
M A N N I N G

Gavin M. Roy

IN DEPTH

S A M P L E C H A P T E R

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

RabbitMQ in Depth

by Gavin Roy

 Chapter 2

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

v

brief contents
PART 1 RABBITMQ AND APPLICATION ARCHITECTURE1

1 ■ Foundational RabbitMQ 3

2 ■ How to speak Rabbit: the AMQ Protocol 18

3 ■ An in-depth tour of message properties 38

4 ■ Performance trade-offs in publishing 58

5 ■ Don’t get messages; consume them 79

6 ■ Message patterns via exchange routing 101

PART 2 MANAGING RABBITMQ IN THE DATA CENTER
OR THE CLOUD..133

7 ■ Scaling RabbitMQ with clusters 135

8 ■ Cross-cluster message distribution 148

PART 3 INTEGRATIONS AND CUSTOMIZATION.........................175

9 ■ Using alternative protocols 177

10 ■ Database integrations 205

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

18

How to speak Rabbit:
the AMQ Protocol

The process that RabbitMQ and client libraries go through in order to get a mes-
sage from your application into RabbitMQ and from RabbitMQ into consumer
applications can be complex. If you’re processing critical information, such as sales
data, reliably delivering the canonical source of information about the sale should
be a top priority. At the protocol level, the AMQP specification defines the seman-
tics for client and broker to negotiate and speak to each other about the process
for relaying your information. Oftentimes the lexicon defined in the AMQP spec-
ification bubbles its way up into RabbitMQ client libraries, with the classes and
methods used by applications communicating with RabbitMQ mirroring the
protocol-level classes and methods. Understanding how this communication takes
place will help you learn not just the “how” of communicating with RabbitMQ but
also the “why.”

This chapter covers
 Communicating with RabbitMQ via the AMQ

Protocol

 Framing the AMQ Protocol at a low level

 Publishing messages into RabbitMQ

 Getting messages from RabbitMQ

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

19AMQP as an RPC transport

 Even though the commands in client libraries tend to resemble or even directly
copy the actions defined in the AMQP specification, most client libraries attempt to
hide the complexity of communicating via the AMQ Protocol. This tends to be a good
thing when you’re looking to write an application and you don’t want to worry about
the intricacies of how things work. But skipping over the technical foundation of what
RabbitMQ clients are doing isn’t very helpful when you want to truly understand
what’s going on with your application. Whether you want to know why your applica-
tion is slower to publish than you might expect, or you just want to know what steps a
client must take in order to establish that first connection with RabbitMQ, knowing
how your client is talking to RabbitMQ will make that process much easier.

 To better illustrate the how and why, in this chapter you’ll learn how AMQP splits
communication between the client and broker into chunks of data called frames, and
how these frames detail the actions your client application wants RabbitMQ to take
and the actions RabbitMQ wants your client application to take. In addition, you’ll
learn how these frames are constructed at the protocol level, and how they provide
the mechanism by which messages are delivered and consumed.

 Building on this information, you’ll write your first application in Python using a
RabbitMQ client library written as a teaching aid for this book. This application will
use AMQP to define an exchange and queue and then bind them together. Finally,
you’ll write a consumer application that will read the messages from the newly defined
queue and print the contents of the message. If you’re already comfortable doing
these things, you should still dive into this chapter. I found that it was only after I fully
understood the semantics of AMQP, the “why” instead of just the “how,” that I under-
stood RabbitMQ.

2.1 AMQP as an RPC transport
As an AMQP broker, RabbitMQ speaks a strict dialect for communication, utilizing a
remote procedure call (RPC) pattern in nearly every aspect of communication with the
core product. A remote procedure call is a type of communication between comput-
ers that allows one computer to execute a program or its methods on the other. If
you’ve done web programming where you’re talking to a remote API, you’re using a
common RPC pattern.

 However, the RPC conversations that take place when communicating with
RabbitMQ are unlike most web-based API calls. In most web API definitions, there are
RPC conversations where the client issues commands and the server responds—the
server doesn’t issue commands back to the client. In the AMQP specification, both
the server and the client can issue commands. For a client application, this means that
it should be listening for communication from the server that may have little to do
with what the client application is doing.

 To illustrate how RPC works when a client is talking to RabbitMQ, let’s consider
the connection negotiation process.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

20 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

2.1.1 Kicking off the conversation

When you’re communicating with someone new in a foreign country, it’s inevitable
that one of you will kick off the conversation with a greeting, something that lets you
and the other person know if you’re both capable of speaking the same language.
When speaking AMQP, this greeting is the protocol header, and it’s sent by the client to
the server. This greeting shouldn’t be considered a request, however, as unlike the rest
of the conversation that will take place, it’s not a command. RabbitMQ starts the com-
mand/response sequence by replying to the greeting with a Connection.Start com-
mand, and the client responds to the RPC request with Connection.StartOk response
frame (figure 2.1).

The full conversation for initiating a connection isn’t terribly important unless you’re
writing a client library, but it’s worth noting that to fully connect to RabbitMQ, there’s
a sequence of three synchronous RPC requests to start, tune, and open the connec-
tion. Once this sequence has finished, RabbitMQ will be ready for your application to
make requests.

 There are a whole range of different commands your application can send to Rab-
bitMQ and that RabbitMQ can send to your client. You’ll learn a small subset of these
commands later in the chapter, but before that happens, you have to open a channel.

2.1.2 Tuning in to the right channel

Similar in concept to channels on a two-way radio, the AMQP specification defines
channels for communicating with RabbitMQ. Two-way radios transmit information to
each other using the airwaves as the connection between them. In AMQP, channels
use the negotiated AMQP connection as the conduit for transmitting information to
each other, and like channels on a two-way radio, they isolate their transmissions from
other conversations that are happening. A single AMQP connection can have multiple

Client Server

Protocol header

Connection.Start

Connection.StartOk

...

Figure 2.1 The initial communication negotiation with RabbitMQ demonstrates the
RPC process in AMQP.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

21AMQP’s RPC frame structure

channels, allowing multiple conversations between a client and server to take place. In
technical terms, this is called multiplexing, and it can be useful for multithreaded or
asynchronous applications that perform multiple tasks.

TIP In creating your client applications, it’s important not to overcomplicate
things with too many channels. On the wire in marshaled frames, channels
are nothing more than an integer value that’s assigned to the messages that
are passed between a server and client; in the RabbitMQ server and client,
they represent more. There are memory structures and objects set up for
each channel. The more channels you have in a connection, the more mem-
ory RabbitMQ must use to manage the message flow for that connection. If
you use them judiciously, you’ll have a happier RabbitMQ server and a less
complicated client application.

2.2 AMQP’s RPC frame structure
Very similar in concept to object-oriented programming in languages such as C++,
Java, and Python, AMQP uses classes and methods, referred to as AMQP commands, to
create a common language between clients and servers. The classes in AMQP define a
scope of functionality, and each class contains methods that perform different tasks.
In the connection negotiation process, the RabbitMQ server sends a Connection
.Start command, marshaled into a frame, to the client. As illustrated in figure 2.2,
the Connection.Start command is composed of two components: the AMQP class
and method.

There are many commands in the AMQP specification, but if you’re like me, you’ll
want to skip through all of that and get to the important bits of sending and receiving
messages. It’s important, however, to understand how the commands you’ll be send-
ing and receiving with RabbitMQ are represented on the wire to truly appreciate
what’s happening in your applications.

2.2.1 AMQP frame components

When commands are sent to and from RabbitMQ, all of the arguments required to
execute them are encapsulated in data structures called frames that encode the data
for transmission. Frames provide an efficient way for the command and its arguments
to be encoded and delimited on the wire. You can think of frames as being like freight
cars on a train. As a generalization, freight cars have the same basic structure and are

Connection.Start

Class

Method

Figure 2.2 The AMQP Connection class and the
Start method comprise the Connection.Start
RPC request.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

22 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

differentiated by what they contain. The same is true with low-level AMQP frames. As
figure 2.3 illustrates, a low-level AMQP frame is composed of five distinct components:

1 Frame type
2 Channel number
3 Frame size in bytes
4 Frame payload
5 End-byte marker (ASCII value 206)

A low-level AMQP frame starts off with three fields, referred to as a frame header when
combined. The first field is a single byte indicating the frame type, and the second
field specifies the channel the frame is for. The third field carries the byte size of the
frame payload. The frame header, along with the end-byte marker, creates the struc-
ture for the frame.

 Carried inside the frame, after the header and before the end-byte marker, is the
frame payload. Much like the freight car protecting its contents on a train, the frame
is designed to protect the integrity of the content it carries.

2.2.2 Types of frames

The AMQP specification defines five types of frames: a protocol header frame, a method
frame, a content header frame, a body frame, and a heartbeat frame. Each frame type
has a distinct purpose, and some are used much more frequently than others:

 The protocol header frame is only used once, when connecting to RabbitMQ.
 A method frame carries with it the RPC request or response that’s being sent to

or received from RabbitMQ.
 A content header frame contains the size and properties for a message.

0 335 0xce1 Frame payload

The frame header is composed
of three parts: the frame type,

channel number, and frame size.

The frame payload varies
depending on the frame type.

There is a single byte marker to
specify the end of the frame.

Figure 2.3 The anatomy of a low-level AMQP frame

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

23AMQP’s RPC frame structure

 Body frames contain the content of messages.
 The heartbeat frame is sent to and from RabbitMQ as a check to ensure that

both sides of the connection are available and working properly.

Whereas the protocol header and heartbeat frames are generally abstracted away
from developers when using a client library, the method, content header, and body
frames and their constructs are usually surfaced when writing applications that com-
municate with RabbitMQ. In the next section, you’ll learn how messages that are sent
into and received from RabbitMQ are marshaled into a method frame, a content
header frame, and one or more body frames.

NOTE The heartbeat behavior in AMQP is used to ensure that both client
and server are responding to each other, and it's a perfect example of how
AMQP is a bidirectional RPC protocol. If RabbitMQ sends a heartbeat to your
client application, and it doesn’t respond, RabbitMQ will disconnect it.
Oftentimes developers in single-threaded or asynchronous development envi-
ronments will want to increase the timeout to some large value. If you find
your application blocks communication in a way that makes heartbeats diffi-
cult to work with, you can turn them off by setting the heartbeat interval to 0
when creating your client connection. If, instead, you choose to use a much
higher value than the default of 600 seconds, you can change RabbitMQ’s
maximum heartbeat interval value by changing the heartbeat value in the
rabbitmq.config file.

2.2.3 Marshaling messages into frames

When publishing a message to RabbitMQ, the method, header, and body frames are
used. The first frame sent is the method frame carrying the command and the
parameters required to execute it, such as the exchange and routing key. Following
the method frame are the content frames: a content header and body. The content
header frame contains the message properties along with the body size. AMQP has a
maximum frame size, and if the body of your message exceeds that size, the content
will be split into multiple body frames. These frames are always sent in the same order
over the wire: a method frame, content header frame, and one or more body frames
(figure 2.4).

 As figure 2.4 illustrates, when sending a message to RabbitMQ, a Basic.Publish
command is sent in the method frame, and that’s followed by a content header frame
with the message’s properties, such as the message’s content type and the time when
the message was sent. These properties are encapsulated in a data structure defined in
the AMQP specification as Basic.Properties. Finally, the content of the message is
marshaled into the appropriate number of body frames.

NOTE Although the default frame size is 131 KB, client libraries can negoti-
ate a larger or smaller maximum frame size during the connection process,
up to a 32-bit value for the number of bytes in a frame.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

24 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

In order to be more efficient and minimize the size of the data being transferred, the
content in the method frame and content header frame is binary packed data and is
not human-readable. Unlike the method and header frames, the message content car-
ried inside the body frame isn’t packed or encoded in any way and may be anything
from plain text to binary image data.

 To further illustrate the anatomy of an AMQP message, let’s examine these three
frame types in more detail.

2.2.4 The anatomy of a method frame

Method frames carry with them the class and method your RPC request is going to
make as well as the arguments that are being passed along for processing. In figure 2.5,
the method frame carrying a Basic.Publish command carries the binary packed data
describing the command, and the request arguments that are passing along with it.
The first two fields are numeric representations of the Basic class and the Publish

The method frame tells RabbitMQBasic.Publish
that a client is going to publish a message and

that it should expect a header frame
with in it.Basic.Properties

The content header frame carries the message
properties and tells RabbitMQ how big the message
body is so that it can process the correct number

of body frames that are going to be sent.

A single message published may contain
multiple body frames, depending on

the size of the content and the
maximum frame size setting.

1 41 0xce1 Basic.Publish

1 82 0xce2 Content header

1 56 0xce3 Body

Frame type, channel,
and byte size

Frame type, channel,
and byte size

Frame type, channel,
and byte size

Figure 2.4 A single message published into RabbitMQ is composed of three frame types: the method
frame for the Basic.Publish RPC call, a header frame, and one or more body frames.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

25AMQP’s RPC frame structure

method. These fields are followed by the string values for the exchange name and the
routing key. As previously mentioned, these attributes instruct RabbitMQ on how to
route a message. The mandatory flag tells RabbitMQ that the message must be deliv-
ered or the publishing of the message should fail.

 Each data value in the method frame payload is encoded in a data-type-specific for-
mat. This format is designed to minimize byte size on the wire, ensure data integrity,
and ensure that data marshaling and unmarshaling are as fast as possible. The actual
format varies depending on the data type, but it’s usually a single byte followed by
numeric data, or a single byte followed by a byte-size field and then text data.

NOTE Usually, sending a message using the Basic.Publish RPC request is a
single-sided conversation. In fact, the AMQP specification goes as far as to say
that success, as a general rule, is silent, whereas errors should be as noisy and
intrusive as possible. But if you’re using the mandatory flag when publishing
your messages, your application should be listening for a Basic.Return com-
mand sent from RabbitMQ. If RabbitMQ isn’t able to meet the requirements
set by the mandatory flag, it will send a Basic.Return command to your client
on the same channel. More information about Basic.Return is covered in
chapter 4.

The first two fields of the method
frame payload carry the class and
method ID, numeric values that
represent the RPC command.

The next part of the method frame
carries the first argument for the
method, in this case, the name of

the exchange to publish to.

The routing key value is the next
argument and provides information

for the exchange to route the message
into the appropriate queue or queues.

Exchange name Routing key value Mandatory flag

The mandatory flag tells RabbitMQ
that it must be able to route the

message or it should send a
frame indicating theBasic.Return

message could not be routed.

Basic Publish

1 41 0xce1 Method frame

Figure 2.5 The Basic.Publish method frame is composed of five components: the class type and method type
that identifies it as a Basic.Publish RPC request, the exchange name, a routing key value, and a mandatory flag.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

26 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

2.2.5 The content header frame

The headers that are sent along after the method frame carry more than the data that
tells RabbitMQ how big your message is. As illustrated in figure 2.6, the header frame
also carries attributes about your message that describe the message to both the
RabbitMQ server and to any application that may receive it. These attributes, as values
in a Basic.Properties table, may contain data that describes the content of your mes-
sage or they may be completely blank. Most client libraries will prepopulate a minimal
set of fields, such as the content type and the delivery mode.

Properties are powerful tools in composing your message. They can be used to create
a contract between publishers and consumers about the content of the message,
allowing for a large amount of specificity about the message. You’ll learn about Basic
.Properties and the various possible uses for each field the data structure can carry
in chapter 3.

2.2.6 The body frame

The body frame for a message is agnostic to the type of data being transferred, and it
may contain either binary or text data. Whether you’re sending binary data such as a
JPEG image or serialized data in a JSON or XML format, the message body frame is
the structure in the message that carries the actual message data (figure 2.7).

 Together, the message properties and body form a powerful encapsulation format for
your data. Marrying the descriptive attributes of the message with the content-agnostic
body ensures you can use RabbitMQ for any type of data you deem appropriate.

The first field in a content header is the
body size, but this value is not

considered a property of the message.

The flag values specify
which properties are set.

The first property of the
message, the content type,

is specified.

The app_id property
is also specified.

55 application/json Test 1144, 200 1014206880

The timestamp property is
specified but is carried

as a binary packed value.

The delivery-mode property with a value of
tells RabbitMQ to persist the message1
to disk when publishing to a queue.

1 45 0xce2 Content header frame

Figure 2.6 A message header carries the body size and a Basic.Properties table.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

27Putting the protocol to use

2.3 Putting the protocol to use
There are a few configuration-related steps you must take care of before you can pub-
lish messages into a queue. At a minimum, you must set up both an exchange and a
queue, and then bind them together.

 But before you actually perform those steps, let’s look at what needs to happen at a
protocol level to enable a message to be published, routed, queued, and delivered,
starting with setting up an exchange for routing messages.

2.3.1 Declaring an exchange

Exchanges, like queues, are first-rate citizens in the AMQ model. As such, each has its
own class in the AMQP specification. Exchanges are created using the Exchange
.Declare command, which has arguments that define the name of the exchange, its
type, and other metadata that may be used for message processing.

 Once the command has been sent and RabbitMQ has created the exchange, an
Exchange.DeclareOk method frame is sent in response (figure 2.8). If, for whatever
reason, the command should fail, RabbitMQ will close the channel that the Exchange
.Declare command was sent on by sending a Channel.Close command. This response
will include a numeric reply code and text value indicating why the Exchange.Declare
failed and the channel was closed.

1 55 0xce3 Body

{"foo": "bar", "baz": "qux", "quux", "corge": "grault"}

The message body is opaque to the
AMQP protocol and is not decoded,

inspected, or evaluated by RabbitMQ.

Figure 2.7 A message body embedded in an AMQP frame

Client Server

Exchange.Declare

Exchange.DeclareOk

Figure 2.8 The communication sequence that occurs when declaring an exchange

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

28 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

2.3.2 Declaring a queue

Once the exchange has been created, it’s time to create a queue by sending a
Queue.Declare command to RabbitMQ. Like the Exchange.Declare command, there’s
a simple communication sequence that takes place (figure 2.9), and should the Queue
.Declare command fail, the channel will be closed.

When declaring a queue, there’s no harm in issuing the same Queue.Declare com-
mand more than once. RabbitMQ will consider subsequent queue declares to be pas-
sive and will return useful information about the queue, such as the number of
pending messages in the queue and the number of consumers subscribed to it.

Client Server

Queue.Declare

Queue.DeclareOk

Figure 2.9 A queue-declare communication sequence consists of a
Queue.Declare command and a Queue.DeclareOk response.

Handling errors gracefully
When you try to declare a queue with different properties than an existing queue with
the same name, RabbitMQ will close the channel that the RPC request was issued
on. This behavior is consistent with any other type of error that your client application
may make in issuing commands to the broker. For example, if you issue a Queue
.Declare command with a user that doesn’t have configuration access on the virtual
host, the channel will close with a 403 error.

To correctly handle errors, your client application should be listening for a Channel
.Close command from RabbitMQ so it can respond appropriately. Some client librar-
ies may present this information as an exception for your application to handle,
whereas others may use a callback passing style where you register a method that’s
called when a Channel.Close command is sent.

If your client application isn’t listening for or handling events coming from the server,
you may lose messages. If you’re publishing on a non-existent or closed channel,
RabbitMQ may close the connection. If your application is consuming messages and
doesn’t know that RabbitMQ closed the channel, it may not know that RabbitMQ
stopped sending your client messages and could still think that it’s functioning prop-
erly and is subscribed to an empty queue.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

29Putting the protocol to use

2.3.3 Binding a queue to an exchange

Once the exchange and queue have been created, it’s time to bind them together.
Like with Queue.Declare, the command to bind a queue to an exchange, Queue.Bind,
can only specify one queue at a time. Much like the Exchange.Declare and Queue
.Declare commands, after you issue a Queue.Bind command, your application will
receive a Queue.BindOk method frame if it was processed successfully (figure 2.10).

As basic examples of RPC interactions between a RabbitMQ server and client, the
Exchange.Declare, Queue.Declare, and Queue.Bind commands illustrate a common
pattern that’s mimicked by all synchronous commands in the AMQP specification.
But there are a few asynchronous commands that break from the simple “Action” and
“ActionOk” pattern. These commands deal with sending and receiving messages from
RabbitMQ.

2.3.4 Publishing a message to RabbitMQ

As you previously learned, when publishing messages to RabbitMQ, multiple frames
encapsulate the message data that’s sent to the server. Before the actual message con-
tent ever reaches RabbitMQ, the client application sends a Basic.Publish method
frame, a content header frame, and at least one body frame (figure 2.11).

 When RabbitMQ receives all of the frames for a message, it will inspect the infor-
mation it needs from the method frame before determining the next steps. The
Basic.Publish method frame carries with it the exchange name and routing key for

Client Server

Queue.Bind

Queue.BindOk

Figure 2.10 After the
client successfully issues a
Queue.Bind command to
bind a queue to an exchange
with a routing key, the client
will receive a Queue.BindOk
method frame in response.

Client Server

Basic.Publish

Content header

Body Figure 2.11 When publishing a
message to RabbitMQ, at least three
frames are sent: the Basic.Publish
method frame, a content header frame,
and a body frame.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

30 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

the message. When evaluating this data, RabbitMQ will try to match the exchange
name in the Basic.Publish frame against its database of configured exchanges.

TIP By default, if you’re publishing messages with an exchange that doesn’t
exist in RabbitMQ’s configuration, it will silently drop the messages. To
ensure your messages are delivered, either set the mandatory flag to true
when publishing, or use delivery confirmations. These options are detailed in
chapter 4. Be aware that using either of these methods may negatively impact
the message publishing speed of your application.

When RabbitMQ finds a match to the exchange name in the Basic.Properties
method frame, it evaluates the bindings in the exchange, looking to match queues
with the routing key. When the criterion for a message matches any bound queues,
the RabbitMQ server will enqueue the message in a FIFO order. Instead of putting
the actual message into a queue data structure, a reference to the message is added
to the queue. When RabbitMQ is ready to deliver the message, it will use the refer-
ence to compose the marshaled message and send it over the wire. This provides a
substantial optimization for messages that are published to multiple queues. Holding
only one instance of the message takes less physical memory when it’s published to
multiple destinations. The disposition of a message in a queue, whether consumed,
expired, or sitting idle, will not impact the disposition of that message in any other
queue. Once RabbitMQ no longer needs the message, because all copies of it have
been delivered or removed, the single copy of the message data will be removed from
memory in RabbitMQ.

 By default, as long as there are no consumers listening to the queue, messages will be
stored in the queue. As you add more messages, the queue will grow in size. RabbitMQ
can keep these messages in memory or write them to disk, depending on the delivery-
mode property specified in the message’s Basic.Properties. The delivery-mode prop-
erty is so important that it will be discussed in the next chapter and in even more
detail in chapter 4.

2.3.5 Consuming messages from RabbitMQ

Once a published message has been routed and enqueued to one or more queues,
there’s not much left to discuss but its consumption. To consume messages from a
queue in RabbitMQ, a consumer application subscribes to the queue in RabbitMQ by
issuing a Basic.Consume command. Like the other synchronous commands, the
server will respond with Basic.ConsumeOk to let the client know it’s going to open the
floodgates and release a torrent of messages, or at least a trickle. At RabbitMQ’s dis-
cretion, the consumer will start receiving messages in the unsurprising form of
Basic.Deliver methods and their content header and body frame counterparts (fig-
ure 2.12).

 Once the Basic.Consume has been issued, it will stay active until one of a few things
occurs. If a consumer wants to stop receiving messages, it can issue a Basic.Cancel

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

31Putting the protocol to use

command. It’s worth noting that this command is issued asynchronously while
RabbitMQ may still be sending messages, so a consumer can still receive any number
of messages RabbitMQ has preallocated for it prior to receiving a Basic.CancelOk
response frame.

 When consuming messages, there are several settings that let RabbitMQ know how
you want to receive them. One such setting is the no_ack argument for the Basic
.Consume command. When set to true, RabbitMQ will send messages continuously
until the consumer sends a Basic.Cancel command or the consumer is disconnected.
If the no_ack flag is set to false, a consumer must acknowledge each message that it
receives by sending a Basic.Ack RPC request (figure 2.13).

Client Server

Basic.Deliver

Basic.Consume

Basic.ConsumeOk

Header

Body

Figure 2.12 The logical frame delivery order between client and server
when subscribing to a queue and receiving messages

Client Server

Basic.Deliver

Basic.Consume

Basic.Ack

Basic.ConsumeOk

Header

Body

Figure 2.13 Each message successfully delivered by RabbitMQ to the
client will be responded to with a Basic.Ack, until a Basic.Cancel
command is sent. If no_ack is specified, the Basic.Ack step is omitted.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

32 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

When the Basic.Ack response frame is sent, the consumer must pass with it an argu-
ment from the Basic.Deliver method frame called the delivery tag. RabbitMQ uses
the delivery tag along with the channel as a unique identifier to communicate mes-
sage acknowledgement, rejection, and negative acknowledgement. You’ll learn more
about these options in chapter 5.

2.4 Writing a message publisher in Python
Now that you have a healthy knowledge of AMQP fundamentals under your belt, it’s
time to turn theory into practice and write both a publisher and consumer. To do this
we’ll use the rabbitpy library. There are many libraries for communicating with Rab-
bitMQ, but I created rabbitpy as a teaching aid for this book to keep the programming
examples simple and concise while attempting to stay true to the AMQP command
syntax. If you haven’t done so yet, please install rabbitpy by following the VM installa-
tion instructions in the appendix.

 To start this exercise, you’ll make use of the IPython Notebook Server installed as
part of the RabbitMQ in Depth virtual machine. If you’ve yet to do so, please follow
the steps outlined in the appendix to set up the virtual machine on your local com-
puter. Open your browser to http://localhost:8888 and you should see a page similar
to figure 2.14.

Figure 2.14 The IPython Notebook index page

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

33Writing a message publisher in Python

The “2.4 Publisher Example” notebook in the index contains all of the code outlined
in this page in order to communicate with RabbitMQ. You must import the rabbitpy
library so that the Python interpreter allows you to use it:

If you press the Play button or the Run Cell button in the toolbar or if you press Shift-
Enter, the cell containing that code will execute. In the first cell of the notebook, the
rabbitpy library will be imported.

 You should also have seen the asterisk (*) change to the number 1. The active cell
has automatically advanced from the first to the next one. As you read through this
example code, you should execute each cell as you encounter it, advancing through
the code in the IPython Notebook.

 Now, with the rabbitpy library imported, you’ll need to create an AMQP connec-
tion URL. The format for the URL is very similar to the format used for HTTP
requests:

This AMQP URL specifies that you’ll connect over a normal AMQP connection using
the username “guest” and the password “guest”. It will connect you to localhost on
port number 5672 with the default “/” vhost. This URL expects that you’ll be connect-
ing to RabbitMQ on your local machine with the default configuration. If you’ve set
up RabbitMQ on a remote server or have changed the configuration of the RabbitMQ
broker, you’ll have to change the values accordingly.

 Now that the URL has been defined, it’s time to open a connection to RabbitMQ:

If you didn’t receive an exception, you’re now connected to RabbitMQ. If you did
receive one, the most likely scenario is that RabbitMQ isn’t running on your local
machine. Please ensure that it’s running and try again.

 If you’re successfully connected, it’s time to open a channel to communicate with
RabbitMQ:

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

34 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

With the channel open, you can now declare an exchange by creating a new instance
of the rabbitpy.Exchange class. Pass in the channel and the name of the exchange
you’d like to create. I suggest using chapter2-example for now.

Once it’s constructed, use the exchange object’s declare method to send the com-
mand, declaring the exchange in RabbitMQ:

Now that you’ve declared the exchange, you can set up the queue and bind it to the
exchange. To do this, you first create the Queue object, passing in the channel and
the name of the queue. In the example that follows, the name of the queue is example.

Once the object has been created and the instance returned as the queue variable, you
can send the Queue.Declare command to RabbitMQ using the declare method.
What you should see is an output line that has a Python tuple data structure with the
number of messages in the queue and the number of consumers for the queue. A
tuple is an immutable set of Python objects. In this case they are integer values.

Now that the queue has been created, you must bind it in order for it to receive mes-
sages. To bind the queue to the exchange, send the Queue.Bind command by invok-
ing the queue object’s bind method, passing in the exchange and the routing key. In
the following example, the routing key is example-routing-key. When the execution
of this cell returns, you should see the output True, indicating that the binding was
successful.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

35Writing a message publisher in Python

In your application, I recommend that you use semantically appropriate period-
delimited keywords to namespace your routing keys. The Zen of Python states that
“Namespaces are one honking great idea—let’s do more of those!” and this is true
in RabbitMQ as well. By using period-delimited keywords, you’ll be able to route mes-
sages based upon patterns and subsections of the routing key. You’ll learn more about
this in chapter 6.

TIP Queue and exchange names, along with routing keys, can include Uni-
code characters.

With your exchange and queue created and bound, you can now publish test mes-
sages into RabbitMQ that will be stored in the example queue. To make sure you have
enough messages to play with, the following example publishes 10 test messages into
the queue.

To publish test messages, a new rabbitpy.Message object is created in each loop iter-
ation, passing in the channel, a message body, and a dictionary of message properties.
Once the message is created, the publish method is invoked, creating the Basic
.Publish method frame, the content header frame, and one body frame, and deliver-
ing them all to RabbitMQ.

TIP When you write publishers for your production environment, use a data
serialization format such as JSON or XML so that your consumers can easily
deserialize the messages and so they’re easier to read when you’re trouble-
shooting any problems that may arise.

You should now go to the RabbitMQ web management console and see if your mes-
sages made it into the queue: Open your web browser and visit the management UI at
http://localhost:15672/#/queues/%2F/example (if your broker is on a different
machine, change localhost in the URL to the appropriate server). Once authenticated,
you should see a page resembling the screenshot in figure 2.15.

 If you look toward the bottom of the page, you’ll see a Get Messages section. If you
change the Messages field value from 1 to 10 and click Get Messages, you should see
each of the 10 messages you previously published. Make sure you leave the Requeue
field value set to Yes. It tells RabbitMQ to add the messages back into the queue when
RabbitMQ retrieves them for display in the management UI. If you didn’t, don’t
worry; just go back and rerun the publishing code.

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

36 CHAPTER 2 How to speak Rabbit: the AMQ Protocol

2.5 Getting messages from RabbitMQ
Now that you know how to publish messages, it’s time to retrieve them. The following
listing pulls together the repetitive, yet import, connection elements from the publish-
ing code discussed in the last section, allowing you to get messages from RabbitMQ.
This code is in the “2.5 Basic.Get Example” notebook. This notebook has six cells in it
when using the IPython Notebook interface. You can click the Cell dropdown and
then Run All instead of running each cell as in the previous example.

import rabbitpy

url = 'amqp://guest:guest@localhost:5672/%2F'
connection = rabbitpy.Connection(url)
channel = connection.channel()
queue = rabbitpy.Queue(channel, 'example')

while len(queue) > 0:
 message = queue.get()
 print 'Message:'

Figure 2.15 The RabbitMQ web management UI showing 10 messages in the order-processing queue.

Creates a new connection
object, connecting to RabbitMQ

Opens a channel to
communicate on

Creates a new queue
object for getting
messages withLoops while there

are messages in
the queueRetrieves the

message

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

37Summary

 print ' ID: %s' % message.properties['message_id']
 print ' Time: %s' % message.properties['timestamp'].isoformat()
 print ' Body: %s' % message.body
 message.ack()

After typing in and executing the preceding consumer code, you should see each of
the 10 messages you previously published. If you were looking closely, you may have
noticed that although you didn’t specify the message_id or timestamp properties
when publishing the messages, each message printed from the consumer has them.
The rabbitpy client library will automatically populate these properties for you if you
don’t specify them. In addition, had you sent a Python dict as the message, rabbitpy
would automatically serialize the data as JSON and set the content-type property as
application/json.

2.6 Summary
The AMQP 0.9.1 specification defines a communication protocol that uses RPC-
style commands to communicate between the RabbitMQ server and client. Now that
you know how these commands are framed and how the protocol functions, you
should be better equipped for writing and troubleshooting applications that interact
with RabbitMQ. You’ve already covered a large majority of the process of communi-
cating with RabbitMQ for publishing and consuming messages. Many applications
contain little more code than what you’ve already implemented to work with your
RabbitMQ instance.

 In the next chapter you’ll learn even more about using message properties, allow-
ing your publishers and consumers to use a common contract for the messages your
applications exchange.

Gets a
message
from the
queuePrints the timestamp

property formatted as an
ISO 8601 timestamp

Prints the
message bodyAcknowledges receipt of the

message with RabbitMQ

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

Gavin M. Roy ● Technical Editor James Titcumb

A
t the heart of most modern distributed applications is a
queue that buffers, prioritizes, and routes message traf-
fi c. RabbitMQ is a high-performance message broker

based on the Advanced Message Queueing Protocol. It’s battle
tested, ultrafast, and powerful enough to handle anything you
can throw at it. It requires a few simple setup steps, and you
can instantly start using it to manage low-level service com-
munication, application integration, and distributed system
message routing.

RabbitMQ in Depth is a practical guide to building and main-
taining message-based applications. This book provides
detailed coverage of RabbitMQ with an emphasis on why
it works the way it does. You’ll fi nd examples and detailed
explanations based in real-world systems ranging from simple
networked services to complex distributed designs. You’ll also
fi nd the insights you need to make core architectural choices
and develop procedures for effective operational management.

What’s Inside
● AMQP, the Advanced Message Queueing Protocol
● Communicating via MQTT, Stomp, and HTTP
● Valuable troubleshooting techniques
● Database integration

Written for programmers with a basic understanding of
messaging-oriented systems.

Gavin M. Roy is an active, open source evangelist and advocate
who has been working with internet and enterprise technolo-
gies since the mid-90s. Technical editor James Titcumb is a
freelance developer, trainer, speaker, and active contributor to
open source projects.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/books/rabbitmq-in-depth

$59.99 / Can $79.99 [INCLUDING eBOOK]

RabbitMQ IN DEPTH

SOFTWARE DEVELOPMENT

M A N N I N G

“An excellent resource for
beginners and experts alike ...

shows how to integrate
RabbitMQ into a successful

enterprise application.”
—Ian Dallas, Hewlett-Packard

“The most comprehensive
source for everything

RabbitMQ. From terms to
code to patterns, it’s all here!”

—Andrew Meredith
Quantum Metric

“A cheat sheet for getting
started and troubleshooting

the migration process
to RabbitMQ.”—Nadia Noori

La Salle University Barcelona

“Filled with pragmatic advice
and pearls of wisdom.”—Miloš Milivojevic, Mozzart Bet

SEE INSERT

´

www.itbook.store/books/9781617291005

https://itbook.store/books/9781617291005

