
M A N N I N G

Gavin M. Roy

IN DEPTH

S A M P L E C H A P T E R

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

RabbitMQ in Depth

by Gavin Roy

 Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

v

brief contents
PART 1 RABBITMQ AND APPLICATION ARCHITECTURE1

1 ■ Foundational RabbitMQ 3

2 ■ How to speak Rabbit: the AMQ Protocol 18

3 ■ An in-depth tour of message properties 38

4 ■ Performance trade-offs in publishing 58

5 ■ Don’t get messages; consume them 79

6 ■ Message patterns via exchange routing 101

PART 2 MANAGING RABBITMQ IN THE DATA CENTER
OR THE CLOUD..133

7 ■ Scaling RabbitMQ with clusters 135

8 ■ Cross-cluster message distribution 148

PART 3 INTEGRATIONS AND CUSTOMIZATION.........................175

9 ■ Using alternative protocols 177

10 ■ Database integrations 205

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

3

Foundational RabbitMQ

Whether your application is in the cloud or in your own data center, RabbitMQ is a
lightweight and extremely powerful tool for creating distributed software architec-
tures that range from the very simple to the incredibly complex. In this chapter
you’ll learn how RabbitMQ, as messaging-oriented middleware, allows tremendous
flexibility in how you approach and solve problems. You’ll learn how some compa-
nies are using it and about key features that make RabbitMQ one of the most popu-
lar message brokers today.

This chapter covers
 Unique features of RabbitMQ

 Why RabbitMQ is becoming a popular choice for
the centerpiece of messaging-based
architectures

 The basics of the Advanced Messaging Queuing
model, RabbitMQ’s foundation

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

4 CHAPTER 1 Foundational RabbitMQ

1.1 RabbitMQ’s features and benefits
RabbitMQ has many features and benefits, the most important of which are

 Open source—Originally developed in a partnership between LShift, LTD, and
Cohesive FT as RabbitMQ Technologies, RabbitMQ is now owned by Pivotal Soft-
ware Inc. and is released under the Mozilla Public License. As an open-source
project written in Erlang, RabbitMQ enjoys freedom and flexibility, while leverag-
ing the strength of Pivotal standing behind it as a product. Developers and engi-
neers in the RabbitMQ community are able to contribute enhancements and
add-ons, and Pivotal is able to offer commercial support and a stable home for
ongoing product maturation.

 Platform and vendor neutral—As a message broker that implements the platform-
and vendor-neutral Advanced Message Queuing Protocol (AMQP) specifica-
tion, there are clients available for almost any programming language and on
all major computer platforms.

 Lightweight—It is lightweight, requiring less than 40 MB of RAM to run the core
RabbitMQ application along with plugins, such as the Management UI. Note
that adding messages to queues can and will increase its memory usage.

 Client libraries for most modern languages—With client libraries targeting most mod-
ern programming languages on multiple platforms, RabbitMQ makes a compel-
ling broker to program for. There’s no vendor or language lock-in when choosing
how you’ll write programs that will talk to RabbitMQ. In fact, it’s not uncom-
mon to see RabbitMQ used as the centerpiece between applications written in
different languages. RabbitMQ provides a useful bridge that allows for lan-
guages such as Java, Ruby, Python, PHP, JavaScript, and C# to share data across
operating systems and environments.

 Flexibility in controlling messaging trade-offs—RabbitMQ provides flexibility in con-
trolling the trade-offs of reliable messaging with message throughput and per-
formance. Because it’s not a “one size fits all” type of application, messages can
designate whether they should be persisted to disk prior to delivery, and, if set
up in a cluster, queues can be set to be highly available, spanning multiple serv-
ers to ensure that messages aren’t lost in case of server failure.

 Plugins for higher-latency environments—Because not all network topologies and
architectures are the same, RabbitMQ provides for messaging in low-latency
environments and plugins for higher-latency environments, such as the inter-
net. This allows for RabbitMQ to be clustered on the same local network and
share federated messages across multiple data centers.

 Third-party plugins—As a center point for application integrations, RabbitMQ
provides a flexible plugin system. For example, there are third-party plugins
for storing messages directly into databases, using RabbitMQ directly for data-
base writes.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

5RabbitMQ’s features and benefits

 Layers of security—In RabbitMQ, security is provided in multiple layers. Client
connections can be secured by enforcing SSL-only communication and client
certificate validation. User access can be managed at the virtual-host level, pro-
viding isolation of messages and resources at a high level. In addition, access to
configuration capabilities, reading from queues, and writing to exchanges is
managed by regular expression (regex) pattern matching. Finally, plugins can
be used for integration into external authentication systems like LDAP.

We’ll explore the features on this list in later chapters, but I’d like to focus right now
on the two most foundational features of RabbitMQ: the language it’s programmed in
(Erlang), and the model it’s based on (the Advanced Message Queuing model), a
specification that defines much of the RabbitMQ lexicon and its behavior.

1.1.1 RabbitMQ and Erlang

As a highly performant, stable, and clusterable message broker, it’s no surprise that
RabbitMQ has found a home in such mission-critical environments as the centerpiece
of large-scale messaging architectures. It was written in Erlang, the telco-grade, func-
tional programming language designed at the Ericsson Computer Science Laboratory
in the mid-to-late 1980s. Erlang was designed to be a distributed, fault-tolerant, soft
real-time system for applications that require 99.999% uptime. As a language and run-
time system, Erlang focuses on lightweight processes that pass messages between each
other, providing a high level of concurrency with no shared state.

REAL-TIME SYSTEM A real-time system is a hardware platform, software plat-
form, or combination of both that has requirements defined for when it must
return a response from an event. A soft real-time system will sacrifice less
important deadlines for executing tasks in favor of more important ones.

Erlang’s design, which focused on concurrent processing and message passing, made
it a natural choice for a message broker like RabbitMQ: As an application, a message
broker maintains concurrent connections, routes messages, and manages their states.
In addition, Erlang’s distributed communication architecture makes it a natural for
RabbitMQ’s clustering mechanism. Servers in a RabbitMQ cluster make use of Erlang’s
inter-process communication (IPC) system, offloading the functionality that many compet-
ing message brokers have to implement to add clustering capabilities (figure 1.1).

 Despite the advantages RabbitMQ gains by using Erlang, the Erlang environment
can be a stumbling block. It may be helpful to learn some Erlang so you’re confident
in managing RabbitMQ’s configuration files and using Erlang to gather information
about RabbitMQ’s current runtime state.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

6 CHAPTER 1 Foundational RabbitMQ

1.1.2 RabbitMQ and AMQP

RabbitMQ was originally released in 2007, and interoperability, performance, and sta-
bility were the primary goals in mind during its development. RabbitMQ was one of
the first message brokers to implement the AMQP specification. By all appearances, it
set out to be the reference implementation. Split into two parts, the AMQP specifica-
tion defines not only the wire protocol for talking to RabbitMQ, but also the logical
model that outlines RabbitMQ’s core functionality.

NOTE There are multiple versions of the AMQP specification. For the pur-
poses of this book, we’ll focus only on AMQP 0-9-1. Although newer versions
of RabbitMQ support AMQP 1.0 as a plugin extension, the core RabbitMQ
architecture is more closely related to AMQP 0-8 and 0-9-1. The AMQP speci-
fication is primarily comprised of two documents: a top-level document that
describes both the AMQ model and the AMQ protocol, and a more detailed
document that provides varying levels of information about every class,
method, property, and field. More information about AMQP, including the
specification documents, may be found at http://www.amqp.org.

There are multiple popular message brokers and messaging protocols, and it’s impor-
tant that you consider the impact that the protocol and broker will have on your appli-
cation. RabbitMQ supports AMQP, but it also supports other protocols, such as MQTT,

Server 3

Erlang

virtual machine

In a cluster, RabbitMQ uses
Erlang’s inter-process communication
(IPC) system to communicate between

different servers.

The Erlang IPC system uses TCP/IP to
communicate between two RabbitMQ servers.

RabbitMQ communicates messages,
status, and configuration via the
Erlang IPC, synchronizing servers

with each other.

Server 1

Erlang

virtual machine

Server 2

Erlang

virtual machine

Figure 1.1 RabbitMQ clusters use the native Erlang inter-process communication mechanism in
the VM for cross-node communication, sharing state information and allowing for messages to be
published and consumed across the entire cluster.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

7Who’s using RabbitMQ, and how?

Stomp, and XMPP. RabbitMQ’s protocol neutrality and plugin extensibility make it a
good choice for multiprotocol application architectures when compared to other
popular message brokers.

 It’s RabbitMQ’s roots in the AMQP specification that outline its primary architec-
ture and communication methodologies. This is an important distinction when evalu-
ating RabbitMQ against other message brokers. As with AMQP, RabbitMQ set out to
be a vendor-neutral, platform-independent solution for the complex needs that mes-
saging oriented architectures demand, such as flexible message routing, configurable
message durability, and inter-datacenter communication, to name a few.

1.2 Who’s using RabbitMQ, and how?
As an open-source software package, RabbitMQ is rapidly gaining mainstream adop-
tion, and it powers some of the largest, most trafficked websites on the internet.
Today, RabbitMQ is known to run in many different environments and at many differ-
ent types of companies and organizations:

 Reddit, the popular online community, uses RabbitMQ heavily in the core of
their application platform, which serves billions of web pages per month.
When a user registers on the site, submits a news post, or votes on a link, a
message is published into RabbitMQ for asynchronous processing by consumer
applications.

 NASA chose RabbitMQ to be the message broker for their Nebula platform, a
centralized server management platform for their server infrastructure, which
grew into the OpenStack platform, a very popular software platform for build-
ing private and public cloud services.

 RabbitMQ sits at the core of Agoura Games’ community-oriented online gam-
ing platform, and it routes large volumes of real-time single and multiplayer
game data and events.

 For the Ocean Observations Initiative, RabbitMQ routes mission-critical physi-
cal, chemical, geological, and biological data to a distributed network of research
computers. The data, collected from sensors in the Southern, Pacific, and Atlan-
tic Oceans, is integral to a National Science Foundation project that involves
building a large-scale network of sensors in the ocean and seafloor.

 Rapportive, a Gmail add-on that places detailed contact information right
inside the inbox, uses RabbitMQ as the glue for its data processing systems. Bil-
lions of messages pass through RabbitMQ monthly to provide data to Rapport-
ive’s web-crawling engine and analytics system and to offload long-running
operations from its web servers.

 MercadoLibre, the largest e-commerce ecosystem in Latin America, uses
RabbitMQ at the heart of their Enterprise Service Bus (ESB) architecture,
decoupling their data from tightly coupled applications, allowing for flexible
integrations with various components in their application architecture.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

8 CHAPTER 1 Foundational RabbitMQ

 Google’s AdMob mobile advertising network uses RabbitMQ at the core of their
RockSteady project to do real-time metrics analysis and fault-detection by fun-
neling a fire hose of messages through RabbitMQ into Esper, the complex-
event-processing system.

 India’s biometric database system, Aandhaar leverages RabbitMQ to process
data at various stages in its workflow, delivering data to their monitoring tools,
data warehouse, and Hadoop-based data processing system. Aandhaar is designed
to provide an online portable identity system for every single resident of India,
covering 1.2 billion people.

As you can see, RabbitMQ isn’t only used by some of the largest sites on the internet,
it’s also found its way into academia for large-scale scientific research, and NASA
found it fitting to use RabbitMQ at the core of their network infrastructure manage-
ment stack. As these examples show, RabbitMQ has been used in mission-critical appli-
cations in many different environments and industries with tremendous success.

1.3 The advantages of loosely coupled architectures
When I first started to implement a messaging based architecture, I was looking for a
way to decouple database updates related to when a member logged in to a website.
The website had grown very quickly, and due to the way we’d written it, it wasn’t ini-
tially designed to scale well. When a user logged in to the website, several database
servers had tables that needed to be updated with a login timestamp (figure 1.2). This
timestamp needed to be updated in real time, as the most engaging activities on the
site were driven in part by the timestamp value. Upon login, members were given pref-
erential status in social games compared to those users who were actively online at any
given time.

 As the site continued to grow, the amount of time it took for a member to log in
also grew. The reason for this was fairly straightforward: When adding a new applica-
tion that used the member’s last login timestamp, its database tables would carry the
value to make it as fast as possible by removing cross database joins. To keep the data
up to date and accurate, the new data tables would also be updated when the mem-
ber logged in. It wasn’t long before there were quite a few tables that were being
maintained this way. The performance issue began to creep up because the database
updates were being performed serially. Each query updating the member’s last login
timestamp would have to finish before the next began. Ten queries that were consid-
ered performant, each finishing within 50 ms, would add up to half a second in
database updates alone. All of these queries would have to finish prior to sending
the authorization response and redirect back to the user. In addition, any opera-
tional issues on a database server compounded the problem. If one database server
started responding slowly or became unresponsive, members could no longer log in
to the site.

 To decouple the user-facing login application from directly writing to the database,
I looked into publishing messages to message-oriented middleware or a centralized

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

9The advantages of loosely coupled architectures

message broker that would then distribute the messages to any number of consumer
applications that would do the database writes required. I experimented with several dif-
ferent message brokers, and ultimately I landed on RabbitMQ as my broker of choice.

DEFINITION Message-oriented middleware (MOM) is defined as software or
hardware infrastructure that allows for the sending and receiving of messages
from distributed systems. RabbitMQ fills this role handily with functionality
that provides advanced routing and message distribution, even with wide area
network (WAN) tolerances to support reliable, distributed systems that inter-
connect with other systems easily.

After decoupling the login process from the database updates that were required, I
discovered a new level of freedom. Members were able to quickly log in because we
were no longer updating the database as part of the authentication process. Instead, a
member login message was published containing all of the information needed to
update any database, and consumer applications were written that updated each data-
base table independently (figure 1.3). This login message didn’t contain authentication
information for the member, but instead, only the information needed to maintain the

Login application Database servers

Upon authentication,

update member data.

Update member data record

with last login timestamp.

Update game #1 data.

Update game #2 data.

Update last login timestamp

in table for game #1.

Update last login timestamp

in table for game #2.

Redirect the

now-authenticated member.

Figure 1.2 Before: once a user has logged in, each database is updated with a timestamp
sequentially and dependently. The more tables you add, the longer this takes.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

10 CHAPTER 1 Foundational RabbitMQ

member’s last login status in our various databases and applications. This allowed us to
horizontally scale database writes with more control. By controlling the number of
consumer applications writing to a specific database server, we were able to throttle
database writes for servers that had started to strain under the load created by new site
growth while we worked through their own unique scaling issues.

 As I detail the advantages of a messaging-based architecture, it’s important to note
that these advantages could also impact the performance of systems like the login
architecture described. Any number of problems may impact publisher performance,
from networking issues to RabbitMQ throttling message publishers. When such events
happen, your application will see degraded performance. In addition to horizontally
scaling consumers, it’s wise to plan for horizontal scaling of message brokers to allow
for better message throughput and publisher performance.

1.3.1 Decoupling your application

The use of messaging-oriented middleware can provide tremendous advantages for
organizations looking to create flexible application architectures that are data centric.
By moving to a loosely coupled design using RabbitMQ, application architectures are no

Login application

1. The member authenticates
and a message is published to

RabbitMQ. Then the application
redirects the authenticated

member to the logged-in URL.

C

DB DB

C C

DB

2. RabbitMQ publishes the
login event message to all

of the consumers who
should receive it.

3. Each consumer independently
performs its own database task.

Figure 1.3 After: using RabbitMQ, loosely coupled data is published to each database asynchronously
and independently, allowing the login application to proceed without waiting on any database writes.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

11The advantages of loosely coupled architectures

longer bound to database write performance and can easily add new applications to act
upon the data without touching any of the core applications. Consider figure 1.4, dem-
onstrating the design of a tightly coupled application communicating with a database.

1.3.2 Decoupling database writes

In a tightly coupled architecture, the application must wait for the database server to
respond before it can finish a transaction. This design has the potential to create per-
formance bottlenecks in both synchronous and asynchronous applications. Should
the database server slow down due to poor tuning or hardware issues, the application
will slow. Should the database stop responding or crash, the application will poten-
tially crash as well.

 By decoupling the database from the application, a loosely coupled architecture is
created. In this architecture, RabbitMQ, as messaging-oriented middleware, acts as an
intermediary for the data prior to some action being taken with it in the database. A
consumer application picks up the data from the RabbitMQ server, performing the
database action (figure 1.5).

 In this model, should a database need to be taken offline for maintenance, or
should the write workload become too heavy, you can throttle the consumer applica-
tion or stop it. Until the consumer is able to receive the message, the data will persist

Application DB

In a tightly coupled application,
database writes are communicated

directly with the database.

Figure 1.4 When communicating with a
database, a tightly coupled application must
wait for the database server to respond
before it can continue processing.

Application C DB

In a loosely coupled application,
the application publishes a message

with the data to RabbitMQ.

RabbitMQ delivers the message to
subscribed consumer applications.

The consumer application communicates
the database writes to the database

as it receives each message.

Figure 1.5 A loosely coupled application allows the application that would have saved the data
directly in the database to publish the data to RabbitMQ, allowing for the asynchronous processing
of data.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

12 CHAPTER 1 Foundational RabbitMQ

in the queue. The ability to pause or throttle consumer application behavior is just
one advantage of using this type of architecture.

1.3.3 Seamlessly adding new functionality

Loosely coupled architectures leveraging RabbitMQ allow data to be repurposed as
well. The data that originally was only going to be written to a database can also be
used for other purposes. RabbitMQ will handle all of the duplication of message con-
tent and can route it to multiple consumers for multiple purposes (figure 1.6).

1.3.4 Replication of data and events

Expanding upon this model, RabbitMQ provides built-in tools for cross–data center
distribution of data, allowing for federated delivery and synchronization of applica-
tions. Federation allows RabbitMQ to push messages to remote RabbitMQ instances,
accounting for WAN tolerances and network splits. Using the RabbitMQ federation
plugin, it’s easy to add a RabbitMQ server or cluster in a second data center. This is
illustrated in figure 1.7, where the data from the original application can now be pro-
cessed in two different locations over the internet.

Application

DB

RabbitMQ is now delivering the data
to two consumers instead of one.

C

A new consumer can deliver the same
data to a third-party, cloud-based service.

The original consumer still manages the
database writes for the application.

C
Cloud

service

Nothing has changed with the
application; it’s still publishing

the data to RabbitMQ the same way.

Figure 1.6 By using RabbitMQ, the publishing application doesn’t need to be changed in order to
deliver the same data to both a new cloud-based service and the original database.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

13The advantages of loosely coupled architectures

1.3.5 Multi-master federation of data and events

Expanding upon this concept by adding the same front-end application to a second
data center and setting the RabbitMQ servers to bidirectionally federate data, you can
have highly available applications in different physical locations. Messages from the
application in either data center are sent to consumers in both data centers, allowing
for redundancy in data storage and processing (figure 1.8). This approach to applica-
tion architecture can allow applications to scale horizontally, also providing geographic
proximity for users and a cost-effective way to distribute your application infrastructure.

NOTE As with any architecture decision, using messaging-oriented middleware
introduces a degree of operational complexity. Because a message broker
becomes a center point in your application design, a new single point of failure
is introduced. There are strategies, which we’ll cover in this book, to create
highly available solutions to minimize this risk. In addition, adding a message
broker creates a new application to manage. Configuration, server resources,
and monitoring must be taken into account when weighing the tradeoffs of
introducing a message broker to your architecture. I’ll teach you how to
account for these and other concerns as you proceed through the book.

By adding federation, the same data
that is going to the consumer is now

delivered to a RabbitMQ server
in another data center.

Data center #1

Application

DB

C

Internet

Data center #2

DB

C

Another instance of the consumer
application performs the data
operations in data center #2.

The original consumer application
is processing the same way it

was previously.

Figure 1.7 By leveraging RabbitMQ’s federation plugin, messages can be duplicated to perform the
same work in multiple data centers.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

14 CHAPTER 1 Foundational RabbitMQ

1.3.6 The Advanced Message Queuing model

Many of RabbitMQ’s strengths, including its flexibility, come from the AMQP specifi-
cation. Unlike protocols like HTTP and SMTP, the AMQP specification defines not
only a network protocol but also server-side services and behaviors. I’ll refer to this
information as the Advanced Message Queuing (AMQ) model. The AMQ model logi-
cally defines three abstract components in broker software that define the routing
behavior of messages:

 Exchange—The component of the message broker that routes messages to queues
 Queue—A data structure on disk or in memory that stores messages
 Binding—A rule that tells the exchange which queue the messages should be

stored in

The flexibility of RabbitMQ comes from the dynamic nature of how messages can be
routed through exchanges to queues. The bindings between exchanges and queues,
and the message routing dynamics they create, are a foundational component of
implementing a messaging-based architecture. Creating the right structure using these
basic tools in RabbitMQ allows your applications to scale and easily change with the
underlying business needs.

Federation is now bidirectional and
the data is sent from data center #1

to data center #2 and from
data center #2 to data center #1.

Data center #1

Application

DB

C

Internet

Data center #2

Application

DB

C

Both consumers are now
processing data from

both data centers.

Figure 1.8 Bidirectional federation of data allows for the same data events to be received and
processed in both data centers.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

15The advantages of loosely coupled architectures

 The first piece of information that RabbitMQ needs in order to route messages to
their proper destination is an exchange to route them through.

EXCHANGES

Exchanges are one of three components defined by the AMQ model. An exchange
receives messages sent into RabbitMQ and determines where to send them. Exchanges
define the routing behaviors that are applied to messages, usually by examining data
attributes passed along with the message or that are contained within the message’s
properties.

 RabbitMQ has multiple exchange types, each with different routing behaviors. In
addition, it offers a plugin-based architecture for custom exchanges. Figure 1.9 shows
a logical view of a publisher sending a message to RabbitMQ, routing a message
through an exchange.

QUEUES

A queue is responsible for storing received messages and may contain configuration
information that defines what it’s able to do with a message. A queue may hold mes-
sages in RAM only, or it may persist them to disk prior to delivering them in first-in,
first-out (FIFO) order.

BINDINGS

To define a relationship between queues and exchanges, the AMQ model defines a
binding. In RabbitMQ, bindings or binding keys, tell an exchange which queues to deliver
messages to. For some exchange types, the binding will also instruct the exchange to
filter which messages it can deliver to a queue.

 When publishing a message to an exchange, applications use a routing-key attri-
bute. This may be a queue name or it may be a string that semantically describes the
message. When a message is evaluated by an exchange to determine the appropriate
queues it should be routed to, the message’s routing key is evaluated against the binding

1. A publishing application sends
a message into RabbitMQ.

P X

2. RabbitMQ receives the message and
routes it through an exchange.

3. The message is routed through the
exchange to the next component of

the AMQ model, the queue.

Figure 1.9 When a publisher sends a message into RabbitMQ, it first goes to an exchange.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

16 CHAPTER 1 Foundational RabbitMQ

key (figure 1.10). In other words, the binding key is the glue that binds a queue to an
exchange, and the routing key is the criteria that’s evaluated against it.

In the most simple of scenarios, the routing key may be the queue name, though this
varies with each exchange type. In RabbitMQ, each exchange type is likely to treat
routing keys in a different way, with some exchanges invoking simple equality checks
and others using more complex pattern extractions from the routing key. There’s
even an exchange type that ignores the routing key outright in favor of other informa-
tion in the message properties.

 In addition to binding queues to exchanges, as defined in the AMQ model,
RabbitMQ extends the AMQP specification to allow exchanges to bind to other
exchanges. This feature creates a great deal of flexibility in creating different routing
patterns for messages. In addition to the various routing patterns available when you
use exchanges, you’ll learn more about exchange-to-exchange bindings in chapter 6.

1.4 Summary
RabbitMQ, as messaging-oriented middleware, is an exciting technology that enables
operational flexibility that’s difficult to achieve without the loosely coupled application
architecture it enables. By diving deep into RabbitMQ’s AMQP foundation and behav-
iors, this book should prove to be a valuable reference, providing insight into how your
applications can leverage its robust and powerful features. In particular, you’ll soon
learn how to publish messages and use the dynamic routing features in RabbitMQ to
selectively sip from the fire hose of data your application can send, data that once may
have been deeply buried in tightly coupled code and processes in your environment.

1. A publishing application sends
a message into RabbitMQ.

P X

2. RabbitMQ receives the
message and routes it
through an exchange.

Queue

The binding connects a queue to an exchange,
providing configuration that enables it to

deliver messages to the queue.

3. The exchange, after evaluating
its bindings, delivers the message

to the queue.

Figure 1.10 A queue is bound to an exchange, providing the information the exchange needs to route
a message to it.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

17Summary

 Whether you’re an application developer or a high-level application architect,
it’s advantageous to have a deep level of knowledge about how your applications can
benefit from RabbitMQ’s diverse functionality. Thus far, you’ve learned the most
foundational concepts that comprise the AMQ model. I’ll expand on these concepts
in the remainder of part 1 of this book: You’ll learn about AMQP and how it defines
the core of RabbitMQ’s behavior.

 Because this book will be hands-on, with the goal of imparting the knowledge
required to use RabbitMQ in the most demanding of environments, you’ll start work-
ing with code in the next chapter. By learning “how to speak Rabbit,” you’ll be lever-
aging the fundamentals of AMQP, writing code to send and receive messages with
RabbitMQ. To speak Rabbit, you’ll be using a Python-based library called rabbitpy, a
library that was written specifically for the code examples in this book; I’ll introduce it
to you in the next chapter. Even if you’re an experienced developer who has written
applications that communicate with RabbitMQ, you should at least browse through
the next chapter to understand what’s happening at the protocol level when you’re
using RabbitMQ via the AMQP protocol.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

Gavin M. Roy ● Technical Editor James Titcumb

A
t the heart of most modern distributed applications is a
queue that buffers, prioritizes, and routes message traf-
fi c. RabbitMQ is a high-performance message broker

based on the Advanced Message Queueing Protocol. It’s battle
tested, ultrafast, and powerful enough to handle anything you
can throw at it. It requires a few simple setup steps, and you
can instantly start using it to manage low-level service com-
munication, application integration, and distributed system
message routing.

RabbitMQ in Depth is a practical guide to building and main-
taining message-based applications. This book provides
detailed coverage of RabbitMQ with an emphasis on why
it works the way it does. You’ll fi nd examples and detailed
explanations based in real-world systems ranging from simple
networked services to complex distributed designs. You’ll also
fi nd the insights you need to make core architectural choices
and develop procedures for effective operational management.

What’s Inside
● AMQP, the Advanced Message Queueing Protocol
● Communicating via MQTT, Stomp, and HTTP
● Valuable troubleshooting techniques
● Database integration

Written for programmers with a basic understanding of
messaging-oriented systems.

Gavin M. Roy is an active, open source evangelist and advocate
who has been working with internet and enterprise technolo-
gies since the mid-90s. Technical editor James Titcumb is a
freelance developer, trainer, speaker, and active contributor to
open source projects.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/books/rabbitmq-in-depth

$59.99 / Can $79.99 [INCLUDING eBOOK]

RabbitMQ IN DEPTH

SOFTWARE DEVELOPMENT

M A N N I N G

“An excellent resource for
beginners and experts alike ...

shows how to integrate
RabbitMQ into a successful

enterprise application.”
—Ian Dallas, Hewlett-Packard

“The most comprehensive
source for everything

RabbitMQ. From terms to
code to patterns, it’s all here!”

—Andrew Meredith
Quantum Metric

“A cheat sheet for getting
started and troubleshooting

the migration process
to RabbitMQ.”—Nadia Noori

La Salle University Barcelona

“Filled with pragmatic advice
and pearls of wisdom.”—Miloš Milivojevic, Mozzart Bet

SEE INSERT

´

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

