c(7.8, 9.4, 10.0, 7.9, 9.4, 7.0, 7.0, 7.1, 8.9, 7.4) 

snow.mean <- mean(snow.data) 

snow.sd <- sd(snow.data) 

Then we use qnorm() to calculate the 99.9 percent confidence interval upper and lower 

bounds. 

lower is qnorm(0.0005,mean=snow.mean,sd=snow.sd) = 4.46 

upper is qnorm(0.9995,mean=snow.mean,sd=snow.sd) = 11.92 
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This means that we’re very confident that there’s no less than 4.46 inches of snowfall and 

no more than 11.92. 

Q3. A child is going door to door selling candy bars. So far she has visited 30 houses and 

sold 10 candy bars. She will visit 40 more houses today. What is the 95 percent confidence 

interval for how many candy bars she will sell the rest of the day? 

A3. First we have to calculate the 95 percent confidence interval for the probability of selling 

a candy bar. We can model this as Beta(10,20) and then use qbeta() to figure out these 

values: 

lower is qbeta(0.025,10,20) = 0.18 

upper is qbeta(0.975,10,20) = 0.51 

Given there is 40 houses left, we can expect she’ll sell between 40 × 0.18 = 7.2 and 40 × 

0.51 = 20.4 candy bars. Of course, she can sell only whole bars, so we’ll say we’re pretty 

confident she’ll sell between 7 and 20 candy bars. 

If you really want to be particular, we could actually calculate the quantile for the 

binomial distribution at each extreme of her selling rates using qbinom()! I’ll leave that as 

an exercise for you to explore on your own. 

Chapter 14 

Q1. Suppose you’re playing air hockey with some friends and flip a coin to see who starts 

with the puck. After playing 12 times, you realize that the friend who brings the coin 

almost always seems to go first: 9 out of 12 times. Some of your other friends start to get 

suspicious. Define prior probability distributions for the following beliefs: 

One person who weakly believes that the friend is cheating and the true rate of coming up 

heads is closer to 70 percent. 

One person who very strongly trusts that the coin is fair and provided a 50 percent chance 

of coming up heads. 

One person who strongly believes the coin is biased to come up heads 70 percent of the 

time. 

A1. Picking these priors is a bit subjective, but here are some examples that correspond to 

each of the beliefs: 
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Beta(7,3) is a reasonably weak prior representing the belief that the rate is closer to 70 

percent. 

Beta(1000,1000) is a very strong belief that the coin is fair. 

Beta(70,30) is a much stronger belief that the coin is biased to 70 percent heads. 

Q2. To test the coin, you flip it 20 more times and get 9 heads and 11 tails. Using the priors 

you calculated in the previous question, what are the updated posterior beliefs in the true 

rate of flipping a heads in terms of the 95 percent confidence interval? 

A2. Now we have an updated data set with a total of 32 observations, which includes 18 

heads and 14 tails. Using R’s qbeta() and the priors from the preceding questions, we can 

come up with the 95% confidence intervals for these different beliefs: 

We’ll just show the code for Beta(7,3) since the other examples are identical. 

The lower bound for the 95 percent interval is qbeta(0.025,18+7,14+3) = 0.445 and 

the upper bound is qbeta(0.975,18+7,14+3) = 0.737. 

For Beta(1000,1000) we have: 0.479 – 0.523. 

And for Beta(70,30) we have: 0.5843 – 0.744. 

So, as you can see, the weak prior provides the widest range of possibility, the very 

strong fair prior remains quite certain that the coin is fair, and the strong 70 percent prior still 

leans toward a higher range of possible values for the true rate of the coin. 

Part IV, Hypothesis Testing: The Heart of Statistics 

Chapter 15 

Q1. Suppose a director of marketing with many years of experience tells you he believes 

very strongly that the variant without images (B) won’t perform any differently than the 

original variant. How could you account for this in our model? Implement this change and 

see how your final conclusions change as well. 

A1. You can account for this by increasing the strength of the prior. For example: 

prior.alpha <- 300 

prior.beta <- 700 

This will require much more evidence to change our beliefs. To see how this changes our 

conclusions, we can rerun our code: 
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a.samples <- rbeta(n.trials,36+prior.alpha,114+prior.beta) 

b.samples <- rbeta(n.trials,50+prior.alpha,100+prior.beta) 

p.b_superior <- sum(b.samples > a.samples)/n.trials 

And our new p.b_superior is 0.74, which is much lower than our original 0.96. 

Q2. The lead designer sees your results and insists that there’s no way that variant B 

should perform better with no images. She feels that you should assume the conversion rate 

for variant B is closer to 20 percent than 30 percent. Implement a solution for this and 

again review the results of our analysis. 

Rather than using one prior to change our beliefs, we want to use two—one that reflects the 

original prior we had for A and one that reflects the lead designer’s belief in B. Rather than 

use the weak prior, we’ll use a slightly stronger one: 

a.prior.alpha <- 30 

a.prior.beta <- 70 

 

b.prior.alpha <- 20 

b.prior.beta <- 80 

And when we run this simulation, we need to use two separate priors: 

a.samples <- rbeta(n.trials,36+a.prior.alpha,114+a.prior.beta) 

b.samples <- rbeta(n.trials,50+b.prior.alpha,100+b.prior.beta) 

p.b_superior <- sum(b.samples > a.samples)/n.trials 

The p.b_superior this time is 0.66, which is lower than before, but still slightly 

suggests that B might be the superior variant. 

Q3. Assume that being 95 percent certain means that you’re more or less “convinced” of a 

hypothesis. Also assume that there’s no longer any limit to the number of emails you can 

send in your test. If the true conversion for A is 0.25 and for B is 0.3, explore how many 

samples it would take to convince the director of marketing that B was in fact superior. 

Explore the same for the lead designer. 

A3. Here’s the basic code to figure out this problem for the case of the director of marketing 

(for the lead designer, you’ll need to add the separate priors). You can use a while loop in R 

to iterate through the examples (or just manually try new values). 
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a.true.rate <- 0.25  

b.true.rate <- 0.3 

 

 

 

prior.alpha <- 300 

prior.beta <- 700 

 

number.of.samples <- 0 

#using this as an initial value so that the loop starts 

p.b_superior <- -1 

while(p.b_superior < 0.95){ 

  number.of.samples <- number.of.samples + 100 

  a.results <- runif(number.of.samples/2) <= a.true.rate 

  b.results <- runif(number.of.samples/2) <= b.true.rate 

  a.samples <- rbeta(n.trials, 

                   sum(a.results==TRUE)+prior.alpha, 

                   sum(a.results==FALSE)+prior.beta) 

  b.samples <-  rbeta(n.trials, 

                   sum(b.results==TRUE)+prior.alpha, 

                   sum(b.results==FALSE)+prior.beta) 

  p.b_superior <- sum(b.samples > a.samples)/n.trials 

} 

Note that because this code itself is a simulation, you’ll get different results each time 

you run it, so run it a few times (or build a more complicated example that runs itself a few 

more times!). 

For the director of marketing it should take about 1,200 samples to be convinced. The 

lead designer should take about 1,000 samples. Notice that even though the lead designer 

believes that B is worse, she also has weaker priors in our example, so it takes less evidence 

to change her mind. 

Chapter 16 

Q1. Returning to the dice problem, assume that your friend made a mistake and suddenly 

realized that there were, in fact, two loaded dice and only one fair die. How does this 
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change the prior, and therefore the posterior odds, for our problem? Are you more willing 

to believe that the die being rolled is the loaded die? 

A1. The original prior odds were 

1

3
2

3

=
1

2
, and the Bayes factor was 3.77, giving us posterior 

odds of 1.89. Our new prior odds are 

2

3
1

3

= 2, so our posterior odds are 2 × 3.77 = 7.54. We’re 

certainly more willing now to believe that the die being rolled is loaded, but our posterior 

odds are still not very strong either way. We’d want to collect more evidence before 

completely giving up. 

Q2. Returning to the rare diseases example, suppose you go to the doctor, and after having 

your ears cleaned you notice that your symptoms persist. Even worse, you have a new 

symptom: vertigo. The doctor proposes another possible explanation, labyrinthitis, which is 

a viral infection of the inner ear in which 98 percent of cases involve vertigo. However, 

hearing loss and tinnitus are less common in this disease; hearing loss occurs only 30 

percent of the time, and tinnitus occurs only 28 percent of the time. Vertigo is also a 

possible symptom of vestibular schwannoma, but occurs in only 49 percent of cases. In the 

general population, 35 people per million contract labyrinthitis annually. What is the 

posterior odds when you compare the hypothesis that you have labyrinthitis against the 

hypothesis that you have vestibular schwannoma? 

A2. We’ll mix things up a bit and make H1 “has labryinthitis” and H2 “has vestibular 

schwannoma,” since we already saw how unlikely vestibular schwannoma is. We need to 

recalculate every piece of our posterior odds because we’re looking at a new piece of data, 

“has vertigo,” and an entirely new hypothesis as well. 

Let’s start with the Bayes factor. For H1 we have: 

𝑃(𝐷 | 𝐻1) = 0.98 ×  0.30 ×  0.28 =  0.082 

And the new likelihood for H2 is: 

𝑃(𝐷 | 𝐻2) = 0.63 ×  0.55 ×  0.49 =  0.170 

So the Bayes factor for the new hypothesis is: 

𝑃(𝐷 | 𝐻1)

𝑃(𝐷 | 𝐻2)
 =  0.48 
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This means that given the Bayes factor alone, vestibular schwannoma is a roughly two 

times better explanation than labyrinthitis. Now we have to look at the odds ratio: 

𝑂(𝐻1)  =  
𝑃(𝐻1)

𝑃(𝐻2)
 =  

35
1,000,000

11
1,000,000

 =  3.18 

Labyrinthitis is much less common than impacted earwax, and only about three times 

more common than vestibular schwannoma. When we put posterior odds together, we can 

see: 

𝑂(𝐻1) ⋅
𝑃(𝐷|𝐻1)

𝑃(𝐷|𝐻2)
= 3.18 ⋅ 0.48 = 1.53 

The end result is that labyrinthititis is only a slightly better explanation than vestibular 

schwannoma. 

Chapter 17 

Q1. Every time you and your friend get together to watch movies, you flip a coin to 

determine who gets to choose the movie. Your friend always picks heads, and every Friday 

for 10 weeks, the coin lands on heads. You develop a hypothesis that the coin has two heads 

sides, rather than both a heads side and a tails side. Set up a Bayes factor for the hypothesis 

that the coin is a trick coin over the hypothesis that the coin is fair. What does this ratio 

alone suggest about whether or not your friend is cheating you? 

A1. Let’s say H1 is the hypothesis that the coin is in fact a trick coin, and H2 is the hypothesis 

that it is fair. If the coin is indeed a trick coin, the probability of getting 10 heads in a row is 

1, so we know that: 

𝑃(𝐷 | 𝐻1)  =  1 

And if the coin is fair, then the probability of observing 10 heads is 0.510  =  
1

1024
. So we 

know that: 

𝑃(𝐷 | 𝐻2)  =  
1

1024
 

The Bayes factor for this tells us that: 
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𝑃(𝐷 | 𝐻1)

𝑃(𝐷 | 𝐻2)
 =  

1

1
1024

 =  1024 

This means that, given the Bayes factor alone, it is 1,024 times more likely that the coin 

is a trick coin. 

Q2. Now imagine three cases: that your friend is a bit of a prankster, that your friend is 

honest most of the time but can occasionally be sneaky, and that your friend is very 

trustworthy. In each case, estimate some prior odds ratios for your hypothesis and compute 

the posterior odds. 

A1. This is a bit subjective, but let’s make some estimates. We need to come up with three 

different prior odds ratios. For each case we just multiply the prior odds by the Bayes factor 

from the previous question to get our posterior. 

Being a prankster means our friend is more likely than not to trick us, so we’ll set O(H1) 

= 10. Then our posterior odds becomes 10 × 1,024 = 10,240. 

If your friend is mostly honest but can be sneaky you wouldn’t be that surprised if he was 

tricking you, but don’t expect it, so we’ll make the prior odds O(H1) = ¼, which means that 

our posterior odds become 240. 

If you really trust your friend, you might want to put the prior odds very low for cheating. 

Prior odds here might be O(H1) = 
1

10,000
, which gives you a posterior odds of roughly 

1

10
, 

meaning you still think it’s 10 times more likely that the coin is fair than that your friend is 

cheating. 

Q3. Suppose you trust this friend deeply. Make the prior odds of them cheating 1/10,000. 

How many times would the coin have to land on heads before you feel unsure about their 

innocence—say, a posterior odds of 1? 

A3. At 14 coin tosses the Bayes factor would be 
1
1

0.514

= 16,384. Your posterior odds would 

be 
16,384

10,000
= 1.64. At this point, you start to feel unsure about your friend’s innocence. But 

with fewer than 14 coin tosses, you might still favor the idea that the coin is fair. 

Q4. Another friend of yours also hangs out with this same friend and, after only four weeks 

of the coin landing on heads, feels certain you’re both being cheated. This confidence 
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implies a posterior odds of about 100. What value would you assign to this other friend’s 

prior belief that the first friend is a cheater? 

A4. We can solve this by filling in the blanks. We know that 𝑃(𝐷 | 𝐻2) = 0.54 =
1

16
, 

meaning that our Bayes factor would be 16. We just need to find a value to multiply by 16 

that equals 100. 

100 =  𝑂(𝐻1)  ×  16 

𝑂(𝐻1)  =  
100

16
 =  6

1

4
 

And now we’ve assigned an exact value to the prior odds in your suspicious friend’s 

mind! 

Chapter 18 

Q1. When two hypotheses explain the data equally well, one way to change our minds is to 

see if we can attack the prior probability. What are some factors that might increase your 

prior belief in your friend’s psychic powers? 

A1. Since we’re talking about prior beliefs, the answers to this are likely to be a little bit 

different for everyone. For me, merely predicting the outcome of the roll of a die seems 

particularly easy to fake. I’d like to see this friend demonstrate psychic powers in an 

experiment of my choosing—for example, asking the friend to predict the last digit on the 

serial number of the dollar bills in my wallet—so that it would be much more difficult to 

trick me.  

Q2. An experiment claims that when people hear the word Florida, they think of the elderly 

and this has an impact on their walking speed. To test this, we have two groups of 15 

students walk across a room; one group hears the word Florida and one does not. Assume 

H1 = the groups don’t move at different speeds, and H2 = the Florida group is slower 

because of hearing the word Florida. Also assume:  

𝑩𝑭 =  (𝑷(𝑫|𝑯𝟐))/(𝑷(𝑫|𝑯𝟏))  

SET AS EQUATION AS IN CHAPTER 18 

The experiment shows that H2 has a Bayes factor of 19. Suppose someone is unconvinced 

by this experiment because H2 had a lower prior odds. What prior odds would explain 
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someone being unconvinced and what would the BF need to be to bring the posterior odds 

to 50 for this unconvinced person? 

A2. This question comes from an actual paper, “Automaticity of Social Behavior.”1 If the 

experiment seems questionable, you’re not alone. The results of the study have been 

notoriously difficult to reproduce. If you were unconvinced, we’ll say that means prior odds 

must be about 
1

19
 to negate the results. In order to have a posterior odds of 50, you would 

need: 

50 =  
1

19 
×  950 

So you’d need a Bayes factor of 950 to get your posterior odds into the “strong belief” 

range, given your initial skepticism. 

Now suppose the prior odds do not change the skeptic’s mind. Think of an alternate H3 

that explains the observation that the Florida group is slower. Remember if H2 and H3 both 

explain the data equally well, only prior odds in favor of H3 would lead someone to claim 

H3 is true over H2, so we need to rethink the experiment so that these odds are decreased. 

Come up with an experiment that could change the prior odds in H3 over H2. 

A3. It is entirely possible that the second group was on average slower. With only 15 

participants, it’s not hard to imagine that the group hearing the word Florida just happened to 

include a higher number of shorter people who might walk a short distance in a longer time. 

To be convinced I would need to, at minimum, see this experiment reproduced many times 

with many different groups of people to ensure that it wasn’t just chance that led the group 

hearing the word Florida to be slower. 

Chapter 19 

Q1. Our Bayes factor assumed that we were looking at H1: P(prize) = 0.5. This allowed us 

to derive a version of the beta distribution with an alpha of 1 and a beta of 1. Would it 

matter if we chose a different probability for H1 ? Assume H1 is P(prize) = 0.24 , then see if 

                                                             

1 John A. Bargh, Mark Chen, and Lara Burrows, “Automaticity of Social Behavior: Direct Effects of 

Trait Construct and Stereotype Activation on Action,” Journal of Personality and Social Psychology 

71, no. 2 (1996). 
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the resulting distribution, once normalized to sum to 1, is any different than the original 

hypothesis. 

A1. We can rerun all of our code but this time make one group of bfs for the 0.5 version, and 

another for the 0.24 version: 

dx <- 0.01 

hypotheses <- seq(0,1,by=0.01) 

bayes.factor <- function(h_top,h_bottom){ 

  ((h_top)^24*(1-h_top)^76)/((h_bottom)^24*(1-h_bottom)^76) 

} 

bfs.v1 <- bayes.factor(hypotheses,0.5)  

bfs.v2 <- bayes.factor(hypotheses,0.24)  

Next we’ll plot these each out separately: 

plot(hypotheses,bfs.v1,type='l') 

 

plot(hypotheses,bfs.v2,type='l') 
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Here we see the only difference is the y-axis. Choosing a weaker or stronger hypothesis 

changes only the scale of the distribution, not the shape of it. If we normalize and plot these 

two together, we see they are identical: 

plot(hypotheses,bfs.v1/sum(bfs.v1),type='l') 

points(hypotheses,bfs.v2/sum(bfs.v2)) 
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Q2.Write a prior for the distribution in which each hypothesis is 1.05 times more likely 

than the previous hypothesis (assume our dx remains the same). 

A1. Let’s re-create our bfs from the original (see the code in the previous answer for the first 

part of this): 

bfs <- bayes.factor(hypotheses,0.5) 

Next our new priors are going to start with 1 (since there is no previous hypothesis), then 

1.05, 1.05*1.05, 1.05*1.05*1.05, and so on. There’s a few ways to do this, but we’ll 

just start with a vector of 1.05s one less than the length our hypotheses (since the first one is 

1), using R’s replicate() function: 

vals <- replicate(length(hypotheses)-1,1.05) 

Then we add 1 to this list, and we can use the cumprod() function (which is just like 

cumsum() but for multiplying) to create our priors: 

vals <- c(1,vals) 

priors <- cumprod(vals) 
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Finally, we just compute our posteriors and normalize them, and then we can visualize 

our new distribution: 

posteriors <- bfs*priors 

p.posteriors <- posteriors/sum(posteriors) 

plot(hypotheses,p.posteriors,type='l') 

#add the bfs alone for comparision 

points(hypotheses,bfs/sum(bfs)) 

 

Note that this doesn’t change our final distribution all that much. Even though it gives 

much stronger prior odds to the last hypothesis—around 125 times more likely—the Bayes 

factor is so low that it doesn’t make much of a difference in the end. 

Q3. Suppose you observed another duck game that included 34 ducks with prizes and 66 

ducks without prizes. How would you set up a test to determine “What is the probability 

that you have a better chance of winning a prize in this game than in the game we used in 

our example?” Implementing this requires a bit more sophistication than the R used in this 
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book, but see if you can learn this on your own to kick off your adventures in more 

advanced Bayesian statistics! 

A3. Clearly what we need to do to solve this problem is to set up an A/B test like in Chapter 

15. We can easily come up with our two distributions for the “34 prizes, 66 no prizes” 

example just by repeating the process we used in this chapter. The tricky part is sampling 

from our posterior that we created ourselves. In the past, to sample from a known 

distribution, we used built-in functions like rbeta(), but we have no equivalent function for 

this case. To solve this problem you’ll need to use an advanced sampling technique like 

rejection sampling or even Metropolis–Hastings. If you’re eager to solve this problem, it’s a 

good time to start looking into a more advanced book on Bayesian analysis. But you should 

be proud, as it means you have a solid understanding of the basics! 
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