
SAMPLE CHAPTER

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

Reactive Design Patterns
by Roland Kuhn

with Brian Hanafee and Jamie Allen

Chapter 1

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

v

brief contents
PART 1 INTRODUCTION.. 1

1 ■ Why Reactive? 3
2 ■ A walk-through of the Reactive Manifesto 12
3 ■ Tools of the trade 39

PART 2 THE PHILOSOPHY IN A NUTSHELL 65
4 ■ Message passing 67
5 ■ Location transparency 81
6 ■ Divide and conquer 91
7 ■ Principled failure handling 100
8 ■ Delimited consistency 105
9 ■ Nondeterminism by need 113

10 ■ Message flow 120

PART 3 PATTERNS .. 125
11 ■ Testing reactive applications 127
12 ■ Fault tolerance and recovery patterns 162
13 ■ Replication patterns 184
14 ■ Resource-management patterns 220
15 ■ Message flow patterns 255
16 ■ Flow control patterns 294
17 ■ State management and persistence patterns 311

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

3

Why Reactive?

We start from the desire to build a system that is responsive to users. This means the
system should respond to user input in a timely fashion under all circumstances.
Because any single computer can fail at any time, we need to distribute such a sys-
tem over multiple computers. Adding this fundamental requirement for distribu-
tion makes us recognize the need for new architecture patterns (or to rediscover
old ones). In the past, we developed methods that allowed us to retain the illusion
of single-threaded local processing while having it magically executed on multiple
cores or network nodes, but the gap between that illusion and reality is becoming
prohibitively large.1 The solution is to make the distributed, concurrent nature of
our applications explicit in the programming model, using it to our advantage.

 This book will teach you how to write systems that stay responsive in the face of
partial outages, program failure, changing loads, and even bugs in the code. You
will see that this requires adjustments to the way you think about and design your
applications. Here are the four tenets of the Reactive Manifesto,2 which defines a
common vocabulary and lays out the basic challenges that a modern computer sys-
tem needs to meet:

 It must react to its users (responsive).
 It must react to failure and stay available (resilient).
 It must react to variable load conditions (elastic).
 It must react to inputs (message-driven).

1 For example, Java EE services allow us to transparently call remote services that are wired in automatically,
possibly even including distributed database transactions. The possibility of network failure or remote ser-
vice overload, and so on, is completely hidden, abstracted away, and consequently out of reach for devel-
opers to meaningfully take into account.

2 http://reactivemanifesto.org

www.itbook.store/books/9781617291807

http://reactivemanifesto.org
https://itbook.store/books/9781617291807

4 CHAPTER 1 Why Reactive?

In addition, creating a system with these properties in mind will guide you toward bet-
ter modularization, both of the runtime deployment and of the code itself. Therefore,
we add two more attributes to the list of benefits: maintainability and extensibility.
Another way to structure the attributes is shown in figure 1.1.

 In the following chapters, you will learn about the reasoning of the Reactive Mani-
festo in detail, and you will get to know several tools of the trade and the philosophy
behind their design, enabling you to effectively use these tools to implement reactive
designs. The design patterns that emerge from these tools are presented in the third
part of the book. To set the stage for diving into the manifesto, we will first explore the
challenges of creating a Reactive application, using the example of a well-known email
service: we will imagine a reimplementation of Gmail.

1.1 The anatomy of a Reactive application
The first task when starting such a project is to sketch an architecture for the deploy-
ment and draft the list of software artifacts that need to be developed. This may not be
the final architecture, but you need to chart the problem space and explore poten-
tially difficult aspects. We will start the Gmail example by enumerating the different
high-level features of the application:

 The application must offer a view of the mailboxes to the user and display their
contents.

 To this end, the system must store all emails and keep them available.
 It must allow the user to compose and send email.
 To make this more comfortable, the system should offer a list of contacts and

allow the user to manage them.
 A good search function for locating emails is required.

The real Gmail application has more features, but this list will suffice for our pur-
poses. Some of these features are more intertwined than the others: for example, dis-
playing emails and composing them are both part of the user interface and share (or
compete for) the same screen space, whereas the implementation of email storage is
only distantly related to these two. The implementation of the search function will
need to be closer to the storage than the front-end presentation.

Value Responsive Maintainable Extensible

Means Elastic Resilient

Form Message-driven Figure 1.1 The structure
of Reactive values

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

5Coping with load

These considerations guide the hierarchical decomposition of Gmail’s overall func-
tionality into smaller and smaller pieces. More precisely, you can apply the Simple Com-
ponent pattern as described in chapter 12, making sure you clearly delimit and
segregate the different responsibilities of the entire application. The Error Kernel pat-
tern and the Let-It-Crash pattern complement this process, ensuring that the applica-
tion’s architecture is well suited to reliable failure handling—not only in case of
machine or network outages, but also for rare failure conditions in the source code
that are handled incorrectly (a.k.a. bugs).

 The result of this process will be a hierarchy of components that need to be devel-
oped and deployed. An example is shown in figure 1.2. Each component may be com-
plex in terms of its function, such as the implementation of search algorithms; or it
may be complex in its deployment and orchestration, such as providing email storage
for billions of users. But it will always be simple to describe in terms of its responsibility.

1.2 Coping with load
The resources necessary to store all those emails will be enormous: hundreds of mil-
lions of users with gigabytes of emails each will need exabytes3 of storage capacity. This
magnitude of persistent storage will need to be provided by many distributed

3 One exabyte is 1 billion gigabytes (using decimal SI prefixes; using binary SI prefixes, one EB is roughly 1.07
billion GB).

Storage

Search Full search

Contacts Pop-up card Autocomplete Fuzzy index

Gmail

Sign-on Editing

Profile Listing

Mail Composing

Filters

Storage

Figure 1.2 Partially decomposed module hierarchy of the hypothetical Gmail implementation

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

6 CHAPTER 1 Why Reactive?

machines. No single storage device offers so much space, and it would be unwise to
store everything in one location. Distribution makes the dataset resilient against local
perils like natural disasters; but, more important, it also allows the data to be accessed
efficiently from a larger region. For a worldwide user base, the data should be globally
distributed as well. It would be preferable to have the emails of a Japanese user stored
in or close to Japan (assuming that is where the user logs in from most of the time).

 This insight leads us to the Sharding pattern described in chapter 17: you can split
up the overall dataset into many small pieces—or shards—that you then distribute.
Because the number of shards is much smaller than the number of users, it is practical
to make the location of each shard known throughout the system. In order to find a
user’s mailbox, you only need to identify the shard it belongs to. You can do that by
equipping every user with an ID that expresses geographical affinity (for example,
using the first few digits to denote the country of residence), which is then mathemat-
ically partitioned into the correct number of shards (for example, shard 0 contains
IDs 0–999,999; shard 1 contains IDs 1,000,000–1,999,999; and so on).

 The key here is that the dataset naturally consists of many independent pieces that
can easily be separated from each other. Operations on one mailbox never affect
another mailbox directly, so the shards also do not need to communicate among
themselves. Each serves only one particular part of the solution.

 Another area in which the Gmail application will need a lot of resources is in the
display of folders and emails to the user. It would be impossible to provide this func-
tionality in a centralized fashion, not only for reasons of latency (even at the speed of
light, it takes noticeable time to send information around the globe) but also due to
the sheer number of interactions that millions of users perform every second. Here,
you will also split the work among many machines, starting with the users’ computers:
most of the graphical presentation is rendered within the browser, shifting the work-
load very close to where it is needed and in effect sharding it for each user.

 The web browser will need to get the raw information from a server, ideally one
that is close by to minimize network round-trip time. The task of connecting a user
with their mailbox and routing requests and responses accordingly is one that can also
easily be sharded. In this case, the browser’s network address directly provides all
needed characteristics, including an approximate geographic location.

 One noteworthy aspect is that in all the aforementioned cases, resources can be
added by making the shards smaller, distributing the load over more machines. The
maximum number is given by the number of users or used network addresses, which
will be more than enough to provide sufficient resources. This scheme will need
adjustment only when serving a single user requires more computing power than a
single machine can provide, at which point a user’s dataset or computing problem
needs to be broken down into smaller pieces.

 This means that by splitting a system into distributable parts, you gain the ability
to scale the service capacity, using a larger number of shards to serve more users. As
long as the shards are independent from each other, the system is in theory infinitely

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

7Coping with failures

scalable. In practice, the orchestration and operation of a worldwide deployment
with millions of nodes requires substantial effort and must of course be worth it.

1.3 Coping with failures
Sharding datasets or computational resources solves the problem of providing suffi-
cient resources for the nominal case, when everything is running smoothly and net-
works are operational. In order to cope with failures, you need the ability to keep
running when things go wrong:

 A machine may fail temporarily (for example, due to overheating or kernel
panic) or permanently (electrical or mechanical failure, fire, flood, and so on).

 Network components may fail, both within a computing center as well as out-
side on the internet—including the case that intercontinental overseas cables
go down, resulting in a split of the internet into disconnected regions.

 Human operators or automated maintenance scripts may accidentally destroy
parts of the data.

The only solution to this problem is to replicate the system—its data or functional-
ity—in more than one location. The geographical placement of the replicas needs to
match the scope of the system; a global email service should serve each customer from
multiple countries, for example.

 Replication is a more difficult and diverse topic than sharding because intuitively
you mean to have the same data in multiple places—but keeping the replicas synchro-
nized to match this expectation comes at a high cost. Should writing to the nearest
location fail or be delayed if a more distant replica is momentarily unavailable?
Should it be impossible to see the old data on a distant replica after the nearest one
has already signaled completion of the operation? Or should such inconsistency just
be unlikely or very short-lived? These questions will be answered differently between
projects or even for different modules of one particular system. Therefore, you are
presented with a spectrum of solutions that allows you to make trade-offs between
operational complexity, performance, availability, and consistency.

 We will discuss several approaches covering a wide range of characteristics in chap-
ter 13. The basic choices are as follows:

 Active–passive replication—Replicas agree on which one of them can accept
updates. Fail-over to a different replica requires consensus among the remain-
ing ones when the active replica no longer responds.

 Consensus-based multiple-master replication—Each update is agreed on by suffi-
ciently many replicas to achieve consistent behavior across all of them, at the
cost of availability and latency.

 Optimistic replication with conflict detection and resolution—Multiple active replicas
disseminate updates and roll back transactions during conflict or discard con-
flicting updates that were performed during a network partition.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

8 CHAPTER 1 Why Reactive?

 Conflict-free replicated data types—This approach prescribes merge strategies such
that conflicts cannot arise by definition, at the cost of providing only eventual
consistency and requiring special care when creating the data model.

In the Gmail example, several services should provide consistency to the user: if a user
successfully moves an email to a different folder, they expect it to stay in that folder
regardless of which client they use to access their mailboxes. The same goes for
changes to a contact’s telephone number or the user's profile. For these data, you
could use active–passive replication to keep things simple by making the failure
response actions coarse-grained—that is, on a per-replica scope. Or you could use
optimistic replication under the assumption that a single user will not concurrently
make conflicting changes to the same data item—but keep in mind that this is a fair
assumption only for human users.

 Consensus-based replication is needed within the system as an implementation
detail of sharding by user ID, because the relocation of a shard must be recorded accu-
rately and consistently for all clients. It would lead to user-visible distortions like an
email disappearing and then reappearing if a client were to flip-flop between decom-
missioned and live replicas.

1.4 Making the system responsive
The previous two sections introduced reasons for distributing the system across sev-
eral machines, computing centers, or possibly even continents, matching the scope
and reliability requirements of the application. The foremost purpose of this exercise
is to build an email service for end users, though, and for them the only metric that
counts is whether the service does what they need when they need it. In other words,
the application must respond quickly to any request a user makes.

 The easiest way to achieve this is, of course, to write an application that runs locally
and that has all emails stored on the local machine as well: going across the network
to fetch an answer will always take longer and be less reliable than having the answer
close by. There is, thus, a tension between the need to distribute and the need to stay
responsive. All distribution must be justified, as in the Gmail example.

 Where distribution is necessary, you encounter new challenges in the quest for
responsiveness. The most annoying behavior of many distributed applications today is
that their user interaction grinds to a halt when network connectivity is poor. Interest-
ingly, it seems much simpler to deal with the complete absence of a connection than
with a trickling flow of data. One pattern that is helpful in this context is the Circuit
Breaker pattern discussed in detail in chapter 12. With this tool, you can monitor the
availability and performance of a service that you are calling on for some function so
that when the quality falls below a threshold (either too many failures or too long a
response latency), the circuit breaker trips, forcing a switch to a mode where that ser-
vice is not used. The unavailability of parts of the system needs to be considered from
the beginning; the Circuit Breaker pattern addresses this concern.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

9Making the system responsive

 Another threat to responsiveness arises when a service that the application
depends on becomes momentarily overloaded. A backlog of requests will accumulate,
and while these are processed, response latencies will be much longer than normal.
This situation can be avoided by employing flow control, as described in chapter 16. In
the Gmail example, there are several points at which circuit breakers and flow control
are needed:

 Between the front end that runs on the users’ devices and the web servers that
provide access to back-end functionality

 Between the web servers and back-end services

The reason for the first point has already been mentioned: the desire to keep the user-
visible part of the application responsive under all conditions, even if sometimes the
only thing it can do is signal that the server is down and that the request will be com-
pleted at a later time. Depending on how much functionality can or should practically
be duplicated in the front end for this offline mode, some areas of the user interface
may need to be deactivated.

 The reason for the second point is that the front end would otherwise need to
have different circuit breakers for different kinds of requests to the web server, each
circuit breaker corresponding to the specific subset of back-end services needed by
one kind of request. Switching the entire application to offline mode when only a
small part of the back-end services are unavailable would be an unhelpful over-
response. Tracking this in the front end would couple its implementation to the pre-
cise structure of the back end, requiring the front-end code to be changed whenever
the service composition of the back end was altered. The web-server layer should hide
these details and provide its clients with responses as quickly as possible under all cir-
cumstances.

 Take, for example, the back-end service that provides the information shown on
the contact card that pops up when hovering the pointer over an email sender’s
name. This is a nonessential function, considering the overall function of Gmail, so
the web server may return a temporary failure code for such requests while that back-
end service is unavailable. The front end does not need to track this state; it can
merely refrain from showing the pop-up card and retry the request when interaction
with the user triggers it again.

 This reasoning applies not only at the web server layer. In a large application that
consists of hundreds or thousands of back-end services, it is imperative to confine the
treatment of failure and unavailability in this fashion; otherwise, the system would be
unreasonable in the sense that its behavior could no longer be understood by
humans. Just as functionality is modularized, the treatment of failure conditions must
be encapsulated in comprehensible scopes as well.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

10 CHAPTER 1 Why Reactive?

1.5 Avoiding the ball of mud
The Gmail application at this point consists of a front-end part that runs on the user’s
device, back-end services that provide storage and functionality, and web servers that
act as entry points into the back end. The latter serve an important purpose beyond
the responsiveness discussed in the previous section: they decouple the front end
from the back end architecturally. Having this clearly defined ingress point for client
requests makes it simpler to reason about the interplay between the part of the appli-
cation that runs on the users’ devices and the part that runs on servers in the cloud.

 The back end so far consists of a multitude of services whose partitioning and rela-
tionships resulted from the application of the Simple Component pattern. By itself,
this pattern does not provide the checks and balances that keep the architecture from
devolving into a large mess where every service talks with almost every other service.
Such a system would be hard to manage even with perfect individual failure handling,
circuit breakers, and flow control; it certainly would not be possible for a human to
understand it in its entirety and confidently make changes to it. This scenario has
informally been called the big ball of mud.

 With the problem lying in the unrestrained interaction between arbitrary back-end
services, the solution is to focus on the communication paths within the entire appli-
cation and to specifically design them. This is called message flow and is discussed in
detail in chapter 15.

 The service decomposition shown in figure 1.2 is too coarse-grained to serve as an
example for a “ball of mud,” but an illustration for the principle of message-flow
design would be that the service that handles email composition probably should not
talk directly to the contact pop-up service: if composing an email entails showing the
contact card of someone mentioned in the email, then instead of making the back
end responsible for that, the front end should ask for the pop-up, just as it does when
the user hovers the mouse pointer over an email header. In this way, the number of
possible message-flow paths is reduced by one, making the overall interaction model
of back-end services a little simpler.

 Another benefit of carefully considering message flow lies in facilitating testing
and making it easier to ensure coverage of all interaction scenarios. With a compre-
hensive message-flow design, it is obvious which other services a component interacts
with and what is expected from the component in terms of throughput and latency.
This can be turned around and used as a canary in the coal mine: whenever it is diffi-
cult to assess which scenarios should be tested for a given component, that is a sign
that the system is in danger of becoming a big ball of mud.

1.6 Integrating nonreactive components
The final important aspect of creating an application according to Reactive principles
is that it will, in most cases, be necessary to integrate with existing systems or infra-
structure that does not provide the needed characteristics. Examples are device driv-
ers that lack encapsulation (for example, by terminating the entire process in case of

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

11Summary

failure), APIs that execute their effects synchronously and thereby block the caller
from reacting to other inputs or timeouts in the meantime, systems with unbounded
input queues that do not respect bounded response latency, and so on.

 Most of these issues are dealt with using the resource-management patterns discussed
in chapter 14. The basic principle is to retrofit the needed encapsulation and asyn-
chronous boundaries by interacting with the resource within a dedicated Reactive
component, using extra threads, processes, or machines as necessary. This allows
these resources to be integrated seamlessly into the architecture.

 When interfacing with a system that does not provide bounded response latency, it
is necessary to retrofit the ability to signal momentary overload situations. This can to
some degree be achieved by employing circuit breakers, but in addition you must con-
sider what the response to overload should be. The flow-control patterns described in
chapter 16 help in this case as well.

 An example in the context of the Gmail application is a hypothetical integration
with an external utility, such as a shared shopping list. Within the Gmail front end,
the user can add items to the shopping list by extracting the needed information
semiautomatically from emails. This function would be supported in the back end by
a service that encapsulates the external utility’s API. Assuming that the interaction
with the shopping list requires the use of a native library that is prone to crash and
bring down the process it is running in, it is desirable to dedicate a process to this
task alone. This encapsulated form of the external API is then integrated via the oper-
ating system’s interprocess communication (IPC) facilities, such as pipes, sockets, and
shared memory.

 Assuming further that the shopping list’s implementation employs a practically
unbounded input queue, you need to consider what should happen when latencies
increase. For example, if it takes minutes for an item to show up on the shopping list,
users will be confused and perhaps frustrated. A solution to this problem would be to
monitor the shopping list and observe the latency from the Gmail back-end service
that manages this interaction. When the currently measured latency exceeds the
acceptable threshold, the service will either respond to requests with a rejection and a
temporary failure code, or perform the operation and include a warning notice in the
response. The front-end application can then notify the user of either outcome: in
one case it suggests retrying later, and in the other it informs them about the delay.

1.7 Summary
In this chapter, we explored the Reactive landscape in the context of the principles
laid out in the Reactive Manifesto and surveyed the main challenges facing you when
building applications in this style. For a more detailed example of designing a Reac-
tive application, please refer to appendix B. The next chapter takes a deep dive into
the manifesto itself, providing a detailed discussion of the points that are condensed
into a compressed form in appendix C.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

SOFTWARE DEVELOPMENT

M odern web applications serve potentially vast
numbers of users- and they need to keep working
as servers fail and new ones come online, users

overwhelm limited resources, and information is distributed
globally. A Reactive application adjusts to partial failures and
varying loads, remaining responsive in an ever-changing
distributed environment. The secret is message-driven
architecture- and design patterns to organize it.

Reactive Design Patterns presents the principles, patterns, and
best practices of Reactive application design. You'll learn how
to keep one slow component from bogging down others with
the Circuit Breaker pattern, how to shepherd a many-staged
transaction to completion with the Saga pattern, how to divide
data sets by Sharding, and much more. You'll even see how to
keep your source code readable and the system testable
despite many potential interactions and points of failure.

WHAT•s INSIDE

• The definitive guide to the Reactive Manifesto
• Patterns for flow control, delimited consistency, fault

tolerance, and much more
• Hard-won lessons about what doesn't work
• Architectures that scale under tremendous load

Most examples use Scala, Java, and Akka. Readers should be
familiar with distributed systems.

Dr. Roland Kuhn led the Akka team at Lightbend and coauthored
the Reactive Manifesto. Brian Hanafee and Jamie Allen are
experienced distributed systems architects.

To download their free eBook in PDF, ePub, and Kindle formats, owners of
this book should visit manning.com/books/reactive-design-patterns

Jll MANNING US$ 49.99 I Can $65.99

"Does an excellent job
explaining Reactive
architecture and design,
starting with first principles
and putting them into a
practical context."
- From the Foreword by Jonas Boner

Creator of Akka

"If the Reactive Manifesto
gave us a battle cry, this
work gives us the strategic
handbook for battle."

- Joel Kotarski, The Rawlings Group

"An engaging tour of
distributed computing
and the building blocks
of responsive, resilient
software."

- William Chan, linked In

"This book is so reactive,
it belongs on the left-hand
side of the periodic table!"
- Andy Hicks, Tanis Systems

9 7

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

	coverSample
	BriefContents
	BriefContents
	SampleCh01
	coverB

