
M A N N I N G

Kyle Banker
Peter Bakkum
Shaun Verch
Douglas Garrett
Tim Hawkins

SECOND EDITION

IN ACTION

Covers MongoDB version 3.0

S A M P L E C H A P T E R

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

MongoDB in Action

by Kyle Banker
Peter Bakkum
Shaun Verch

Douglas Garrett
Tim Hawkins

 Chapter 4

 Copyright 2016 Manning Publications

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

vii

brief contents
PART 1 GETTING STARTED ..1

1 ■ A database for the modern web 3

2 ■ MongoDB through the JavaScript shell 29

3 ■ Writing programs using MongoDB 52

PART 2 APPLICATION DEVELOPMENT IN MONGODB.................71
4 ■ Document-oriented data 73

5 ■ Constructing queries 98

6 ■ Aggregation 120

7 ■ Updates, atomic operations, and deletes 157

PART 3 MONGODB MASTERY...195
8 ■ Indexing and query optimization 197

9 ■ Text search 244

10 ■ WiredTiger and pluggable storage 273

11 ■ Replication 296

12 ■ Scaling your system with sharding 333

13 ■ Deployment and administration 376

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

73

Document-oriented data

This chapter takes a close look at document-oriented data modeling and how data is
organized at the database, collection, and document levels in MongoDB. We’ll start
with a brief, general discussion of how to design schemas to use with MongoDB.
Remember, MongoDB itself doesn’t enforce a schema, but every application needs
some basic internal standards about how its data is stored. This exploration of princi-
ples sets the stage for the second part of the chapter, where we examine the design of
an e-commerce schema in MongoDB. Along the way, you’ll see how this schema dif-
fers from an equivalent RDBMS schema, and you’ll learn how the typical relation-
ships between entities, such as one-to-many and many-to-many, are represented in
MongoDB. The e-commerce schema presented here will also serve as a basis for our
discussions of queries, aggregation, and updates in subsequent chapters.

 Because documents are the raw materials of MongoDB, we’ll devote the final
portion of this chapter to some of the many details you might encounter when

This chapter covers
■ Schema design
■ Data models for e-commerce
■ Nuts and bolts of databases, collections, and

documents

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

74 CHAPTER 4 Document-oriented data

thinking through your own schemas. This involves a more detailed discussion of data-
bases, collections, and documents than you’ve seen up to this point. But if you read to
the end, you’ll be familiar with most of the obscure features and limitations of docu-
ment data in MongoDB. You may also find yourself returning to this final section of
the chapter later on, as it contains many of the “gotchas” you’ll encounter when using
MongoDB in the wild.

4.1 Principles of schema design
Database schema design is the process of choosing the best representation for a data
set, given the features of the database system, the nature of the data, and the applica-
tion requirements. The principles of schema design for relational database systems
are well established. With RDBMSs, you’re encouraged to shoot for a normalized data
model,1 which helps to ensure generic query ability and avoid updates to data that
might result in inconsistencies. Moreover, the established patterns prevent developers
from wondering how to model, say, one-to-many and many-to-many relationships. But
schema design is never an exact science, even with relational databases. Application
functionality and performance is the ultimate master in schema design, so every
“rule” has exceptions.

 If you’re coming from the RDBMS world, you may be troubled by MongoDB’s lack
of hard schema design rules. Good practices have emerged, but there’s still usually
more than one good way to model a given data set. The premise of this section is that
principles can drive schema design, but the reality is that those principles are pliable.
To get you thinking, here are a few questions you can bring to the table when model-
ing data with any database system:

■ What are your application access patterns? You need to pin down the needs of your
application, and this should inform not only your schema design but also which
database you choose. Remember, MongoDB isn’t right for every application.
Understanding your application access patterns is by far the most important
aspect of schema design.

The idiosyncrasies of an application can easily demand a schema that goes
against firmly held data modeling principles. The upshot is that you must ask
numerous questions about the application before you can determine the ideal
data model. What’s the read/write ratio? Will queries be simple, such as looking
up a key, or more complex? Will aggregations be necessary? How much data will
be stored?

■ What’s the basic unit of data? In an RDBMS, you have tables with columns and rows.
In a key-value store, you have keys pointing to amorphous values. In MongoDB,
the basic unit of data is the BSON document.

1 A simple way to think about a “normalized data model” is that information is never stored more than once.
Thus, a one-to-many relationship between entities will always be split into at least two tables.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

75Designing an e-commerce data model

■ What are the capabilities of your database? Once you understand the basic data type,
you need to know how to manipulate it. RDBMSs feature ad hoc queries and
joins, usually written in SQL while simple key-value stores permit fetching val-
ues only by a single key. MongoDB also allows ad hoc queries, but joins aren’t
supported.

Databases also diverge in the kinds of updates they permit. With an RDBMS,
you can update records in sophisticated ways using SQL and wrap multiple
updates in a transaction to get atomicity and rollback. MongoDB doesn’t sup-
port transactions in the traditional sense, but it does support a variety of atomic
update operations that can work on the internal structures of a complex docu-
ment. With simple key-value stores, you might be able to update a value, but
every update will usually mean replacing the value completely.

■ What makes a good unique id or primary key for a record? There are exceptions, but
many schemas, regardless of the database system, have some unique key for
each record. Choosing this key carefully can make a big difference in how you
access your data and how it’s stored. If you’re designing a user’s collection, for
example, should you use an arbitrary value, a legal name, a username, or a
social security number as the primary key? It turns out that neither legal names
nor social security numbers are unique or even applicable to all users within a
given dataset.

In MongoDB choosing a primary key means picking what should go in the
_id field. The automatic object ids are good defaults, but not ideal in every
case. This is particularly important if you shard your data across multiple
machines because it determines where a certain record will go. We’ll discuss
this in much greater detail in chapter 12.

The best schema designs are always the product of deep knowledge of the database
you’re using, good judgment about the requirements of the application at hand, and
plain old experience. A good schema often requires experimentation and iteration,
such as when an application scales and performance considerations change. Don’t be
afraid to alter your schema when you learn new things; only rarely is it possible to fully
plan an application before its implementation. The examples in this chapter have
been designed to help you develop a good sense of schema design in MongoDB. Hav-
ing studied these examples, you’ll be well-prepared to design the best schemas for
your own applications.

4.2 Designing an e-commerce data model
The Twitter example application provided in chapter 3 demonstrated the basic
MongoDB features, but didn’t require much thought about its schema design. That’s
why, in this and in subsequent chapters, we’ll look at the much richer domain of
e-commerce. E-commerce has the advantage of including a large number of famil-
iar data modeling patterns. Plus, it’s not hard to imagine how products, categories,
product reviews, and orders are typically modeled in an RDBMS. This should make

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

76 CHAPTER 4 Document-oriented data

the upcoming examples more instructive because you’ll be able to compare them to
your preconceived notions of schema design.

 E-commerce has typically been done with RDBMSs for a couple of reasons. The first
is that e-commerce sites generally require transactions, and transactions are an RDBMS
staple. The second is that, until recently, domains that require rich data models and
sophisticated queries have been assumed to fit best within the realm of the RDBMS.
The following examples call into question this second assumption.

 Building an entire e-commerce back end isn’t practical within the space of this
book. Instead, we’ll pick out a handful of common and useful e-commerce entities,
such as products and customer reviews, and show how they might be modeled in
MongoDB. In particular, we’ll look at products and categories, users and orders, and
product reviews. For each entity, we’ll show an example document. Then, we’ll show
some of the database features that complement the document’s structure.

 For many developers, data model goes hand in hand with object mapping, and for that
purpose you may have used an object-relational mapping library, such as Java’s Hiber-
nate framework or Ruby’s ActiveRecord. Such libraries can be useful for efficiently
building applications with a RDBMS, but they’re less necessary with MongoDB. This is
due in part to the fact that a document is already an object-like representation. It’s
also partly due to the MongoDB drivers, which already provide a fairly high-level inter-
face to MongoDB. Without question, you can build applications on MongoDB using
the driver interface alone.

 Object mappers can provide value by helping with validations, type checking, and
associations between models, and come standard in frameworks like Ruby on Rails.
Object mappers also introduce an additional layer of complexity between the program-
mer and the database that can obscure important query characteristics. You should
evaluate this tradeoff when deciding if your application should use an object mapper;
there are plenty of excellent applications written both with and without one.2 We don’t
use an object mapper in any this book’s examples, and we recommend you first learn
about MongoDB without one.

4.2.1 Schema basics

Products and categories are the mainstays of any e-commerce site. Products, in a nor-
malized RDBMS model, tend to require a large number of tables. There’s a table for
basic product information, such as the name and SKU, but there will be other tables to
relate shipping information and pricing histories. This multitable schema will be facil-
itated by the RDBMS’s ability to join tables.

 Modeling a product in MongoDB should be less complicated. Because collec-
tions don’t enforce a schema, any product document will have room for whichever
dynamic attributes the product needs. By using arrays in your document, you can
typically condense a multitable RDBMS representation into a single MongoDB collection.

2 To find out which object mappers are most current for your language of choice, consult the recommenda-
tions at mongodb.org.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

77Designing an e-commerce data model

More concretely, listing 4.1 shows a sample product from a gardening store. It’s advis-
able to assign this document to a variable before inserting it to the database using
db.products.insert(yourVariable) to be able to run the queries discussed over the
next several pages.

{
 _id: ObjectId("4c4b1476238d3b4dd5003981"),
 slug: "wheelbarrow-9092",
 sku: "9092",
 name: "Extra Large Wheelbarrow",
 description: "Heavy duty wheelbarrow...",
 details: {
 weight: 47,
 weight_units: "lbs",
 model_num: 4039283402,
 manufacturer: "Acme",
 color: "Green"
 },
 total_reviews: 4,
 average_review: 4.5,
 pricing: {
 retail: 589700,
 sale: 489700,
 },
 price_history: [
 {
 retail: 529700,
 sale: 429700,
 start: new Date(2010, 4, 1),
 end: new Date(2010, 4, 8)
 },
 {
 retail: 529700,
 sale: 529700,
 start: new Date(2010, 4, 9),
 end: new Date(2010, 4, 16)
 },
],
 primary_category: ObjectId("6a5b1476238d3b4dd5000048"),
 category_ids: [
 ObjectId("6a5b1476238d3b4dd5000048"),
 ObjectId("6a5b1476238d3b4dd5000049")
],
 main_cat_id: ObjectId("6a5b1476238d3b4dd5000048"),
 tags: ["tools", "gardening", "soil"],
}

The document contains the basic name, sku, and description fields. There’s also the
standard MongoDB object ID B stored in the _id field. We discuss other aspects of
this document in the next section.

Listing 4.1 A sample product document

Unique object ID b

Unique slug c

Nested
document d

One-to-many
relationship

 e

Many-to-many
relationship f

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

78 CHAPTER 4 Document-oriented data

UNIQUE SLUG

In addition, you’ve defined a slug c, wheelbarrow-9092, to provide a meaningful
URL. MongoDB users sometimes complain about the ugliness of object IDs in URLs.
Naturally, you don’t want URLs that look like this:

http://mygardensite.org/products/4c4b1476238d3b4dd5003981

Meaningful IDs are so much better:

http://mygardensite.org/products/wheelbarrow-9092

These user-friendly permalinks are often called slugs. We generally recommend build-
ing a slug field if a URL will be generated for the document. Such a field should have
a unique index on it so that the value has fast query access and is guaranteed to be
unique. You could also store the slug in _id and use it as a primary key. We’ve chosen
not to in this case to demonstrate unique indexes; either way is acceptable. Assuming
you’re storing this document in the products collection, you can create the unique
index like this:

db.products.createIndex({slug: 1}, {unique: true})

If you have a unique index on slug, an exception will be thrown if you try to insert a
duplicate value. That way, you can retry with a different slug if necessary. Imagine your
gardening store has multiple wheelbarrows for sale. When you start selling a new
wheelbarrow, your code will need to generate a unique slug for the new product.
Here’s how you’d perform the insert from Ruby:

@products.insert_one({
 :name => "Extra Large Wheelbarrow",
 :sku => "9092",
 :slug => "wheelbarrow-9092"})

Unless you specify otherwise, the driver automatically ensures that no errors were
raised. If the insert succeeds without raising an exception, you know you’ve chosen a
unique slug. But if an exception is raised, your code will need to retry with a new value
for the slug. You can see an example of catching and gracefully handling an exception
in section 7.3.2.

NESTED DOCUMENTS

Say you have a key, details d, that points to a subdocument containing various prod-
uct details. This key is totally different from the _id field because it allows you to find
things inside an existing document. You’ve specified the weight, weight units, and the
manufacturer’s model number. You might store other ad hoc attributes here as well.
For instance, if you were selling seeds, you might include attributes for the expected
yield and time to harvest, and if you were selling lawnmowers, you could include
horsepower, fuel type, and mulching options. The details attribute provides a nice
container for these kinds of dynamic attributes.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

79Designing an e-commerce data model

 You can also store the product’s current and past prices in the same document.
The pricing key points to an object containing retail and sale prices. price_history,
by contrast, references a whole array of pricing options. Storing copies of documents
like this is a common versioning technique.

 Next, there’s an array of tag names for the product. You saw a similar tagging exam-
ple in chapter 1. Because you can index array keys, this is the simplest and best way of
storing relevant tags on an item while at the same time assuring efficient queryability.

ONE-TO-MANY RELATIONSHIPS

What about relationships? You often need to relate to documents in other collections.
To start, you’ll relate products to a category structure e. You probably want to define
a taxonomy of categories distinct from your products themselves. Assuming a separate
categories collection, you then need a relationship between a product and its primary
category f. This is a one-to-many relationship, since a product only has one primary
category, but a category can be the primary for many products.

MANY-TO-MANY RELATIONSHIPS

You also want to associate each product with a list of relevant categories other than the
primary category. This relationship is many-to-many, since each product can belong
to more than one category and each category can contain multiple products. In an
RDMBS, you’d use a join table to represent a many-to-many relationship like this one.
Join tables store all the relationship references between two tables in a single table.
Using a SQL join, it’s then possible to issue a single query to retrieve a product with
all its categories, and vice versa.

 MongoDB doesn’t support joins, so you need a different many-to-many strategy.
We’ve defined a field called category_ids f containing an array of object IDs. Each
object ID acts as a pointer to the _id field of some category document.

A RELATIONSHIP STRUCTURE
The next listing shows a sample category document. You can assign it to a new variable
and insert it into the categories collection using db.categories.insert(newCategory).
This will help you using it in forthcoming queries without having to type it again.

{
 _id: ObjectId("6a5b1476238d3b4dd5000048"),
 slug: "gardening-tools",
 name: "Gardening Tools",
 description: "Gardening gadgets galore!",
 parent_id: ObjectId("55804822812cb336b78728f9"),
 ancestors: [
 {
 name: "Home",
 _id: ObjectId("558048f0812cb336b78728fa"),
 slug: "home"
 },

Listing 4.2 A category document

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

80 CHAPTER 4 Document-oriented data

 {
 name: "Outdoors",
 _id: ObjectId("55804822812cb336b78728f9"),
 slug: "outdoors"
 }
]
}

If you go back to the product document and look carefully at the object IDs in its
category_ids field, you’ll see that the product is related to the Gardening Tools cate-
gory just shown. Having the category_ids array key in the product document enables
all the kinds of queries you might issue on a many-to-many relationship. For instance,
to query for all products in the Gardening Tools category, the code is simple:

db.products.find({category_ids: ObjectId('6a5b1476238d3b4dd5000048')})

To query for all categories from a given product, you use the $in operator:

db.categories.find({_id: {$in: product['category_ids']}})

The previous command assumes the product variable is already defined with a com-
mand similar to the following:

product = db.products.findOne({"slug": "wheelbarrow-9092"})

You’ll notice the standard _id, slug, name, and description fields in the category
document. These are straightforward, but the array of parent documents may not be.
Why are you redundantly storing such a large percentage of each of the document’s
ancestor categories?

 Categories are almost always conceived of as a hierarchy, and there are many ways of
representing this in a database. For this example, assume that “Home” is the category
of products, “Outdoors” a subcategory of that, and “Gardening Tools” a subcategory of
that. MongoDB doesn’t support joins, so we’ve elected to denormalize the parent cate-
gory names in each child document, which means they’re duplicated. This way, when
querying for the Gardening Products category, there’s no need to perform additional
queries to get the names and URLs of the parent categories, Outdoors and Home.

 Some developers would consider this level of denormalization unacceptable. But
for the moment, try to be open to the possibility that the schema is best determined by
the demands of the application, and not necessarily the dictates of theory. When you
see more examples of querying and updating this structure in the next two chapters,
the rationale will become clearer.

4.2.2 Users and orders

If you look at how you model users and orders, you’ll see another common relation-
ship: one-to-many. That is, every user has many orders. In an RDBMS, you’d use a for-
eign key in your orders table; here, the convention is similar. See the following listing.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

81Designing an e-commerce data model

{
 _id: ObjectId("6a5b1476238d3b4dd5000048"),
 user_id: ObjectId("4c4b1476238d3b4dd5000001"),
 state: "CART",
 line_items: [
 {
 _id: ObjectId("4c4b1476238d3b4dd5003981"),
 sku: "9092",
 name: "Extra Large Wheelbarrow",
 quantity: 1,
 pricing: {
 retail: 5897,
 sale: 4897,
 }
 },
 {
 _id: ObjectId("4c4b1476238d3b4dd5003982"),
 sku: "10027",
 name: "Rubberized Work Glove, Black",
 quantity: 2,
 pricing: {
 retail: 1499,
 sale: 1299
 }
 }
],
 shipping_address: {
 street: "588 5th Street",
 city: "Brooklyn",
 state: "NY",
 zip: 11215
 },
 sub_total: 6196
}

The second order attribute, user_id, stores a given user’s _id. It’s effectively a pointer
to the sample user, which will be discussed in listing 4.4. This arrangement makes it easy
to query either side of the relationship. Finding all orders for a given user is simple:

db.orders.find({user_id: user['_id']})

The query for getting the user for a particular order is equally simple:

db.users.findOne({_id: order['user_id']})

Using an object ID as a reference in this way, it’s easy to build a one-to-many relation-
ship between orders and users.

THINKING WITH DOCUMENTS

We’ll now look at some other salient aspects of the order document. In general,
you’re using the rich representation afforded by the document data model. Order

Listing 4.3 An e-commerce order, with line items, pricing, and a shipping address

Denormalized
product
information

Denormalized
sum of sale
prices

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

82 CHAPTER 4 Document-oriented data

documents include both the line items and the shipping address. These attributes, in
a normalized relational model, would be located in separate tables. Here, the line
items are an array of subdocuments, each describing a product in the shopping cart.
The shipping address attribute points to a single object containing address fields.

 This representation has several advantages. First, there’s a win for the human
mind. Your entire concept of an order, including line items, shipping address, and
eventual payment information, can be encapsulated in a single entity. When querying
the database, you can return the entire order object with one simple query. What’s
more, the products, as they appeared when purchased, are effectively frozen within
your order document. Finally, as you’ll see in the next two chapters, you can easily
query and modify this order document.

 The user document (shown in listing 4.4) presents similar patterns, because it
stores a list of address documents along with a list of payment method documents. In
addition, at the top level of the document, you find the basic attributes common to
any user model. As with the slug field on your product, it’s smart to keep a unique
index on the username field.

{
 _id: ObjectId("4c4b1476238d3b4dd5000001"),
 username: "kbanker",
 email: "kylebanker@gmail.com",
 first_name: "Kyle",
 last_name: "Banker",
 hashed_password: "bd1cfa194c3a603e7186780824b04419",
 addresses: [
 {
 name: "home",
 street: "588 5th Street",
 city: "Brooklyn",
 state: "NY",
 zip: 11215
 },
 {
 name: "work",
 street: "1 E. 23rd Street",
 city: "New York",
 state: "NY",
 zip: 10010
 }
],
 payment_methods: [
 {
 name: "VISA",
 payment_token: "43f6ba1dfda6b8106dc7"
 }
]
}

Listing 4.4 A user document, with addresses and payment methods

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

83Designing an e-commerce data model

4.2.3 Reviews

We’ll close the sample data model with product reviews, shown in the following listing.
Each product can have many reviews, and you create this relationship by storing a
product_id in each review.

{
 _id: ObjectId("4c4b1476238d3b4dd5000041"),
 product_id: ObjectId("4c4b1476238d3b4dd5003981"),
 date: new Date(2010, 5, 7),
 title: "Amazing",
 text: "Has a squeaky wheel, but still a darn good wheelbarrow.",
 rating: 4,
 user_id: ObjectId("4c4b1476238d3b4dd5000042"),
 username: "dgreenthumb",
 helpful_votes: 3,
 voter_ids: [
 ObjectId("4c4b1476238d3b4dd5000033"),
 ObjectId("7a4f0376238d3b4dd5000003"),
 ObjectId("92c21476238d3b4dd5000032")
]
}

Most of the remaining attributes are self-explanatory. You store the review’s date, title,
and text; the rating provided by the user; and the user’s ID. But it may come as a sur-
prise that you store the username as well. If this were an RDBMS, you’d be able to pull
in the username with a join on the users table. Because you don’t have the join option
with MongoDB, you can proceed in one of two ways: either query against the user col-
lection for each review or accept some denormalization. Issuing a query for every
review might be unnecessarily costly when username is extremely unlikely to change,
so here we’ve chosen to optimize for query speed rather than normalization.

 Also noteworthy is the decision to store votes in the review document itself. It’s
common for users to be able to vote on reviews. Here, you store the object ID of each
voting user in an array of voter IDs. This allows you to prevent users from voting on a
review more than once, and it also gives you the ability to query for all the reviews a
user has voted on. You cache the total number of helpful votes, which among other
things allows you to sort reviews based on helpfulness. Caching is useful because Mon-
goDB doesn’t allow you to query the size of an array within a document. A query to
sort reviews by helpful votes, for example, is much easier if the size of the voting array
is cached in the helpful_votes field.

 At this point, we’ve covered a basic e-commerce data model. We’ve seen the basics
of a schema with subdocuments, arrays, one-to-many and many-to-many relationships,
and how to use denormalization as a tool to make your queries simpler. If this is
your first time looking at a MongoDB data model, contemplating the utility of this
model may require a leap of faith. Rest assured that the mechanics of all of this—from

Listing 4.5 A document representing a product review

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

84 CHAPTER 4 Document-oriented data

adding votes uniquely, to modifying orders, to querying products intelligently—will be
explored and explained in the next few chapters.

4.3 Nuts and bolts: On databases, collections,
and documents
We’re going to take a break from the e-commerce example to look at some of the core
details of using databases, collections, and documents. Much of this involves defini-
tions, special features, and edge cases. If you’ve ever wondered how MongoDB allo-
cates data files, which data types are strictly permitted within a document, or what the
benefits of using capped collections are, read on.

4.3.1 Databases

A database is a namespace and physical grouping of collections and their indexes. In
this section, we’ll discuss the details of creating and deleting databases. We’ll also
jump down a level to see how MongoDB allocates space for individual databases on
the filesystem.

MANAGING DATABASES

There’s no explicit way to create a database in MongoDB. Instead, a database is cre-
ated automatically once you write to a collection in that database. Have a look at this
Ruby code:

connection = Mongo::Client.new(['127.0.0.1:27017'], :database => 'garden')
db = connection.database

Recall that the JavaScript shell performs this connection when you start it, and then
allows you to select a database like this:

use garden

Assuming that the database doesn’t exist already, the database has yet to be created on
disk even after executing this code. All you’ve done is instantiate an instance of the
class Mongo::DB, which represents a MongoDB database. Only when you write to a col-
lection are the data files created. Continuing on in Ruby,

products = db['products']
products.insert_one({:name => "Extra Large Wheelbarrow"})

When you call insert_one on the products collection, the driver tells MongoDB to
insert the product document into the garden.products collection. If that collec-
tion doesn’t exist, it’s created; part of this involves allocating the garden database
on disk.

 You can delete all the data in this collection by calling:

products.find({}).delete_many

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

85Nuts and bolts: On databases, collections, and documents

This removes all documents which match the filter {}, which is all documents in the
collection. This command doesn’t remove the collection itself; it only empties it. To
remove a collection entirely, you use the drop method, like this:

products.drop

To delete a database, which means dropping all its collections, you issue a special com-
mand. You can drop the garden database from Ruby like so:

db.drop

From the MongoDB shell, run the dropDatabase() method using JavaScript:

use garden
db.dropDatabase();

Be careful when dropping databases; there’s no way to undo this operation since it
erases the associated files from disk. Let’s look in more detail at how databases store
their data.

DATA FILES AND ALLOCATION

When you create a database, MongoDB allocates a set of data files on disk. All collec-
tions, indexes, and other metadata for the database are stored in these files. The data
files reside in whichever directory you designated as the dbpath when starting mongod.
When left unspecified, mongod stores all its files in /data/db.3 Let’s see how this direc-
tory looks after creating the garden database:

$ cd /data/db
$ ls -lah
drwxr-xr-x 81 pbakkum admin 2.7K Jul 1 10:42 .
drwxr-xr-x 5 root admin 170B Sep 19 2012 ..
-rw------- 1 pbakkum admin 64M Jul 1 10:43 garden.0
-rw------- 1 pbakkum admin 128M Jul 1 10:42 garden.1
-rw------- 1 pbakkum admin 16M Jul 1 10:43 garden.ns
-rwxr-xr-x 1 pbakkum admin 3B Jul 1 08:31 mongod.lock

These files depend on the databases you’ve created and database configuration, so
they will likely look different on your machine. First note the mongod.lock file, which
stores the server’s process ID. Never delete or alter the lock file unless you’re recover-
ing from an unclean shutdown. If you start mongod and get an error message about the
lock file, there’s a good chance that you’ve shut down uncleanly, and you may have to
initiate a recovery process. We discuss this further in chapter 11.

 The database files themselves are all named after the database they belong to. gar-
den.ns is the first file to be generated. The file’s extension, ns, stands for namespaces.
The metadata for each collection and index in a database gets its own namespace file,

3 On Windows, it’s c:\data\db. If you install MongoDB with a package manager, it may store the files elsewhere.
For example using Homebrew on OS X places your data files in /usr/local/var/mongodb.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

86 CHAPTER 4 Document-oriented data

which is organized as a hash table. By default, the .ns file is fixed to 16 MB, which lets
it store approximately 26,000 entries, given the size of their metadata. This means that
the sum of the number of indexes and collections in your database can’t exceed
26,000. There’s usually no good reason to have this many indexes and collections, but
if you do need more than this, you can make the file larger by using the --nssize
option when starting mongod.

 In addition to creating the namespace file, MongoDB allocates space for the collec-
tions and indexes in files ending with incrementing integers starting with 0. Study the
directory listing and you’ll see two core data files, the 64 MB garden.0 and the 128 MB
garden.1. The initial size of these files often comes as a shock to new users. But
MongoDB favors this preallocation to ensure that as much data as possible will be
stored contiguously. This way, when you query and update the data, those operations
are more likely to occur in proximity rather than being spread across the disk.

 As you add data to your database, MongoDB continues to allocate more data files.
Each new data file gets twice the space of the previously allocated file until the largest
preallocated size of 2 GB is reached. At that point, subsequent files will all be 2 GB.
Thus, garden.2 will be 256 MB, garden.3 will use 512 MB, and so forth. The assump-
tion here is that if the total data size is growing at a constant rate, the data files
should be allocated increasingly, which is a common allocation strategy. Certainly one
consequence is that the difference between allocated space and actual space used can
be high.4

 You can always check the amount of space used versus the amount allocated by
using the stats command in the JavaScript shell:

> db.stats()
{
 "db" : "garden",
 "collections" : 3,
 "objects" : 5,
 "avgObjSize" : 49.6,
 "dataSize" : 248,
 "storageSize" : 12288,
 "numExtents" : 3,
 "indexes" : 1,
 "indexSize" : 8176,
 "fileSize" : 201326592,
 "nsSizeMB" : 16,
 "dataFileVersion" : {
 "major" : 4,
 "minor" : 5
 },
 "ok" : 1
}

4 This may present a problem in deployments where space is at a premium. For those situations, you may use
some combination of the --noprealloc and --smallfiles server options.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

87Nuts and bolts: On databases, collections, and documents

In this example, the fileSize field indicates the total size of files allocated for this
database. This is simply the sum of the sizes of the garden database’s two data files,
garden.0 and garden.1. The difference between dataSize and storageSize is trick-
ier. The former is the actual size of the BSON objects in the database; the latter
includes extra space reserved for collection growth and also unallocated deleted
space.5 Finally, the indexSize value shows the total size of indexes for this database.

 It’s important to keep an eye on total index size; database performance will be best
when all utilized indexes can fit in RAM. We’ll elaborate on this in chapters 8 and 12
when presenting techniques for troubleshooting performance issues.

 What does this all mean when you plan a MongoDB deployment? In practical
terms, you should use this information to help plan how much disk space and RAM
you’ll need to run MongoDB. You should have enough disk space for your expected
data size, plus a comfortable margin for the overhead of MongoDB storage, indexes, and
room to grow, plus other files stored on the machine, such as log files. Disk space is gen-
erally cheap, so it’s usually best to allocate more space than you think you’ll need.

 Estimating how much RAM you’ll need is a little trickier. You’ll want enough RAM
to comfortably fit your “working set” in memory. The working set is the data you touch
regularly in running your application. In the e-commerce example, you’ll probably
access the collections we covered, such products and categories collections, frequently
while your application is running. These collections, plus their overhead and the size
of their indexes, should fit into memory; otherwise there will be frequent disk accesses
and performance will suffer. This is perhaps the most common MongoDB perfor-
mance issue. We may have other collections, however, that we only need to access
infrequently, such as during an audit, which we can exclude from the working set. In
general, plan ahead for enough memory to fit the collections necessary for normal
application operation.

4.3.2 Collections

Collections are containers for structurally or conceptually similar documents. Here,
we’ll describe creating and deleting collections in more detail. Then we’ll present
MongoDB’s special capped collections, and we’ll look at examples of how the core
server uses collections internally.

MANAGING COLLECTIONS

As you saw in the previous section, you create collections implicitly by inserting docu-
ments into a particular namespace. But because more than one collection type exists,
MongoDB also provides a command for creating collections. It provides this com-
mand from the JavaScript shell:

db.createCollection("users")

5 Technically, collections are allocated space inside each data file in chunks called extents. The storageSize
is the total space allocated for collection extents.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

88 CHAPTER 4 Document-oriented data

When creating a standard collection, you have the option of preallocating a specific
number of bytes. This usually isn’t necessary but can be done like this in the Java-
Script shell:

db.createCollection("users", {size: 20000})

Collection names may contain numbers, letters, or . characters, but must begin with
a letter or number. Internally, a collection name is identified by its namespace
name, which includes the name of the database it belongs to. Thus, the products
collection is technically referred to as garden.products when referenced in a mes-
sage to or from the core server. This fully qualified collection name can’t be longer
than 128 characters.

 It’s sometimes useful to include the . character in collection names to provide a
kind of virtual namespacing. For instance, you can imagine a series of collections with
titles like the following:

products.categories
products.images
products.reviews

Keep in mind that this is only an organizational principle; the database treats collec-
tions named with a . like any other collection.

 Collections can also be renamed. As an example, you can rename the products col-
lection with the shell’s renameCollection method:

db.products.renameCollection("store_products")

CAPPED COLLECTIONS

In addition to the standard collections you’ve created so far, it’s possible to create
what’s known as a capped collection. Capped collections are originally designed for
high-performance logging scenarios. They’re distinguished from standard collections
by their fixed size. This means that once a capped collection reaches its maximum
size, subsequent inserts will overwrite the least-recently-inserted documents in the col-
lection. This design prevents users from having to prune the collection manually
when only recent data may be of value.

 To understand how you might use a capped collection, imagine you want to
keep track of users’ actions on your site. Such actions might include viewing a prod-
uct, adding to the cart, checking out, and purchasing. You can write a script to sim-
ulate logging these user actions to a capped collection. In the process, you’ll see
some of these collections’ interesting properties. The next listing presents a simple
demonstration.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

89Nuts and bolts: On databases, collections, and documents

require 'mongo'

VIEW_PRODUCT = 0 # action type constants
ADD_TO_CART = 1
CHECKOUT = 2
PURCHASE = 3

client = Mongo::Client.new(['127.0.0.1:27017'], :database => 'garden')
client[:user_actions].drop
actions = client[:user_actions, :capped => true, :size => 16384]
actions.create

500.times do |n| # loop 500 times, using n as the iterator
 doc = {
 :username => "kbanker",
 :action_code => rand(4), # random value between 0 and 3, inclusive
 :time => Time.now.utc,
 :n => n
 }
 actions.insert_one(doc)
end

First, you create a 16 KB capped collection called user_actions using client.6 Next,
you insert 500 sample log documents B. Each document contains a username, an
action code (represented as a random integer from 0 through 3), and a timestamp.
You’ve included an incrementing integer, n, so that you can identify which documents
have aged out. Now you’ll query the collection from the shell:

> use garden
> db.user_actions.count();
160

Even though you’ve inserted 500 documents, only 160 documents exist in the collec-
tion.7 If you query the collection, you’ll see why:

db.user_actions.find().pretty();
{
 "_id" : ObjectId("51d1c69878b10e1a0e000040"),
 "username" : "kbanker",
 "action_code" : 3,
 "time" : ISODate("2013-07-01T18:12:40.443Z"),
 "n" : 340
}

Listing 4.6 Simulating the logging of user actions to a capped collection

6 The equivalent creation command from the shell would be db.createCollection("user_actions",
{capped: true, size: 16384}).

7 This number may vary depending on your version of MongoDB; the notable part is that it’s less than the num-
ber of documents inserted.

Action
types b

garden.user
_actions
collection

Sample
document

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

90 CHAPTER 4 Document-oriented data

{
 "_id" : ObjectId("51d1c69878b10e1a0e000041"),
 "username" : "kbanker",
 "action_code" : 2,
 "time" : ISODate("2013-07-01T18:12:40.444Z"),
 "n" : 341
}
{
 "_id" : ObjectId("51d1c69878b10e1a0e000042"),
 "username" : "kbanker",
 "action_code" : 2,
 "time" : ISODate("2013-07-01T18:12:40.445Z"),
 "n" : 342
}
...

The documents are returned in order of insertion. If you look at the n values, it’s clear
that the oldest document in the collection is the collection where n is 340, which
means that documents 0 through 339 have already aged out. Because this capped col-
lection has a maximum size of 16,384 bytes and contains only 160 documents, you
can conclude that each document is about 102 bytes in length. You’ll see how to
confirm this assumption in the next subsection. Try adding a field to the example to
observe how the number of documents stored decreases as the average document
size increases.

 In addition to the size limit, MongoDB allows you to specify a maximum number
of documents for a capped collection with the max parameter. This is useful because
it allows finer-grained control over the number of documents stored. Bear in mind
that the size configuration has precedence. Creating a collection this way might
look like this:

> db.createCollection("users.actions",
 {capped: true, size: 16384, max: 100})

Capped collections don’t allow all operations available for a normal collection. For
one, you can’t delete individual documents from a capped collection, nor can you
perform any update that will increase the size of a document. Capped collections were
originally designed for logging, so there was no need to implement the deletion or
updating of documents.

TTL COLLECTIONS

MongoDB also allows you to expire documents from a collection after a certain
amount of time has passed. These are sometimes called time-to-live (TTL) collections,
though this functionality is actually implemented using a special kind of index. Here’s
how you would create such a TTL index:

> db.reviews.createIndex({time_field: 1}, {expireAfterSeconds: 3600})

This command will create an index on time_field. This field will be periodically
checked for a timestamp value, which is compared to the current time. If the difference

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

91Nuts and bolts: On databases, collections, and documents

between time_field and the current time is greater than your expireAfterSeconds
setting, then the document will be removed automatically. In this example, review
documents will be deleted after an hour.

 Using a TTL index in this way assumes that you store a timestamp in time_field.
Here’s an example of how to do this:

> db.reviews.insert({
 time_field: new Date(),
 ...
 })

This insertion sets time_field to the time at insertion. You can also insert other time-
stamp values, such as a value in the future. Remember, TTL indexes just measure the
difference between the indexed value and the current time, to compare to expire-
AfterSeconds. Thus, if you put a future timestamp in this field, it won’t be deleted
until that timestamp plus the expireAfterSeconds value. This functionality can be
used to carefully manage the lifecycle of your documents.

 TTL indexes have several restrictions. You can’t have a TTL index on _id, or on a
field used in another index. You also can’t use TTL indexes with capped collections
because they don’t support removing individual documents. Finally, you can’t have com-
pound TTL indexes, though you can have an array of timestamps in the indexed field.
In that case, the TTL property will be applied to the earliest timestamp in the collection.

 In practice, you may never find yourself using TTL collections, but they can be a
valuable tool in some cases, so it’s good to keep them in mind.

SYSTEM COLLECTIONS

Part of MongoDB’s design lies in its own internal use of collections. Two of these spe-
cial system collections are system.namespaces and system.indexes. You can query
the former to see all the namespaces defined for the current database:

> db.system.namespaces.find();
{ "name" : "garden.system.indexes" }
{ "name" : "garden.products.$_id_" }
{ "name" : "garden.products" }
{ "name" : "garden.user_actions.$_id_" }
{ "name" : "garden.user_actions", "options" : { "create" : "user_actions",
"capped" : true, "size" : 1024 } }

The first collection, system.indexes, stores each index definition for the current
database. To see a list of indexes you’ve defined for the garden database, query the
collection:

> db.system.indexes.find();
{ "v" : 1, "key" : { "_id" : 1 }, "ns" : "garden.products", "name" : "_id_" }
{ "v" : 1, "key" : { "_id" : 1 }, "ns" : "garden.user_actions", "name" :
"_id_" }
{ "v" : 1, "key" : { "time_field" : 1 }, "name" : "time_field_1", "ns" :
"garden.reviews", "expireAfterSeconds" : 3600 }

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

92 CHAPTER 4 Document-oriented data

system.namespaces and system.indexes are both standard collections, and access-
ing them is a useful feature for debugging. MongoDB also uses capped collections for
replication, a feature that keeps two or more mongod servers in sync with each other.
Each member of a replica set logs all its writes to a special capped collection called
oplog.rs. Secondary nodes then read from this collection sequentially and apply new
operations to themselves. We’ll discuss replication in more detail in chapter 10.

4.3.3 Documents and insertion

We’ll round out this chapter with some details on documents and their insertion.

DOCUMENT SERIALIZATION, TYPES, AND LIMITS

All documents are serialized to BSON before being sent to MongoDB; they’re later
deserialized from BSON. The driver handles this process and translates it from and to
the appropriate data types in its programming language. Most of the drivers provide a
simple interface for serializing from and to BSON; this happens automatically when
reading and writing documents. You don’t need to worry about this normally, but we’ll
demonstrate it explicitly for educational purposes.

 In the previous capped collections example, it was reasonable to assume that the
sample document size was roughly 102 bytes. You can check this assumption by using
the Ruby driver’s BSON serializer:

doc = {
 :_id => BSON::ObjectId.new,
 :username => "kbanker",
 :action_code => rand(5),
 :time => Time.now.utc,
 :n => 1
}
bson = doc.to_bson
puts "Document #{doc.inspect} takes up #{bson.length} bytes as BSON"

The serialize method returns a byte array. If you run this code, you’ll get a BSON
object 82 bytes long, which isn’t far from the estimate. The difference between the
82-byte document size and the 102-byte estimate is due to normal collection and
document overhead. MongoDB allocates a certain amount of space for a collection,
but must also store metadata. Additionally, in a normal (uncapped) collection,
updating a document can make it outgrow its current space, necessitating a move to
a new location and leaving an empty space in the collection’s memory.8 Characteris-
tics like these create a difference in the size of your data and the size MongoDB uses
on disk.

8 For more details take a look at the padding factor configuration directive. The padding factor ensures that
there’s some room for the document to grow before it has to be relocated. The padding factor starts at 1, so
in the case of the first insertion, there’s no additional space allocated.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

93Nuts and bolts: On databases, collections, and documents

 Deserializing BSON is as straightforward with a little help from the StringIO class.
Try running this Ruby code to verify that it works:

string_io = StringIO.new(bson)
deserialized_doc = String.from_bson(string_io)
puts "Here's our document deserialized from BSON:"
puts deserialized_doc.inspect

Note that you can’t serialize just any hash data structure. To serialize without error, the
key names must be valid, and each of the values must be convertible into a BSON type.
A valid key name consists of a string with a maximum length of 255 bytes. The string
may consist of any combination of ASCII characters, with three exceptions: it can’t
begin with a $, it must not contain any . characters, and it must not contain the null
byte, except in the final position. When programming in Ruby, you may use symbols
as hash keys, but they’ll be converted into their string equivalents when serialized.

 It may seem odd, but the key names you choose affect your data size because key
names are stored in the documents themselves. This contrasts with an RDBMS, where
column names are always kept separate from the rows they refer to. When using
BSON, if you can live with dob in place of date_of_birth as a key name, you’ll save 10
bytes per document. That may not sound like much, but once you have a billion such
documents, you’ll save nearly 10 GB of data size by using a shorter key name. This
doesn’t mean you should go to unreasonable lengths to ensure small key names; be
sensible. But if you expect massive amounts of data, economizing on key names will
save space.

 In addition to valid key names, documents must contain values that can be serial-
ized into BSON. You can view a table of BSON types, with examples and notes, at http://
bsonspec.org. Here, we’ll only point out some of the highlights and gotchas.

STRINGS

All string values must be encoded as UTF-8. Though UTF-8 is quickly becoming the
standard for character encoding, there are plenty of situations when an older encod-
ing is still used. Users typically encounter issues with this when importing data gener-
ated by legacy systems into MongoDB. The solution usually involves either converting
to UTF-8 before inserting, or, bearing that, storing the text as the BSON binary type.9

NUMBERS

BSON specifies three numeric types: double, int, and long. This means that BSON can
encode any IEEE floating-point value and any signed integer up to 8 bytes in length.
When serializing integers in dynamic languages, such as Ruby and Python, the driver
will automatically determine whether to encode as an int or a long. In fact, there’s
only one common situation where a number’s type must be made explicit: when
you’re inserting numeric data via the JavaScript shell. JavaScript, unhappily, natively

9 Incidentally, if you’re new to character encodings, you owe it to yourself to read Joel Spolsky’s well-known
introduction (http://mng.bz/LVO6).

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

94 CHAPTER 4 Document-oriented data

supports only a single numeric type called Number, which is equivalent to an IEEE 754
Double. Consequently, if you want to save a numeric value from the shell as an integer,
you need to be explicit, using either NumberLong() or NumberInt(). Try this example:

db.numbers.save({n: 5});
db.numbers.save({n: NumberLong(5)});

You’ve saved two documents to the numbers collection, and though their values are
equal, the first is saved as a double and the second as a long integer. Querying for all
documents where n is 5 will return both documents:

> db.numbers.find({n: 5});
{ "_id" : ObjectId("4c581c98d5bbeb2365a838f9"), "n" : 5 }
{ "_id" : ObjectId("4c581c9bd5bbeb2365a838fa"), "n" : NumberLong(5) }

You can see that the second value is marked as a long integer. Another way to see
this is to query by BSON type using the special $type operator. Each BSON type is
identified by an integer, beginning with 1. If you consult the BSON spec at http://
bsonspec.org, you’ll see that doubles are type 1 and 64-bit integers are type 18. Thus,
you can query the collection for values by type:

> db.numbers.find({n: {$type: 1}});
{ "_id" : ObjectId("4c581c98d5bbeb2365a838f9"), "n" : 5 }
> db.numbers.find({n: {$type: 18}});
{ "_id" : ObjectId("4c581c9bd5bbeb2365a838fa"), "n" : NumberLong(5) }

This verifies the difference in storage. You might never use the $type operator in pro-
duction, but as seen here, it’s a great tool for debugging.

 The only other issue that commonly arises with BSON numeric types is the lack of
decimal support. This means that if you’re planning on storing currency values in
MongoDB, you need to use an integer type and keep the values in cents.

DATETIMES

The BSON datetime type is used to store temporal values. Time values are represented
using a signed 64-bit integer marking milliseconds since the Unix epoch. A negative
value marks milliseconds prior to the epoch.10

 A couple usage notes follow. First, if you’re creating dates in JavaScript, keep in
mind that months in JavaScript dates are 0-based. This means that new Date(2011, 5,
11) will create a date object representing June 11, 2011. Next, if you’re using the Ruby
driver to store temporal data, the BSON serializer expects a Ruby Time object in UTC.
Consequently, you can’t use date classes that maintain a time zone because a BSON
datetime can’t encode that data.

10 The Unix epoch is defined as midnight, January 1, 1970, coordinated universal time (UTC). We discuss epoch
time briefly in section 3.2.1.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

95Nuts and bolts: On databases, collections, and documents

VIRTUAL TYPES

What if you must store your times with their time zones? Sometimes the basic BSON
types don’t suffice. Though there’s no way to create a custom BSON type, you can
compose the various primitive BSON values to create your own virtual type in a sub-
document. For instance, if you wanted to store times with zone, you might use a docu-
ment structure like this, in Ruby:

{
 time_with_zone: {
 time: new Date(),
 zone: "EST"
 }
}

It’s not difficult to write an application so that it transparently handles these compos-
ite representations. This is usually how it’s done in the real world. For example,
Mongo-Mapper, an object mapper for MongoDB written in Ruby, allows you to define
to_mongo and from_mongo methods for any object to accommodate these sorts of cus-
tom composite types.

LIMITS ON DOCUMENTS

BSON documents in MongoDB v2.0 and later are limited to 16 MB in size.11 The limit
exists for two related reasons. First, it’s there to prevent developers from creating
ungainly data models. Though poor data models are still possible with this limit, the
16 MB limit helps discourage schemas with oversized documents. If you find yourself
needing to store documents greater than 16 MB, consider whether your schema
should split data into smaller documents, or whether a MongoDB document is even
the right place to store such information—it may be better managed as a file.

 The second reason for the 16 MB limit is performance-related. On the server side,
querying a large document requires that the document be copied into a buffer before
being sent to the client. This copying can get expensive, especially (as is often the
case) when the client doesn’t need the entire document.12 In addition, once sent,
there’s the work of transporting the document across the network and then deserializ-
ing it on the driver side. This can become especially costly if large batches of multi-
megabyte documents are being requested at once.

 MongoDB documents are also limited to a maximum nesting depth of 100. Nesting
occurs whenever you store a document within a document. Using deeply nested docu-
ments—for example, if you wanted to serialize a tree data structure to a MongoDB

11 The number has varied by server version and is continually increasing. To see the limit for your server version,
run db.isMaster() in the shell and examine the maxBsonObjectSize field. If you can’t find this field,
then the limit is 4 MB (and you’re using a very old version of MongoDB). You can find more on limits like
this at http://docs.mongodb.org/manual/reference/limits.

12 As you’ll see in the next chapter, you can always specify which fields of a document to return in a query to
limit response size. If you’re doing this frequently, it may be worth reevaluating your data model.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

96 CHAPTER 4 Document-oriented data

document—results in documents that are difficult to query and can cause problems
during access. These types of data structures are usually accessed through recursive
function calls, which can outgrow their stack for especially deeply nested documents.

 If you find yourself with documents hitting the size or nesting limits, you’re proba-
bly better off splitting them up, modifying your data model, or using an extra collec-
tion or two. If you’re storing large binary objects, like images or videos, that’s a slightly
different case. See appendix C for techniques on handling large binary objects.

BULK INSERTS

As soon as you have valid documents, the process of inserting them is straightforward.
Most of the relevant details about inserting documents, including object ID genera-
tion, how inserts work on the network layer, and checking for exceptions, were cov-
ered in chapter 3. But one final feature, bulk inserts, is worth discussing here.

 All of the drivers make it possible to insert multiple documents at once. This can be
extremely handy if you’re inserting lots of data, as in an initial bulk import or a migra-
tion from another database system. Here’s a simple Ruby example of this feature:

docs = [# define an array of documents
 { :username => 'kbanker' },
 { :username => 'pbakkum' },
 { :username => 'sverch' }
]
@col = @db['test_bulk_insert']
@ids = @col.insert_many(docs) # pass the entire array to insert
puts "Here are the ids from the bulk insert: #{@ids.inspect}"

Instead of returning a single object ID, a bulk insert returns an array with the object
IDs of all documents inserted. This is standard for MongoDB drivers.

 Bulk inserts are useful mostly for performance. Inserting this way means only a sin-
gle roundtrip of communication to the server, rather than three separate roundtrips.
This method has a limit, however, so if you want to insert a million documents, you’ll
have to split this into multiple bulk inserts of a group of documents.13

 Users commonly ask what the ideal bulk insert size is, but the answer to this is
dependent on too many factors to respond concretely, and the ideal number can
range from 10 to 200. Benchmarking will be the best counsel in this case. The only
limitation imposed by the database here is a 16 MB cap on any one insert operation.
Experience shows that the most efficient bulk inserts will fall well below this limit.

4.4 Summary
We’ve covered a lot of ground in this chapter; congratulations for making it this far!

 We began with a theoretical discussion of schema design and then proceeded to
outline the data model for an e-commerce application. This gave you a chance to see

13 The limit for bulk inserts is 16 MB.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

97Summary

what documents might look like in a production system, and it should have started
you thinking in a more concrete way about the differences between schemas in
RDMBSs and MongoDB.

 We ended the chapter with a harder look at databases, documents, and collections;
you may return to this section later on for reference. We’ve explained the rudiments
of MongoDB, but we haven’t started moving data around. That will all change in the
next chapter, where you’ll explore the power of ad hoc queries.

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

Banker ● Bakkum ● Verch ● Garrett ● Hawkins

T
his document-oriented database was built for high avail-
ability, supports rich, dynamic schemas, and lets you eas-
ily distribute data across multiple servers. MongoDB 3.0

is fl exible, scalable, and very fast, even with big data loads.

MongoDB in Action, Second Edition is a completely revised
and updated version. It introduces MongoDB 3.0 and the
document-oriented database model. This perfectly paced book
gives you both the big picture you’ll need as a developer and
enough low-level detail to satisfy system engineers. Lots of ex-
amples will help you develop confi dence in the crucial area of
data modeling. You’ll also love the deep explanations of each
feature, including replication, auto-sharding, and deployment.

What’s Inside
● Indexes, queries, and standard DB operations
● Aggregation and text searching
● Map-reduce for custom aggregations and reporting
● Deploying for scale and high availability
● Updated for Mongo 3.0

Written for developers. No previous MongoDB or NoSQL
experience is assumed.

After working at MongoDB, Kyle Banker is now at a startup.
Peter Bakkum is a developer with MongoDB expertise. Shaun
Verch has worked on the core server team at MongoDB. A
Genentech engineer, Doug Garrett is one of the winners of the
MongoDB Innovation Award for Analytics. A software archi-
tect, Tim Hawkins has led search engineering at Yahoo Europe.

Technical Contributor: Wouter Thielen
Technical Editor: Mihalis Tsoukalos

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/mongodb-in-action-second-edition

$44.99 / Can $51.99 [INCLUDING eBOOK]

MongoDB IN ACTION Second Edition

DATABASE

M A N N I N G

“A thorough manual for
learning, practicing, and

 implementing MongoDB.”
—Jeet Marwah, Acer Inc.

“A must-read to properly
use MongoDB and model

your data in the best
 possible way.”

—Hernan Garcia, Betterez Inc.

“Provides all the necessary
details to get you
jump-started with

 MongoDB.”—Gregor Zurowski, Independent
Software Development Consultant

“Awesome!
 MongoDB in a nutshell.”
—Hardy Ferentschik, Red Hat

SEE INSERT

www.itbook.store/books/9781617291609

https://itbook.store/books/9781617291609

