
3
FRUIT LOOT: CREATING A
SIMPLE ANIMATED GAME

In this chapter, you’ll create a simple
game called “Fruit Loot” that uses com-

ponents from the Drawing and Animation,
Sensors, and Media drawers to let players catch

falling fruit.
You’ll program these components with App Inventor’s built-in Math

and Variables blocks and component-specific blocks so that the game will
use animation, or movement, with corresponding sound effects; unpredict-
ability to make the game challenging; and the ability to keep score so players
can see how well they’re doing.

First, let’s explore the key components and underlying programming
concepts that you’ll use to create the game.

www.itbook.store

https://itbook.store/

38 Chapter 3

Animating and Moving Randomly
To play the game, a player moves a fruit picker character back and forth
across the screen trying to catch pieces of falling fruit. The pieces of fruit
fall continuously at random speeds from random points at the top of the
screen. Because of this random animation, players won’t know exactly
where to move the picker to catch the fruit. This unpredictability should
challenge players and keep them engaged.

Programming Moving Images
We’ll use the Canvas and ImageSprite components from the Drawing and
Animation drawer to create the moveable game character and constantly
dropping fruit. The Canvas component is a layer or sheet that we place on
the app’s screen so users can draw. The Canvas is also where sprites, which are
flat images, can move around. The game character and different pieces of
fruit are all ImageSprites, which we’ll place on a Canvas to make them move,
collide with other sprites, and bounce off the edge of the screen.

The height and width of the Canvas are measured in pixels, a unit of
measurement used in computer graphics, and App Inventor uses a common
computer screen coordinate system to determine the exact location of an
ImageSprite on the Canvas. In that coordinate system, the top-left point of
the ImageSprite is located at the point represented by its x- and y-coordinates
or properties (X,Y). The X property is the image’s distance in pixels from
the Canvas’s left edge, and the Y property is the picture’s distance from the
Canvas’s top edge.

NO T E In math class, you may have plotted points on a coordinate plane that contains
four quadrants. App Inventor’s coordinate system is like the lower-right quadrant
in that coordinate plane, where the point of origin (0, 0) is at the top left, and the
size of the x-coordinate increases from left to right, while the size of the y-coordinate
increases from top to bottom. The difference is that, in the math plane, the increas-
ing y-coordinate numbers are negative, while they’re positive in App Inventor.

As shown in Figure 3-1, in App Inventor’s coordinate system, an Image
 Sprite’s X property value increases as the graphic moves to the right, and its
Y property value increases as it moves down.

When adding an ImageSprite to the Canvas, we set its initial X and Y prop-
erty values to the point where we place it or to other values we enter into
the Designer window’s Property pane. To move the ImageSprite, we use pro-
gram blocks to change either property value.

For this game, you’ll program button click event handlers to let players
move the fruit picker. Also, to constantly animate the fruit, you’ll program
the Clock so the fruit moves automatically at a time interval you’ll set. Java-
Script and other programming languages handle animation the same way,
by having images change location in response to user or automated actions.

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 39

Point of origin

(x=0, y=0) (x=300, y=0)

(x=300, y=300)(x=0, y=300)

(x=150, y=150)

Figure 3-1: The Viewer screen with a 300×300
pixel Canvas showing the point of origin and X
and Y property values of different points

Setting Up Random Appearance, Speed,
and Location
Like other games that deal with chance, this game relies on randomness to
keep players from plotting exactly how, when, or where to make their next
moves. Because of the need for randomness in games and other applica-
tions, such as simulations, most traditional programming languages include
pseudorandom number generators, which are functions based on mathematical
algorithms.

In its built-in Math blocks, App Inventor provides two pseudorandom
number generators. The blocks also include arithmetic operators that perform
multiplication, division, addition, and subtraction functions on operands or
values, just like similar operators in other programming languages. In your
game, you’ll combine one of App Inventor’s pseudorandom number genera-
tors, called the random integer block, with arithmetic operator blocks to develop
simple formulas to ensure that the appearance, speed, and location of each
piece of falling fruit will be determined randomly.

Thanks to these formulas, although our players will quickly realize that
fruit drops constantly, they won’t know where and at what speed it will fall,
keeping them from scoring points too easily.

www.itbook.store

https://itbook.store/

40 Chapter 3

Declaring and Initializing Variables
As players earn points, we’ll need a way to let them know their score. We’ll
do this by declaring and initializing a couple of variables—uniquely named
containers of memory that programmers create to hold values that can
change, or vary. Variables allow us to store necessary information that we
can update from time to time as conditions in the app change. We can use
the unique variable name to refer to that changing information throughout
our code and perform operations on the information as the app runs, no
matter what value the variable holds at any given time.

For instance, in your game, you’ll store the score in a variable and
compute and display the changing score during the game. To compute the
score, you’ll use a Math addition operator block to increment the score, or
increase it by a fixed number—in this case, 1—whenever a player earns a
point.

In traditional programming languages, you must follow specific syn-
tactical rules to declare, or create, a variable and to initialize it, or assign
its first value. In some languages, you also have to identify the type of
data the variable will hold when you create it. In App Inventor, you must
declare and initialize variables using the built-in Variables blocks, and you
can store strings (sets of characters that can include letters, numbers, and
other characters), individual numbers, Boolean values, and lists by snap-
ping in blocks from the Text, Math, Logic, and Lists drawers.

As you work with variables, you’ll notice that they’re a lot like compo-
nent properties in that both variables and properties hold data that can be
set, reset, and accessed by the blocks used in an app. In fact, as soon as you
create a variable, App Inventor creates getter and setter blocks for it, similar
to those available for properties, and adds them to the Variables blocks
drawer.

In your game, you’ll create variables that have a global scope, which
means you can use them in all of your event handlers. In later chapters,
you’ll experiment with local variables, which you’ll create within an event
handler or procedure for use only within that handler or procedure. All
programming languages use global and local variables.

Building the “Fruit Loot” App
Now that you understand how to create variables and program animation
and randomness in App Inventor, you’re ready to create “Fruit Loot.”

To get started, log into App Inventor following the instructions outlined
in “Getting Started with App Inventor” on page xviii. In the dialog for the
project name, enter FruitLoot without any spaces, and then click OK.

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 41

Decomposing “Fruit Loot”
In “Fruit Loot,” the player moves a fruit picker across the screen to catch
rapidly and randomly dropping fruit. The player earns a point for each fruit
caught and sees the score on the screen. We can decompose the game activity
into five steps:

1. When a player presses the start button, start the game.

2. When the Clock timer fires, drop fruit from the top of the Canvas at
different speeds.

3. When a fruit hits the bottom of the Canvas, return it to a random point
at the top of the Canvas and display another fruit at random. Increase
the total fruits dropped by one.

4. When a player clicks the left and right buttons, move the picker left and
right to catch the falling fruit.

5. When the picker catches a fruit, play a sound, increase the player’s
score by one, display the score, and hide the fruit.

Here are the components you’ll need:

• Button (3) for the player to click to manually start the action and play
the game

• Canvas to enable use of ImageSprites and game animation

• Clock to fire after the player clicks the start button and move ImageSprites
at a set interval

• HorizontalArrangement (2) to hold start button, score label, and play
buttons

• ImageSprite (4) to display moving images

• Label to display Variable values

• Sound to play the game sound effect

• Variable (2) to store game data

Laying Out “Fruit Loot” in the Designer
Now let’s lay out the app in the Designer. First, change the Screen’s
horizontal alignment so that everything we place on it will be centered.
Click Screen1 in the Components pane, click the drop-down arrow under
AlignHorizontal in the Properties pane, and select Center: 3.

Next, let’s add a background image to the Screen by clicking the text
box under BackgroundImage in the Properties pane. Follow the image upload
instructions outlined in “Uploading a Picture” on page 27 to upload fence
-tree.png, which comes with the resources for this book. You can download
the resources from https://nostarch.com/programwithappinventor/.

www.itbook.store

https://itbook.store/

42 Chapter 3

Now let’s change the screen orientation, which generally means whether
the screen displays vertically (in portrait mode) or horizontally (in landscape
mode). By default, ScreenOrientation is set to Unspecified, which means that
the orientation changes depending on how a user rotates the device.

To give our picker ImageSprite a wider screen area to move across to catch
fruit, let’s change the orientation to landscape mode to make sure the screen
displays horizontally regardless of how the device is held. Click the drop-
down arrow under ScreenOrientation and select Landscape. Also, unclick the
checkbox under both ShowStatusBar and TitleVisible to keep the device status
bar and Screen title from showing and taking up space when the game dis-
plays on a device.

Adding and Arranging User Interface
Components
Since we have limited vertical screen space in landscape orientation mode,
we need to take up as little of that space as possible with our user interface
components. But we still need to make sure those components are easy
for players to see and use. To accomplish this, let’s place our Buttons and
Label in two HorizontalArrangements, one across the top of the screen and one
across the bottom.

Drag two HorizontalArrangements from the Layout drawer onto the
Viewer. Then, click each in the Components pane, and rename the first
one TopArrangement and the second BottomArrangement. Then, in the Properties
pane, center both of their horizontal alignments by clicking the drop-down
arrow under AlignHorizontal and selecting Center: 3, which should center all
the components we place inside. Next, make BottomArrangement’s width Fill
parent, the same way you did with components in Chapters 1 and 2, so that
it stretches all the way across the screen.

Now drag a Button and a Label from the User Interface drawer into
TopArrangement. Then, in the Components pane, click Button1 and rename
it StartBtn, and in the Properties pane, change its text size to 18 point by
clicking the text box under FontSize, deleting the current number, and
entering 18. Also change the default text showing on StartBtn by clicking
the text box under Text, deleting the current text, and entering Start the
Fruit Loot Game. Then, in the Components pane, click Label1, and in the
Properties pane, remove the Label’s default text by clicking the text box
under Text and deleting the current text so no text will show until the
game starts. Then, center the text by clicking the drop-down arrow under
TextAlignment and selecting Center: 1.

Next, drag the remaining two Buttons from the User Interface drawer
into BottomArrangement, click each in the Components pane, and rename
the one on the left LeftBtn and the other RightBtn. Also make the width for
each Button Fill parent, which makes each take up half the width of Bottom
Arrangement. Now change the text showing on LeftBtn to <<<< Left and
RightBtn to Right >>>>.

Finally, make the background color orange for all three Buttons and the
Label by clicking the box under BackgroundColor and selecting Orange from the

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 43

color list dialog. Also make the text displaying on the Buttons and Label bold
by clicking the checkbox under FontBold. Next, update the font size on all but
StartBtn by clicking the text box under FontSize and entering 10 to replace the
existing number. Finally, for BottomArrangement, unclick the checkbox under
Visible so LeftBtn and RightBtn won’t show when the app opens.

Setting Up the Canvas and ImageSprites
Now, click the Drawing and Animation drawer and drag a Canvas onto the
Viewer between TopArrangement and BottomArrangement. Remember that you
must place a Canvas on the Screen before you can add any other Drawing
and Animation component. In the Properties pane, make the Canvas trans-
parent so it doesn’t hide the background image by clicking the box under
BackgroundColor and then clicking None when the color list dialog opens.
Then make its height and width Fill parent.

Now drag four ImageSprites from the Drawing and Animation drawer
onto the Canvas, click the ImageSprites in the Components pane, and rename
the first three FruitSprite1, FruitSprite2, and FruitSprite3 and the last Picker
Sprite. Next, under Picture in the Properties pane, for the fruit ImageSprites,
upload 1.png, 2.png, and 3.png, and for the picker ImageSprite, upload picker
.png. (All of these images come with the resources for this book.)

Finally, you can either drag the ImageSprites around the Canvas or enter
numbers in the text boxes under their X and Y properties to position them
on the Canvas the way they should appear when the game starts. We want the
fruit ImageSprites spread out evenly across the top of the Canvas and Picker
Sprite in the center at the bottom. To place the components this way on a
screen that’s approximately 450 pixels wide, enter the numbers in Table 3-1
into the Property pane text boxes under X and Y for each ImageSprite.

Table 3-1: Initial X and Y Property Values for “Fruit Loot” ImageSprites on
a 450-pixel-wide screen

ImageSprite X property Y property

FruitSprite1 10 0
FruitSprite2 230 0
FruitSprite3 440 0
PickerSprite 180 150

Now you’re ready to add and adjust the non-visible components.

Adding and Preparing Non-Visible
Components
From the Media drawer, drag in a Sound component, and from the Sensors
drawer, drag in a Clock component. In the Components pane, click the Sound
component, and in the Properties pane, set the media clip that it will play
by clicking the text box under Source and uploading the clunk.mp3 file that
comes with the book resources.

www.itbook.store

https://itbook.store/

44 Chapter 3

Then click the Clock, replace its default TimerInterval property by enter-
ing 150, and unclick the checkbox under TimerEnabled so the timer won’t start
when the app opens. Shortly, we’ll program the blocks to enable the timer
once the player clicks StartBtn.

At this point, your screen should look like Figure 3-2.

Figure 3-2: The Viewer and Component panes after we lay out “Fruit Loot”

Once your screen looks like it should, click the Canvas in the Compo-
nents pane, and unclick the checkbox under Visible. This way, none of
the ImageSprites should show when the app opens. Next, we’ll program the
blocks to make these components, LeftBtn and RightBtn, visible once the
player clicks StartBtn.

Programming “Fruit Loot” in the
Blocks Editor

Now that you’ve laid out all the components, you can move to the Blocks
Editor to program the app. For “Fruit Loot” we’ll program 10 event handlers.
Three respond to events generated by the user’s button clicks. One directs
the app’s action after a timer goes off at the time interval we’ve set. The rest
respond to ImageSprites reaching the edge of the Canvas or colliding with one
another.

You’ll notice that most of the event handlers contain duplicate code.
We’re programming them this way because you haven’t yet learned the
advanced programming structures that would eliminate the repetition.

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 45

As you learn about those structures in later chapters, we’ll be able to
revisit the “Fruit Loot” code and refactor it, which means to restructure
and improve it.

Click the Blocks button to switch to the Blocks Editor, and let’s begin
programming the five steps of “Fruit Loot” in order.

Step 1: Starting the Game
We start by telling the app what to do when the player clicks StartBtn. That’s
when we want the StartBtn to disappear, the Canvas with its ImageSprites and
BottomArrangement with its Buttons to appear, and the Clock’s timer to begin
to fire.

Here is the button click event handler with its four setter blocks that do
what we want in step 1.

�

� �

��

�

�

�

�

In the Blocks pane, click StartBtn and, when the blocks for the com-
ponent appear, drag the whenStartBtn.Click event handler block  to the
Viewer. Then, in the Blocks pane, click StartBtn again, and drag its set
StartBtn.Visibleto block  into the whenStartBtn.Click block next to the
word do. Next, in the Blocks pane, click the Logic blocks drawer, drag the
false block  to the Viewer, and snap it to the right side of the setStartBtn
.Visibleto block. These blocks set StartBtn’s Visible property to false so that
it disappears after the player clicks the start button.

Next, click Canvas1, drag the setCanvas1.Visibleto block  to the Viewer,
and snap it inside the whenStartBtn.Click block under the setStartBtn.Visibleto
block. Then, in the Blocks pane, click the Logic blocks drawer again, drag
the true block  to the Viewer, and snap it to the right side of the setCanvas1
.Visibleto block. These blocks set the Visible property for Canvas1 and its
contents to true so the ImageSprites will appear after the player clicks the
start button.

Then, click BottomArrangement in the Blocks pane, drag the setBottom
Arrangement.Visibleto block  to the Viewer, and snap it inside the whenStart
Btn.Click block under the setCanvas1.Visibleto block. Then click the Logic
blocks drawer again, drag another true block  to the Viewer, and snap it
to the right side of the setBottomArrangement.Visibleto block. These blocks set
the Visible property for BottomArrangement to true, making the buttons inside
of it appear after the player clicks the start button.

Finally, click Clock1, drag the setClock1.TimerEnabledto block  to the
Viewer, and snap it inside the whenStartBtn.Click block under the setBottom
Arrangement.Visibleto block. Then, in the Blocks pane, drag another true
block  from the Logic blocks drawer, and snap it to the right side of the

www.itbook.store

https://itbook.store/

46 Chapter 3

setClock1.TimerEnabledto block. These blocks set the value of Clock1’s Timer
Enabled property to true. This starts Clock1’s timer, which will move the
fruit ImageSprites down the Canvas the entire time the game is in play.

Together, the blocks for step 1 start the game. In sum, when the player
clicks the start button, the blocks set StartBtn’s Visible property to false,
set the Visible properties of the Canvas with ImageSprites and the Horizontal
Arrangement with play buttons to true, and set the Clock’s TimerEnabled prop-
erty to true.

To see how these blocks work, live-test with a device, as outlined in “Live-
Testing Your Apps” on page xxii. Once you click ConnectAI Companion
in the top menu bar and scan the QR code with your device’s Companion
app, your “Fruit Loot” game should open on your device. As long as your
blocks are placed as shown in the code examples, you should see the start
button until you click it, when it disappears as the other game components
appear. For now, nothing else should happen. Leave the game open on your
device to keep live-testing.

Step 2: Making Fruit Drop at Random
Now let’s program step 2 of the app and tell it what to do each time the
Clock’s timer fires. This is when we want the fruit to drop at varying speeds
every 150 milliseconds—the TimerInterval we set in the Property pane in the
Designer.

�
�

In the Blocks pane, click Clock1 and, when the blocks for the component
appear, drag the whenClock1.Timer block  to the Viewer. Then, in the Blocks
pane, click FruitSprite1, drag the callFruitSprite1.MoveTo method block  to
the Viewer, and snap it inside the whenClock1.Timer block next to the word do.

NO T E In both the Components pane in the Designer and the Blocks pane in the Blocks
Editor, if you don’t see a component that you’ve nested within a parent component—
for example, an ImageSprite placed on a Canvas or a Button dragged within a
Horizontal Arrangement—you’ll find it by clicking the plus sign to the left of the
parent.

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 47

Setting X and Y Values for FruitSprite1

Let’s look closer at the callFruitSprite1.MoveTo method block we’ve placed
within the Clock1 Timer event handler.

�
� � �

You’ll notice that the block requires us to insert values for its x and y
method parameters, which are pieces of information the method must have
to operate. This means the ImageSprite’s MoveTo method cannot move Fruit
Sprite1 until we supply arguments, or values, for the x- and y-coordinates of
the point where we want the ImageSprite to move.

For our “Fruit Loot” game, we want the fruit ImageSprites to move down
only, meaning we’ll change their y-coordinates but not their x-coordinates.
To keep the same X value, click FruitSprite1, drag its FruitSprite1.X getter
block  to the Viewer, and snap it into the method block’s x socket. This
tells the app that, when it moves FruitSprite1, it should get the current X
value for FruitSprite1 and keep that X value the same.

To provide the argument for the y-coordinate of the point where we want
FruitSprite1 to move, click the Math blocks drawer, drag out an addition oper-
ator block , and snap it into the method block’s y socket. Then, click Fruit
Sprite1 and drag its FruitSprite1.Y getter block  into the addition block’s left
socket, and click the Math blocks drawer and drag a random integer block 
into the addition block’s right socket. This tells the app that, when it moves
FruitSprite1, it should increase the current value of its y-coordinate by a
random number of pixels to move the ImageSprite down the Canvas.

Dropping FruitSprite1 at Random Speeds

The random integer block generates the random number of pixels—from
between the specified range of 15 to 50—that we want FruitSprite1 to fall.

To set that range of numbers in the random integer block, click the default
1 in its left socket and replace it by entering 15, and click the default 100 in its
right socket and replace it by entering 50.

Now, altogether, our callFruitSprite1.MoveTo method block with the x
and y parameters we’ve set tells the app that, when it moves FruitSprite1,
we want the ImageSprite’s X value to stay the same and its Y value to move
from its current y-coordinate down a random number of pixels between
15 and 50. This randomness ensures that the ImageSprite’s speed will be
unpredictable, because, when the Clock’s timer fires every 150 milliseconds,
FruitSprite1 will travel at a speed anywhere from a slower 15 pixels per
150 milliseconds (100 pixels per second) to a faster 50 pixels per 150 milli-
seconds (333 pixels per second).

www.itbook.store

https://itbook.store/

48 Chapter 3

Copying Blocks for FruitSprite2 and FruitSprite3

To complete the blocks for step 2, we now can copy the callFruitSprite1
.MoveTo block and adjust it for FruitSprite2 and FruitSprite3. Right-click the
callFruitSprite1.MoveTo method block to duplicate it for FruitSprite2, and
snap the duplicate in under the original.

�
�

�

In the duplicate blocks, use the drop-down arrows  in the callFruit
Sprite1.MoveTo, FruitSprite1.X, and FruitSprite1.Y blocks to change to Fruit
Sprite2. Also change the number in the left random integer block socket to 5.
These blocks now program FruitSprite2 to move down some unknown
number of pixels between 5 and 50 when the Clock’s timer fires every
150 milliseconds.

Next, right-click the callFruitSprite1.MoveTo block, make another copy
to use for FruitSprite3, and snap the duplicate in under the callFruitSprite2
.MoveTo block.

�
�

�

In the duplicate, use the drop-down arrows  in the callFruitSprite1
.MoveTo, FruitSprite1.X, and FruitSprite1.Y blocks to change to FruitSprite3,
and change the number in the random integer block’s left socket to 25. These
blocks program FruitSprite3 to move down a random number of pixels
between 25 and 50 every 150 milliseconds.

Now the blocks for step 2 should move the three fruit ImageSprites down
the Canvas every 150 milliseconds at random speeds.

Live-test to see how these blocks work. When you click StartBtn, you
should see the three fruit ImageSprites drop to the bottom of the screen,
where they stay and all movement stops. If any ImageSprite fails to move, you
need to debug. In this instance, you may not have changed your references
to the correct ImageSprite when you duplicated the MoveTo blocks. Make any
necessary corrections, and test again. Once step 2 is working, move to the
next step, where we’ll tell the game what to do when the fruit ImageSprites
reach the bottom of the Canvas.

Step 3: Creating More Falling Fruit and
Counting Dropped Fruit
Let’s now program step 3 of the app. In this part, when a fruit ImageSprite
reaches the bottom edge of the Canvas, we want the app to move the

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 49

ImageSprite back up to a random point along the very top of the Canvas,
have the ImageSprite display a random picture of fruit, and add 1 to the
total number of times an ImageSprite hits the edge.

We’ll use a global variable to store and update that total number, and
we’ll start our code for this step by creating and initializing that variable.

Click the Variables blocks drawer and drag an initialize global name
block to the Viewer. Click name and replace it with the name of our variable,
fruitsDropped. Then drag a 0 number block from the Math drawer and snap
it to the right side of the initialize global fruitsDropped block. This declares
and initializes the variable you’ll use to store and update the total number
of pieces of fruit dropped in your game. Because the variable is global and
can be used by all your event handlers, it stands alone in the code, outside
of all your event handler blocks.

Now let’s program the event handler for this step. Here are the blocks
that handle this EdgeReached event for FruitSprite1.

�

� �

In the Blocks pane, click FruitSprite1 and, when the blocks for the
component appear, drag the whenFruitSprite1.EdgeReached block  to
the Viewer. Then, in the Blocks pane, click FruitSprite1 again, drag the
setFruitSprite1.Y block  to the Viewer, and snap it inside the whenFruit
Sprite1.EdgeReached block next to the word do.

Then, click the Math blocks drawer, drag a 0 number block  to the
Viewer, and snap it to the right of the setFruitSprite1.Y block. So far, once
FruitSprite1 reaches the edge of the Canvas, these blocks move FruitSprite1
right back up to y-coordinate 0, which is the very top of the Canvas.

Moving Fallen Fruit Back Up to a Random Place

We now need to make sure the code also moves FruitSprite1 to an unpredict-
able x-coordinate using setter blocks, which keeps your game interesting.

� � � ��

www.itbook.store

https://itbook.store/

50 Chapter 3

In the Blocks pane, click the FruitSprite1 component, drag the setFruit
Sprite1.X block  to the Viewer, and snap it inside the whenFruitSprite1.Edge
Reached block under the setFruitSprite1.Y block. Then, click the Math blocks
drawer, snap a random integer block  to the right of the setFruitSprite1.X
block, and click the default 1 in the random integer block’s left socket and
replace it by entering 10. Then, delete the default 100 in the random integer
block’s right socket, and replace it with a multiplication operator block ,
also from the Math drawer. Next, in the Blocks pane, click the Canvas1 com-
ponent, drag the Canvas1.Width getter block  to the Viewer, and snap it into
the multiplication block’s left socket; then, drag a 0 number block  from the
Math drawer to the Viewer, click its default 0, replace it by entering 0.3, and
then snap the 0.3 number block into the multiplication block’s right socket.

These blocks set the X value for FruitSprite1 once it reaches the edge
of the Canvas. To avoid collisions with other fruit ImageSprites, we want this
first fruit ImageSprite to drop somewhere in the left third of the Canvas only.
These blocks ensure that by setting the new X position to a random number
of pixels between 10 and the width of the Canvas multiplied by 0.3, which is
a little less than one-third of the Canvas width. For instance, if the width of
the Canvas is 450 pixels, the new X position will be anywhere between 10 and
(450 × 0.3) pixels, which equals 135 pixels.

Dropping Random Fruit Images

Next, to keep your game unpredictable, you need to make sure the code
randomly changes the type of fruit dropped after FruitSprite1 moves back
up to the top of the Canvas. To do this, you’ll use setter blocks that set the
Picture property for FruitSprite1 to a random image.

� � �

�

Click the FruitSprite1 component in the Blocks pane, drag the setFruit
Sprite1.Picture block  to the Viewer, and snap it inside the whenFruitSprite1
.EdgeReached block under the setFruitSprite1.X block. Then, click the Text
blocks drawer, drag a join block  to the Viewer, and snap it to the right of
the setFruitSprite1.Picture block, which will allow you to set the name for the
picture by joining two strings.

For the join block’s top input, drag in another random integer block 
from the Math blocks drawer, click the default 100 in its right socket, and
replace it by entering 3. For the join block’s second input, drag in an empty
string block , the first block in the Text blocks drawer. Then click the string
block’s text area and enter .png.

These blocks set the name of the image to use as the picture source for
FruitSprite1 after it reaches the Canvas edge. Since we’ve named the three
uploaded fruit images 1.png, 2.png, and 3.png, we can use the random integer
block to generate the number 1, 2, or 3 that is part of the image name. This
should make the app continually display a randomly selected image on Fruit
Sprite1 each time it drops from the top of the Canvas.

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 51

Making Sure Fruit is Visible

We also need to make sure FruitSprite1 and the other fruit ImageSprites are
visible once they move back up to the top of the Canvas, because later we’ll
make them invisible if they hit the picker ImageSprite. Here is the setter
block that turns the Visible property on.

� �

Click FruitSprite1, drag the setFruitSprite1.Visibleto block  to the
Viewer, and snap it inside the whenFruitSprite1.EdgeReached block under the
setFruitSprite1.Pictureto block. Then, in the Blocks pane, click the Logic
blocks drawer, drag the true block  to the Viewer, and snap it to the right
side of the setFruitSprite1.Visibleto block. These blocks reset the ImageSprite’s
Visible property to true in case it collides with the picker ImageSprite, after
which our blocks in step 5 will set it to false.

Counting the Number of Fruits Dropped

Finally, we need to program the app to keep track of how many fruits are
dropped. Each time a fruit ImageSprite hits the bottom of the Canvas, the
game should add 1 to the value of fruitsDropped, which is the variable that
keeps track of the number of times an ImageSprite hits the edge. The follow-
ing blocks increment the value of fruitsDropped.

� � � �

Mouse over the initialize global fruitsDropped block that we placed at
the beginning of this step, drag the set global fruitsDropped block  to the
Viewer, and snap it inside the whenFruitSprite1.EdgeReached block under the
setFruitSprite1.Visibleto block. Then drag an addition operator block 
from the Math drawer and snap it to the right of the set global fruitsDropped
block. Fill that addition block’s sockets by mousing over the initialize global
fruitsDropped block, dragging the get global fruitsDropped block  into the
addition block’s left socket, and dragging a 1 number block  from the
Math drawer into the addition block’s right socket. These blocks keep track
of the game’s total number of fruits dropped by adding 1 to the current
value of the fruitsDropped variable each time FruitSprite1 reaches the edge
of the Canvas.

Copying Blocks for FruitSprite2 and FruitSprite3

Our final task for step 3 is to duplicate our code to program similar
EdgeReached event handlers for FruitSprite2 and FruitSprite3.

For FruitSprite2, right-click the whenFruitSprite1.EdgeReached block and
select duplicate. When you make this duplicate, you’ll see a red X appear to
the left of the word when in both the original and duplicate event handlers.
This red X warns you that you have two event handlers for the same event,

www.itbook.store

https://itbook.store/

52 Chapter 3

which is not allowed. Once you change the duplicate handler’s event, the
red X should disappear. To change the event, use the drop-down arrow in
every block where you see FruitSprite1 and change to FruitSprite2.

The only other adjustment we need to make is to set an X property for
FruitSprite2 that avoids collisions with the other fruit ImageSprites when it
moves down the Canvas. To accomplish this, make sure this second fruit
ImageSprite consistently drops somewhere in the middle third of the Canvas
by changing the FruitSprite2 X value.

� � �

�

NO T E App Inventor provides a way for you to display the random integer, join, and
other blocks that require multiple inputs with either inline inputs, as shown in
the random integer block inside the FruitSprite1 setter, or external inputs, as
shown in the random integer block inside the figure’s FruitSprite2 setter, which
takes up less horizontal space. You can right-click a block to switch between inline
and external inputs.

Replace the 10 number block in the random integer block’s top socket
with a multiplication operator block  from the Math drawer. Then fill
the multiplication block’s sockets by clicking the Canvas1 component in the
Blocks pane, dragging the Canvas1.Width block  into its left socket, and
dragging a 0.35 number block  from the Math drawer into its right socket.
Then, in the random integer block’s bottom socket, change the 0.3 number
block to a 0.65 number block .

These blocks set the new X position for FruitSprite2 to a random number
of pixels between the width of the Canvas multiplied by 0.35 and the width of
the Canvas multiplied by 0.65, which is some random point in the middle
third of the Canvas. For instance, if the width of the Canvas is 450 pixels, the
new X position will be anywhere between 450 × 0.35 pixels, which equals
158 pixels, and 450 × 0.65 pixels, which equals 293 pixels.

Now, to create the EdgeReached event handler for FruitSprite3, right-click
the whenFruitSprite2.EdgeReached block and select duplicate. In the duplicate
blocks, be sure to use the drop-down arrow in every block where you see
FruitSprite2 and change to FruitSprite3.

To avoid collisions with the other fruit ImageSprites, we’ll also need to
change the FruitSprite3 X value so this third fruit ImageSprite consistently
drops somewhere in the right third of the Canvas.

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 53

�

�� �

To do this, replace the 0.35 number block in the right socket of the
first multiplication block with a 0.7 number block . Also, replace the
second multiplication block with a subtraction operator block  from
the Math blocks drawer, and fill the subtraction block by dragging the
Canvas1.Width block  into its left socket and a 20 number block  into its
right socket.

These blocks set the new X position of FruitSprite3 to a random number
of pixels between the width of the Canvas multiplied by 0.7 and the width of
the Canvas minus 20 pixels, which is some random point in the right third
of the Canvas. For instance, if the width of the Canvas is 450 pixels, the new
X position will be anywhere between 450 × 0.7 pixels, which equals 315 pixels,
and 450 – 20 pixels, which equals 430 pixels.

Altogether, the blocks for step 3 move each fruit ImageSprite to a random
point at the very top of the Canvas, have that ImageSprite display a random
picture of fruit, and increase the count of total fruits dropped by 1 each
time an ImageSprite hits the bottom of the Canvas, just as we planned.

Now live-test the game again. This time, when you click StartBtn, you
should see the three fruit ImageSprites drop to the bottom of the screen con-
tinuously, randomly changing the image displayed. You’ll also notice that
the speed at which each ImageSprite drops and its X location changes with
each drop.

If any of the ImageSprites fail to move, or if two or more appear to drop
in the same third of the Canvas, debug your code. Here again, you may not
have made the correct changes to your duplicate blocks. Make any necessary
corrections, and test again. Once step 3 is working, let’s move to the next
part, where we’ll program PickerSprite’s movement.

Step 4: Letting Players Move the Picker to
Catch the Fruit
Now let’s program step 4 of the app, telling it what to do when the player
clicks the left and right play buttons. When the player clicks LeftBtn, we
want PickerSprite to move to the left 50 pixels, and when the player clicks
RightBtn, we want PickerSprite to move 50 pixels to the right.

www.itbook.store

https://itbook.store/

54 Chapter 3

�
�

��

�

�� �

�

In the Blocks pane, click LeftBtn and, when the blocks for the component
appear, drag the whenLeftBtn.Click block  to the Viewer. Then, in the Blocks
pane, click PickerSprite, drag the callPickerSprite.MoveTo block  to the
Viewer, and snap it inside the whenLeftBtn.Click block next to the word do.

Now we need to provide the MoveTo block’s method parameters to tell
the app where we want to move PickerSprite, keeping in mind that, for
this game, we want PickerSprite to move from side to side only, along the
very bottom of the Canvas. That means we want to change its x-coordinate
but leave its y-coordinate at the bottom. To do this, click the Math blocks
drawer, drag a subtraction operator block  to the Viewer, and snap it to
the right of x. Then, click PickerSprite and drag its PickerSprite.X block 
into the subtraction block’s left socket, and drag a 50 number block  from
the Math drawer into the subtraction block’s right socket.

These blocks tell our app to move PickerSprite’s x-coordinate left to
its current location minus 50 pixels whenever the Button is clicked. For
instance, if PickerSprite’s x-coordinate is at 240 pixels, when the player
clicks LeftBtn, the x-coordinate should move 50 pixels to the left to
190 pixels, since 240 pixels – 50 pixels = 190 pixels.

Next, click Canvas1, drag its Canvas.Height block  to the viewer, and
snap it into the callPickerSprite.MoveTo block’s y socket. This tells the app
that, when it moves PickerSprite, we want the ImageSprite’s Y value to stay
the value that equals the height of the Canvas, positioned at the bottom.
For instance, if the Canvas is 300 pixels in height, these blocks will keep
PickerSprite’s y-coordinate at the Canvas’s bottommost point, 300 pixels,
when LeftBtn is clicked.

Now copy the LeftBtn event handler and modify the duplicate blocks to
program RightBtn. First, in the duplicate event handler, be sure to use the
drop-down arrow to change LeftBtn to RightBtn. Then replace the subtraction
block after the letter x with an addition block  from the Math drawer, click
PickerSprite and drag its PickerSprite.X block  into the addition block’s left
socket, and drag a 50 number block  from the Math drawer into the addi-
tion block’s right socket.

These blocks say move PickerSprite’s x-coordinate to its current location
plus 50 pixels when the button is clicked. So, if PickerSprite’s x-coordinate is
at 240 pixels when the player clicks RightBtn, the x-coordinate should move
50 pixels to the right to 290 pixels, since 240 pixels + 50 pixels = 290 pixels.

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 55

Now live-test the game again, and if LeftBtn and RightBtn don’t work cor-
rectly after you click StartBtn, try debugging. LeftBtn and RightBtn should
move PickerSprite back and forth across the screen, while fruit ImageSprites
occasionally collide with PickerSprite. Since the player’s goal in the game is to
collide with, or “catch,” the fruit, we need to program quite a bit of activity to
take place when those fruit ImageSprites hit PickerSprite. We’ll program that
action in the next, and final, step.

Step 5: Hiding Caught Fruit and
Keeping Score
Now we’ll program the last part of the game so that each time a fruit
ImageSprite hits PickerSprite, the player “catches” the piece of fruit, hears a
noise that sounds like the fruit hitting the picker’s bucket, earns a point, and
sees the total score displayed on the screen. We’ll also hide the ImageSprite
that hit PickerSprite so that, instead of continuing to fall to the bottom of the
Canvas, the fruit looks like it landed in the picker’s bucket.

To keep the player’s score, we’ll use a variable to store and update that
information. Let’s start our code for this step by creating and initializing
the score variable.

Click the Variables block drawer and drag an initialize global name
block to the Viewer. Click name, and replace it with the name of our variable,
score. Then drag a 0 number block from the Math drawer and snap it to the
right side of the initialize global score block. This declares and initializes
the global variable we’ll use to store and update the player’s game score.

Playing a Sound When Fruit Hits the Picker

Let’s now program the event handler for when a fruit ImageSprite hits
PickerSprite.

�

�

In the Blocks pane, click PickerSprite and, when the blocks for the com-
ponent appear, drag the whenPickerSprite.CollidedWith block  to the Viewer.
Then, in the Blocks pane, click Sound1, drag the callSound1.Play block  to
the Viewer, and snap it inside the whenPickerSprite.CollidedWith block next
to the word do. This should play our clunking sound each time an Image
Sprite hits PickerSprite.

www.itbook.store

https://itbook.store/

56 Chapter 3

Increasing and Displaying the Score

Next, let’s place the blocks that increment and display the game score each
time a fruit ImageSprite hits the picker.

� � �
�

�
�

�
�

�
�

Mouse over the initialize global score block, drag the set global score
to block  to the Viewer, and snap it inside the whenPickerSprite.Collided
With block under the callSound1.Play block. Then drag an addition opera-
tor block  from the Math drawer and snap it to the right of the set global
score to block. Next, mouse over the initialize global score block again, and
drag the get global score block  into the addition block’s left socket and a
1 number block  from the Math drawer into its right socket. These blocks
add 1 to the current value of the score variable each time a fruit ImageSprite
collides with PickerSprite.

To display the score and also let the player know how many of the total
number of dropped fruits PickerSprite has caught, click Label1, drag the set
Label1.Textto block  to the Viewer, and snap it inside the whenPickerSprite
.CollidedWith block under the set global score to block. Then, click the Text
blocks drawer, drag a join block  to the Viewer, and snap it to the right of
the setLabel1.Textto block.

Here, we’ll join four strings to set the text and numbers we want Label1
to display, although by default the join block allows us to combine only two
strings. Figure 3-3 shows how to change the block to create space for the
additional inputs we’ll need.

Figure 3-3: Adding inputs to the join block

Click the blue mutator icon to the left of the word join, and drag addi-
tional string blocks to the join block in the dialog that opens.

Now we can snap our four strings into the join block inputs. In the top
input, drag in an empty string block  from the Text blocks drawer and enter

www.itbook.store

https://itbook.store/

Fruit Loot: Creating a Simple Animated Game 57

Score: , making sure to include the space after the colon so that, when the
strings combine, the characters won’t run together without proper spacing.
Then mouse over the initialize global score block and drag the get global
score block  into the join block’s second input. In the join block’s third
input, drag in another empty string block  and enter out of , leaving a space
before out and after of. Then mouse over the initialize global fruitsDropped
block and drag the get global fruitsDropped block  into the join block’s last
input. These blocks display the number of points and total number of fruits
dropped on Label1 for the player to see at the top of the screen. For instance,
if the player’s score is 6 points and a total of 20 fruits have dropped, the label
should display “Score: 6 out of 20.”

Hiding Caught Fruit

Finally, let’s add the blocks that will make the fruit ImageSprites disappear
after they collide with PickerSprite.

�

� �

Click FruitSprite1 and, when the blocks for the component appear, drag
the whenFruitSprite1.CollidedWith block  to the Viewer. Then, click Fruit
Sprite1, drag the setFruitSprite1.Visibleto block  to the Viewer, and snap
it inside the whenFruitSprite1.CollidedWith block next to the word do. Next, in
the Blocks pane, click the Logic blocks drawer, drag the false block  to the
Viewer, and snap it to the right side of the setFruitSprite1.Visibleto block.

Now duplicate these blocks for FruitSprite2, taking care to use the drop-
down arrows both places you see FruitSprite1 to change to FruitSprite2. Then
duplicate the blocks again, and be sure to change to FruitSprite3. These three
event handlers hide the fruit ImageSprites when they hit PickerSprite so it looks
like the picker successfully caught the fruit in the bucket. In the next chapter,
you’ll learn how to eliminate these duplicate blocks and accomplish the same
task using a more sophisticated programming structure.

Now, following the plan for step 5, each time a fruit ImageSprite touches
PickerSprite, the app should play a sound, increase the player’s score by 1,
display the score and the total pieces of fruit, and hide the fruit ImageSprite.

It’s time to test the completed game! Open the app on your device,
and you should see StartBtn at the top of the screen. Click it, and when
it disappears, you should see the other game components appear. Now
the fruit starts to randomly drop, and you can click LeftBtn and RightBtn
to move PickerSprite back and forth across the screen to try to catch it.

www.itbook.store

https://itbook.store/

58 Chapter 3

Whenever PickerSprite catches a piece of fruit, you should hear a sound
and see your score increase. If you placed your blocks correctly, the game
should work as described, and you’ll have successfully created the “Fruit
Loot” game!

Summary
In this chapter, you built the animated “Fruit Loot” app, a game where
a player moves a fruit picker back and forth across the screen and earns
points when the picker catches rapidly and randomly dropping fruit.

You learned how programmers animate an object by moving its x- and
y-coordinates; use pseudorandom number generators to add randomness
in games, simulators, and other applications; and work with arithmetic
operators to manipulate data. You also practiced declaring and initializing
variables to store and change information, and you learned how to provide
required arguments for built-in methods with parameters.

In the next chapter, you’ll do more with math operators and random
number blocks and begin to make selections in your code using Control
blocks. You’ll use those tools to create part 1 of the “Multiplication Station”
quiz app, which generates random, timed multiplication problems, evalu-
ates solutions the user inputs, and then speaks to declare those answers
right or wrong.

On Your Own
Save new versions of “Fruit Loot” as you modify and extend it working
on these exercises. You can find solutions online at https://nostarch.com/
programwithappinventor/.

1. Change the app so that it calculates and keeps track of how many pieces
of fruit the picker fails to catch during a game. How can you calculate,
store, and display this information using the existing event handlers
and adding the smallest number of additional blocks?

2. Extend the game so that the frustrated owner of the fruit trees, who
can’t keep the fruit from falling over the fence, drops rocks down the
fence to try to keep the picker from attempting to catch the falling
fruit. Reduce the player’s score each time the rock hits another sprite.
What components and blocks will you add?

3. Extend the game even further so that the score label displays the number
of times the rock hits another sprite.

www.itbook.store

https://nostarch.com/programwithappinventor/
https://nostarch.com/programwithappinventor/
https://itbook.store/

