
SAMPLE CHAPTER

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

Reactive Design Patterns
by Roland Kuhn

with Brian Hanafee and Jamie Allen

Chapter 2

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

v

brief contents
PART 1 INTRODUCTION.. 1

1 ■ Why Reactive? 3
2 ■ A walk-through of the Reactive Manifesto 12
3 ■ Tools of the trade 39

PART 2 THE PHILOSOPHY IN A NUTSHELL 65
4 ■ Message passing 67
5 ■ Location transparency 81
6 ■ Divide and conquer 91
7 ■ Principled failure handling 100
8 ■ Delimited consistency 105
9 ■ Nondeterminism by need 113

10 ■ Message flow 120

PART 3 PATTERNS .. 125
11 ■ Testing reactive applications 127
12 ■ Fault tolerance and recovery patterns 162
13 ■ Replication patterns 184
14 ■ Resource-management patterns 220
15 ■ Message flow patterns 255
16 ■ Flow control patterns 294
17 ■ State management and persistence patterns 311

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

12

A walk-through of
the Reactive Manifesto

This chapter introduces the manifesto in detail: where the original text is as short
as possible and rather dense, we unfold it and discuss it in great depth. For more
background information on the theory behind the manifesto, please refer to part 2
of the book.

2.1 Reacting to users
So far, this book has used the word user informally and mostly in the sense of
humans who interact with a computer. You interact only with your web browser in
order to read and write emails, but many computers are needed in the background
to perform these tasks. Each of these computers offers a certain set of services, and
the consumer or user of these services will in most cases be another computer that
is acting on behalf of a human, either directly or indirectly.

 The first layer of services is provided by the front-end server and consumed by
the web browser. The browser makes requests and expects responses—predomi-
nantly using HTTP, but also via WebSockets. The resources that are requested can
pertain to emails, contacts, chats, searching, and many more (plus the definition of
the styles and layout of the website). One such request might be related to the
images of people you correspond with: when you hover over an email address, a
pop-up window appears that contains details about that person, including a photo-
graph or an avatar image. In order to render that image, the web browser makes a
request to the front-end server. Figure 2.1 shows how this might be implemented
using a traditional servlets approach.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

13Reacting to users

The user action of hovering the mouse pointer over an email address sets in motion a
flurry of requests via the web browser, the front-end server, and the internal image ser-
vice down to the storage system, followed by their respective responses traveling in the
opposite direction until the image is properly rendered on the screen. Along this
chain are multiple relationships from user to service, and all of them need to meet the
basic challenges outlined in the introduction; most important is the requirement to
respond quickly to each request.

 When designing the overall implementation of a feature like the image service, you
need to think about services and their users’ requirements not only on the outside but
also on the inside. This is the first part of what it means to build reactive applications.
Once the system has been decomposed in this way, you need to turn your focus to mak-
ing these services as responsive as necessary to satisfy their users at all levels.

 To understand why Reactive systems are better than the traditional alternatives, it
is useful to examine a traditional implementation of an image service. Even though it
has a cache, a connection pool, and even a fallback image for when things go wrong,
it can fail badly when the system is stressed. Understanding how and why it fails
requires looking beyond the single-thread illusion. Once you understand the failures,
you will see that even within the confines of a traditional framework, you can improve
the image service with a simplified version of the Managed Queue pattern that is cov-
ered in chapter 16.

2.1.1 Understanding the traditional approach

We will start with a naive implementation to retrieve an image from a database. The
application has a controller that first checks a cache to see whether the image has

Controller

Application

System

Cache

Fallback Connection
pool

Image
database

Figure 2.1 The front-end server for images first checks an in-memory cache, then attempts to
retrieve the image from storage, and finally returns a fallback image if neither is successful.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

14 CHAPTER 2 A walk-through of the Reactive Manifesto

been retrieved recently. If the controller finds the image in the cache, it returns the
image right away. If not, it tries to retrieve the image from the database. If it finds the
image there, the image is added to the cache and also returned to the original
requester. If the image is not found, a static fallback image is returned, to avoid pre-
senting the user with an error. This pattern should be familiar to you. This simplistic
controller might contain code like the following.

public interface Images {
Image get(String Key);
void add(String key, Image image);

}

public Images cache;
public Images database;

Image result = cache.get(key);
if (result != null) {

return result;
} else {

result = database.get(key);
if (result != null) {

cache.add(key, result);
return result;

} else {
return fallback;

}
}

At the next level of detail, the application may be built on a framework that has some
ability to handle concurrency, such as Java servlets. When a new request is received,
the application framework assigns it to a request thread. That thread is then responsi-
ble for carrying the request through to a response. The more request threads are con-
figured, the more simultaneous requests the system is expected to handle.

 On a cache hit, the request thread can provide a response immediately. On a
cache miss, the internal implementation of Images needs to obtain a connection from
the pool. The database query itself may be performed on the request thread, or the
connection pool may use a separate thread pool. Either way, the request thread is
obliged to wait for the database query to complete or time out before it can fulfill the
request.

 When you are tuning the performance of a system such as this, one of the key
parameters is the ratio of request threads to connection-pool entries. There is not
much point in making the connection pool larger than the request-thread pool. If it is
the same size and all the request threads are waiting on database queries, the system
may find itself temporarily with little to do other than wait for the database to
respond. That would be unfortunate if the next several requests could have been
served from the cache; instead of being handled immediately, they will have to wait for

Listing 2.1 Excerpt from a simple controller for an image service

Assumed thread-safe

Wraps a database
connection pool

Image is found in the cache

Image is found in the
database, added to the cache,
and returned to the client

Image is not retrieved
from the database

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

15Reacting to users

an unrelated database query to complete so that a request thread will become avail-
able. On the other hand, setting the connection pool too small will make it a bottle-
neck; this risks the system being limited by request threads stuck waiting for a
connection.

 The best answer for a given load is somewhere between the extremes. The next
section looks at finding a balance.

2.1.2 Analyzing latency with a shared resource

The simplistic implementation can be analyzed first by examining one extreme con-
sisting of an infinite number of request threads sharing a fixed number of database
connections. Assume each database query takes a consistent time W to complete, and
for now ignore the cache. We will revisit the effect of the cache in section 2.3.1, when
we introduce Amdahl’s Law. You want to know how many database connections L will
be used for a given load, which is represented as λ. A formula called Little’s Law gives
the answer:

Little’s Law is valid for the long-term averages of the three quantities independent of
the actual timing with which requests arrive or the order in which they are processed.
If the database takes on average 30 ms to respond, and the system is receiving 500
requests per second, you can apply Little’s Law:

The average number of connections being used will be 15, so you will need at least
that many connections to keep up with the load.

 If there are requests waiting to be serviced, they must have some place to wait. Typ-
ically, they wait in a queue data structure somewhere. As each request is completed,
the next request is taken from the queue for processing. Referring to figure 2.2, you
may notice that there is no explicit queue. If this were coded using traditional syn-
chronous Java servlets, the queue would consist of an internal collection of request
threads waiting for their turn with the database connection. On average, there would
be 15 such threads waiting. That is not good, because, whereas a queue is a light-
weight data structure, the request threads in the queue are relatively expensive
resources. Worse, 15 is just the average: the peaks are much higher. In reality, the
thread pool will not be infinite. If there are too many requests, they will spill back into
the TCP buffer and eventually back to the browser, resulting in unhelpful errors rather
than the desired fallback image.

 The first thing you might do is increase the number of entries in the database con-
nection pool. As long as the database can continue to handle the resulting load, this
will help the average case. The important thing to note is that you are still working with

L λ W×=

L 500 requests/second 0.03 seconds/request×=

L 15=

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

16 CHAPTER 2 A walk-through of the Reactive Manifesto

average times. Real-world events can lead to failure modes that are far worse. For exam-
ple, if the database stops responding at all for several minutes, 500 requests per second
will overwhelm an otherwise sufficient thread pool. You need to protect the system.

2.1.3 Limiting maximum latency with a queue

The initial implementation blocked and waited for a database connection to become
available; it returned null only if the requested image was not found in the database.
A simple change will add some protection: if a database connection is not available,
return null right away. This will free the request thread to return the fallback image
rather than stalling and consuming a large amount of resources.

 This approach couples two separate decisions into one: the number of database
queries that can be accepted simultaneously is equal to the size of the connection
pool. That may not be the result you want: it means the system will either return right
away if no connection is available or return in 30 ms if one is available. Suppose you
are willing to wait a bit longer in exchange for a much better rate of success. At this
point, you can introduce an explicit queue, as shown in figure 2.3. Now, instead of
returning right away if no connection is available, new requests are added to the
queue. They are turned away only if the queue itself is full.

 The addition provides much better control over system behavior. For example, a
queue with a maximum length of only 3 entries will respond in no more than a total
of 120 ms, including 90 ms progressing through the queue and another 30 ms for the
database query. The size of the queue provides an upper bound that you can control.
Depending on the rate of requests, the average response may be lower, perhaps less

Controller

TCP buffer

X

Application

System

Cache

Fallback Connection
pool

Image
database

Figure 2.2 Using standard listener threads and a connection pool results in the listeners
acting as queue entries, with overflow into the system TCP buffers.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

17Reacting to users

than 100 ms. If the cache that was ignored in the analysis is now considered, the aver-
age drops still further. With a 50% cache-hit rate, the image server could offer an
average response time of less than 50 ms.

 Given what you know about how that 50 ms average is achieved, you also would
know not to set a timeout less than 120 ms. If that time was not acceptable, the simpler
solution would be to use a smaller queue. A developer who knows only that the aver-
age is less than 50 ms might assume it is a Gaussian distribution and be tempted to set
a timeout value at perhaps 80 or 100 ms. Indeed, the assumptions that went into this
analysis are vulnerable to the same error, because the assumption that the database
provides a consistent 30 ms response time would be questionable in a real-world imple-
mentation. Real databases have caches of their own.

 Setting a timeout has the effect of choosing a boundary at which the system will
be considered to have failed. Either the system succeeded or it failed. When viewed
from that perspective, the average response time is less important than the maxi-
mum response time. Because systems typically respond more slowly when under
heavy load, a timeout based on the average will result in a higher percentage of fail-
ures under load and will also waste resources when they are needed most. Choosing
timeouts will be revisited in section 2.4 and again in chapter 11. For now, the import-
ant realization is that the average response time often has little bearing on choosing
the maximum limits.

Controller

Application

System

Cache

Fallback Connection
pool

Image
database

Explicit queue

Figure 2.3 Adding an explicit queue to manage access to the database connection pool
allows you to manage the maximum system latency separately from the listener thread pool
size and the connection pool size.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

18 CHAPTER 2 A walk-through of the Reactive Manifesto

2.2 Exploiting parallelism
The simplest case of a user–service relationship is invoking a method or function:

val result = f(42)

The user provides the argument “42” and hands over control of the CPU to the func-
tion f, which might calculate the 42nd Fibonacci number or the factorial of 42. What-
ever the function does, you expect it to return some result value when it is finished.
This means that invoking the function is the same as making a request, and the func-
tion returning a value is analogous to it replying with a response. What makes this
example so simple is that most programming languages include syntax like this, which
allows direct usage of the response under the assumption that the function does
indeed reply. If that were not to happen, the rest of the program would not be exe-
cuted, because it could not continue without the response. The underlying execution
model is that the evaluation of the function occurs synchronously, on the same
thread, and this ties the caller and the callee together so tightly that failures affect
both in the same way.

 Sequential execution of functions is well supported by all popular programming
languages out of the box, as illustrated in figure 2.4 and shown in this example using
Java syntax:

ReplyA a = computeA();
ReplyB b = computeB();
ReplyC c = computeC();
Result r = aggregate(a, b, c);

The sequential model is easy to understand. It was adequate for early computers that
had only one processing core, but it necessitates waiting for all the results to be com-
puted by the same resource while other resources remain idle.

2.2.1 Reducing latency via parallelization

In many cases, there is one possibility for latency reduction that immediately presents
itself. If, for the completion of a request, several other services must be involved, then
the overall result will be obtained more quickly if the other services can perform their

Task

A B C

Figure 2.4 A task consisting of three subtasks that are executed sequentially:
the total response latency is given by the sum of the three individual latencies.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

19Exploiting parallelism

functions in parallel, as shown in figure 2.5. This requires that no dependency exists
such that, for example, task B needs the output of task A as one of its inputs, which
frequently is the case. Take as an example the Gmail app in its entirety, which is com-
posed of many different but independent parts. Or the contact information pop-up
window for a given email address may contain textual information about that person
as well as their image, and these can clearly be obtained in parallel.

 When performing subtasks A, B, and C sequentially, as shown in figure 2.4, the
overall latency depends on the sum of the three individual latencies. With parallel
execution, overall latency equals the latency of whichever of the subtasks takes lon-
gest. In the implementation of a real social network, the number of subtasks can easily
exceed 100, rendering sequential execution entirely impractical.

 Parallel execution usually requires some extra thought and library support. For
one thing, the service being called must not return the response directly from the
method call that initiated the request, because in that case the caller would be unable
to do anything while task A was running, including sending a request to perform task
B in the meantime. The way to get around this restriction is to return a Future of the
result instead of the value itself:

Future<ReplyA> a = taskA();
Future<ReplyB> b = taskB();
Future<ReplyC> c = taskC();
Result r = aggregate(a.get(), b.get(), c.get());

A Future is a placeholder for a value that may eventually become available; as soon as
it does, the value can be accessed via the Future object. If the methods invoking
subtasks A, B, and C are changed in this fashion, then the overall task just needs to
call them to get back one Future each. Futures are discussed in greater detail in the
next chapter.

Task

A

B

C

Figure 2.5 A task consisting of three subtasks that are executed in
parallel: the total response latency is given by the maximum of the three
individual latencies.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

20 CHAPTER 2 A walk-through of the Reactive Manifesto

The previous code snippet uses a type called Future that is defined in the Java stan-
dard library (in the package java.util.concurrent). The only method it defines for
accessing the value is the blocking get() method. Blocking here means the calling
thread is suspended and cannot do anything else until the value has become available.
We can picture the use of this kind of Future like so (written from the perspective of
the thread handling the overall task):

When my boss gives me the task to assemble the overview file of a certain client,
I will dispatch three runners: one to the client archives to fetch the address,
photograph, and contract status; one to the library to fetch all articles the client
has written; and one to the post office to collect all new messages for this client.
This is a vast improvement over having to perform these tasks myself, but now I
need to wait idly at my desk until the runners return, so that I can collate
everything they bring into an envelope and hand that back to my boss.

It would be much nicer if I could leave a note telling the runners to place their
findings in the envelope and telling the last one to come back to dispatch
another runner to hand it to my boss without involving me. That way I could
handle many more requests and would not feel useless most of the time.

2.2.2 Improving parallelism with composable Futures

What the developer should do is describe how the values should be composed to form
the final result and let the system find the most efficient way to compute the values.
This is possible with composable Futures, which are part of many programming lan-
guages and libraries, including newer versions of Java (CompletableFuture is intro-
duced in JDK 8). Using this approach, the architecture turns completely from
synchronous and blocking to asynchronous and nonblocking; the underlying machin-
ery needs to become task-oriented in order to support this. The result is far more
expressive than the relatively primitive precursor, the callback. The previous example
transforms into the following, using Scala syntax:1

val fa: Future[ReplyA] = taskA()
val fb: Future[ReplyB] = taskB()
val fc: Future[ReplyC] = taskC()
val fr: Future[Result] = for (a <- fa; b <- fb; c <- fc)

yield aggregate(a, b, c)

Initiating a subtask as well as its completion are just events that are raised by one part
of the program and reacted to in another part: for example, by registering an action
to be taken with the value supplied by a completed Future. In this fashion, the latency
of the method call for the overall task does not even include the latencies for subtasks
A, B, and C, as shown in figure 2.6. The system is free to handle other requests while

1 This would also be possible with the Java 8 CompletionStage using the andThen combinator, but due to
the lack of for-comprehensions, the code would grow in size relative to the synchronous version. The Scala
expression on the last line transforms to corresponding calls to flatMap, which are equivalent to
CompletionStage’s andThen.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

21Exploiting parallelism

those are being processed, eventually reacting to their completion and sending the
overall response back to the original user.

 An added benefit is that additional events like task timeouts can be added without
much hassle, because the entire infrastructure is already there. It is entirely reason-
able to perform task A, couple the resulting Future with one that holds a
TimeoutException after 100 ms, and use the combined result in the processing that
follows. Then, either of the two events—completion of A or the timeout—triggers the
actions that were attached to the completion of the combined Future.

THE NEED FOR ASYNCHRONOUS RESULT COMPOSITION You may be wondering
why this second part—asynchronous result composition—is necessary. Would
it not be enough to reduce response latency by exploiting parallel execution?
The context of this discussion is achieving bounded latency in a system of
nested user–service relationships, where each layer is a user of the service
beneath it. Because parallel execution of the subtasks A, B, and C depends on
their initiating methods returning Futures instead of strict results, this must
also apply to the overall task. That task is very likely part of a service that is
consumed by a user at a higher level, and the same reasoning applies on that
higher level as well. For this reason, it is imperative that parallel execution be
paired with asynchronous and task-oriented result aggregation.

Composable Futures cannot be fully integrated into the image server example dis-
cussed earlier using the traditional servlet model. The reason is that the request
thread encapsulates all the details necessary to return a response to the browser.
There is no mechanism to make that information available to a future result. This is
addressed in Servlet 3 with the introduction of AsyncContext.

2.2.3 Paying for the serial illusion

Traditionally, ways of modeling interactions between components—like sending to
and receiving from the network—are expressed as blocking API calls:

Task

A

B

C

Result

Figure 2.6 A task consisting of three subtasks that are executed as Futures:
the total response latency is given by the maximum of the three individual
latencies, and the initiating thread does not need to wait for the responses.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

22 CHAPTER 2 A walk-through of the Reactive Manifesto

final Socket socket = ...
socket.getOutputStream.write(requestMessageBytes);
final int bytesRead = socket.getInputStream().read(responseBuffer);

Each of these blocking calls interacts with the network equipment, generating mes-
sages and reacting to messages under the hood, but this fact is completely hidden in
order to construct a synchronous façade on top of the underlying message-driven sys-
tem. The thread executing these commands will suspend its execution if not enough
space is available in the output buffer (for the first line) or if the response is not imme-
diately available (on the second line). Consequently, this thread cannot do any other
work in the meantime: every activity of this type that is ongoing in parallel needs its
own thread, even if many of those are doing nothing but waiting for events to occur.

 If the number of threads is not much larger than the number of CPU cores in the
system, then this does not pose a problem. But given that these threads are mostly
idle, you want to run many more of them. Assuming that it takes a few microseconds
to prepare the requestMessageBytes and a few more microseconds to process the
responseBuffer, whereas the time for traversing the network and processing the
request on the other end is measured in milliseconds, it is clear that each thread
spends more than 99% of its time in a waiting state.

 In order to fully utilize the processing power of the available CPUs, this means run-
ning hundreds if not thousands of threads, even on commodity hardware. At this
point, you should note that threads are managed by the operating system kernel for
efficiency reasons.2 Because the kernel can decide to switch out threads on a CPU core
at any point in time (for example, when a hardware interrupt happens or the time
slice for the current thread is used up), a lot of CPU state must be saved and later
restored so that the running application does not notice that something else was using
the CPU in the meantime. This is called a context switch and costs thousands of
cycles3 every time it occurs. The other drawback of using large numbers of threads is
that the scheduler—the part of the kernel that decides which thread to run on which
CPU core at any given time—will have a hard time finding out which threads are run-
nable and which are waiting and then selecting one such that each thread gets its fair
share of the CPU.

 The takeaway of the previous paragraph is that using synchronous, blocking APIs
that hide the underlying message-driven structure wastes CPU resources. If messages
were made explicit in the API such that instead of suspending a thread, you would just
suspend the computation—freeing up the thread to do something else—then this
overhead would be reduced substantially. The following example shows (remote) mes-
saging between Akka Actors from Java 8:

2 Multiplexing several logical user-level threads on a single OS thread is called a many-to-one model or green
threads. Early JVM implementations used this model, but it was abandoned quickly (http://docs.oracle
.com/cd/E19455-01/806-3461/6jck06gqh/index.html).

3 Although CPUs have gotten faster, their larger internal state has negated the advances made in pure execu-
tion speed such that a context switch has taken roughly 1 µs without much improvement for two decades.

www.itbook.store/books/9781617291807

http://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqh/index.html
http://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqh/index.html
http://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqh/index.html
https://itbook.store/books/9781617291807

23The limits of parallel execution

CompletionStage<Response> future =
ask(actorRef, request, timeout)

.thenApply(Response.class::cast);
future.thenAccept(response -> <process it>);

Here, the sending of a request returns a handle to the possible future reply—a com-
posable Future, as discussed in chapter 3—to which a callback is attached that runs
when the response has been received. Both actions complete immediately, letting the
thread do other things after having initiated the exchange.

2.3 The limits of parallel execution
Loose coupling between components—by design as well as at runtime—includes
another benefit: more efficient execution. Although hardware used to increase capac-
ity primarily by increasing the computing power of a single sequential execution core,
physical limits4 began impeding progress on this front around 2006. Modern proces-
sors now expand capacity by adding ever more cores, instead. In order to benefit from
this kind of growth, you must distribute computation even within a single machine.
When using a traditional approach with shared state concurrency based on mutual
exclusion by way of locks, the cost of coordination between CPU cores becomes very
significant.

2.3.1 Amdahl’s Law

The example in section 2.1 includes an image cache. The most likely implementation
would be a map shared among the request threads running on multiple cores in the
same JVM. Coordinating access to a shared resource means executing those portions
of the code that depend on the integrity of the map in some synchronized fashion.
The map will not work properly if it is being changed at the same time it is being read.
Operations on the map need to happen in a serialized fashion in some order that is
globally agreed on by all parts of the application; this is also called sequential consistency.
There is an obvious drawback to such an approach: portions that require synchroniza-
tion cannot be executed in parallel. They run effectively single-threaded. Even if they
execute on different threads, only one can be active at any given point in time. The
effect this has on the possible reduction in runtime that is achievable by paralleliza-
tion is captured by Amdahl’s Law, shown in figure 2.7.

4 The finite speed of light as well as power dissipation make further increases in clock frequency impractical.

Sends a message to the actor
reference, using a CompletionStage
as the destination for the response

Maps the response to its expected
type, failing upon mismatch

Registers further processing to be done
once a response is received and mapped

S n() T 1()
T N()

1

α 1 α–
N

------------+

N
1 α N 1–()+
--------------------------------= = =

Figure 2.7 Amdahl’s Law specifies the
maximum increase in speed that can be achieved
by adding additional threads.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

24 CHAPTER 2 A walk-through of the Reactive Manifesto

Here, N is the number of available threads, α is the fraction of the program that is
serialized, and T(N) is the time the algorithm needs when executed with N threads.
This formula is plotted in figure 2.8 for different values of α across a range of available
threads—they translate into the number of CPU cores on a real system. You will notice
that even if only 5% of the program runs inside these synchronized sections, and the
other 95% is parallelizable, the maximum achievable gain in execution time is a factor
of 20; getting close to that theoretical limit would mean employing the ridiculous
number of about 1,000 CPU cores.

2.3.2 Universal Scalability Law

Amdahl’s Law also does not take into account the overhead incurred for coordinating
and synchronizing the different execution threads. A more realistic formula is pro-
vided by the Universal Scalability Law,5 shown in figure 2.9.

5 N. J. Gunther, “A Simple Capacity Model of Massively Parallel Transaction Systems,” 2003, www.perfdynamics
.com/Papers/njgCMG93.pdf. See also “Neil J. Gunther: Universal Law of Computational Scalability,” Wikipe-
dia, https://en.wikipedia.org/wiki/Neil_J._Gunther#Universal_Law_of_Computational_Scalability.

20

18

16

14

12

10

S
pe

ed
up

8

6

4

2

0
0 2 16 128

Processor

95% parallel

90% parallel

75% parallel

50% parallel

1024 8192

Figure 2.8 The increase in speed of a program using multiple processors in parallel
computing is limited by the sequential fraction of the program. For example, if 95%
of the program can be parallelized, the theoretical maximum speedup using parallel
computing will be 20 times, no matter how many processors are used.

S n() N
1 α N 1–() βN N 1–()+ +
---=

Figure 2.9 The Universal Scalability Law provides the
maximum increase in speed that can be achieved by
adding additional threads, with an additional factor to
account for coordination.

www.itbook.store/books/9781617291807

www.perfdynamics.com/Papers/njgCMG93.pdf
www.perfdynamics.com/Papers/njgCMG93.pdf
www.perfdynamics.com/Papers/njgCMG93.pdf
https://en.wikipedia.org/wiki/Neil_J._Gunther#Universal_Law_of_Computational_Scalability
https://itbook.store/books/9781617291807

25The limits of parallel execution

The Universal Scalability Law adds another parameter describing the fraction of time
spent ensuring that the data throughout the system is consistent. This factor is called
the coherency of the system, and it combines all the delays associated with coordinating
between threads to ensure consistent access to shared data structures. This new term
dominates the picture when you have a large number of cores, taking away the
throughput benefits and making it unattractive to add more resources beyond a cer-
tain point. This is illustrated in figure 2.10 for rather low assumptions on the coher-
ency parameter; distributed systems will spend considerably more than a small
percentage of their time on coordination.

 The conclusion is that synchronization fundamentally limits the scalability of your
application. The more you can do without synchronization, the better you can distrib-
ute your computation across CPU cores—or even network nodes. The optimum would
be to share nothing—meaning no synchronization would be necessary—in which case
scalability would be perfect. In figure 2.9, α and β would be zero, simplifying the
entire equation to

In plain words, this means that using n times as many computing resources, you
achieve n times the performance. If you build your system on fully isolated compart-
ments that are executed independently, then this will be the only theoretical limit,
assuming you can split the task into at least n compartments. In practice, you need to
exchange requests and responses, which requires some form of synchronization as
well, but the cost of that is very low. On commodity hardware, it is possible to
exchange several hundred million messages per second between CPU cores.

20

18

16

14

12

10

P
er

fo
rm

an
ce

 in
cr

ea
se

8

6

4

2

0
1 10 100

CPU cores

1000 10000

no coherency cost
0.2% coherency cost
0.5% coherency cost

1% coherency cost
5% coherency cost

Figure 2.10 At some point, the increase in speed from adding more resources is
eaten up by the cost of maintaining coherency within the system. The precise point
depends on the parallel program fraction and the time spent on coherency.

S n() n=

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

26 CHAPTER 2 A walk-through of the Reactive Manifesto

2.4 Reacting to failure
The previous sections concern designing a service implementation such that every
request is met with a response within a given time. This is important because otherwise
the user cannot determine whether the request has been received and processed. But
even with flawless execution of this design, unexpected things will happen eventually:

 Software will fail . There will always be that exception you forgot to handle (or
that was not documented by the library you are using); or you may get synchro-
nization only a tiny bit wrong, causing a deadlock to occur; or the condition you
formulated for breaking a loop may not cope with a weird edge case. You can
always trust the users of your code to figure out ways to eventually find all these
failure conditions and more.

 Hardware will fail . Everyone who has operated computing hardware knows that
power supplies are notoriously unreliable; that hard disks tend to turn into
expensive door stops, either during the initial burn-in phase or after a few
years; and that dying fans lead to the silent death of all kinds of components by
overheating them. In any case, your invaluable production server will, accord-
ing to Murphy’s Law, fail exactly when you most need it.

 Humans will fail . When you task maintenance personnel with replacing a failed
hard disk in RAID5, a study6 finds that there is a 10% chance that they will
replace the wrong one, leading to the loss of all data. An anecdote from
Roland’s days as a network administrator is that cleaning personnel unplugged
the power of the main server for the workgroup—both redundant cords at the
same time—in order to connect the vacuum cleaner. None of these things
should happen, but it is human nature that you will have a bad day from time to
time.

 Timeout is failure. The reason for a timeout may not be related to the internal
behavior of the system. For example, network congestion can delay messages
between components of your system even when all the components are func-
tioning normally. The source of delay may be some other system that shares the
network. From the perspective of handling an individual request, it does not
matter whether the cause is permanent or transient. The fact is that the one
request has taken too long and therefore has failed.

The question therefore is not if a failure occurs but only when or how often. The user of
a service does not care how an internal failure happened or what exactly went wrong,
because the only response the user will get is that no normal response is received.
Connections may time out or be rejected, or the response may consist of an opaque
internal error code. In any case, the user will have to carry on without the response,
which for humans probably means using a different service: if you try to book a flight

6 Aaron B. Brown (IBM Research), “Oops! Coping with Human Error,” ACM Queue 2, no. 8 (Dec. 6, 2004),
http://queue.acm.org/detail.cfm?id=1036497.

www.itbook.store/books/9781617291807

http://queue.acm.org/detail.cfm?id=1036497
https://itbook.store/books/9781617291807

27Reacting to failure

and the booking site stops responding, then you will take your business elsewhere and
probably not come back anytime soon (or, in a different business, like online banking,
users will overwhelm the support hotline).

 A high-quality service is one that performs its function very reliably, preferably
without any downtime at all. Because failure of computer systems is not an abstract
possibility but is in fact certain, the question arises: how can you hope to construct a
reliable service? The Reactive Manifesto chooses the term resilience instead of reliability
precisely to capture this apparent contradiction.

The key notion here is to aim at fault tolerance instead of fault avoidance, because
avoidance will not be fully successful. It is of course good to plan for as many failure
scenarios as you can, to tailor programmatic responses such that normal operations
can be resumed as quickly as possible—ideally without the user noticing anything.
The same must also apply to those failure cases that were not foreseen and explicitly
accommodated in the design, knowing that these will happen as well.

 But resilience goes one step further than fault tolerance: a resilient system not only
withstands a failure but also recovers its original shape and feature set. As an example,
consider a satellite that is placed in orbit. In order to reduce the risk of losing the mis-
sion, every critical function is implemented at least twice, be it hardware or software.
For the case that one component fails, there are procedures that switch to the backup
component. Exercising such a fail-over keeps the satellite functioning, but from then
on the affected component will not tolerate additional faults because there was only
one backup. This means the satellite subsystems are fault tolerant but not resilient.

 There is only one generic way to protect your system from failing as a whole when
a part fails: distribute and compartmentalize. The former can informally be translated as
“don’t put all your eggs in one basket,” and the latter adds “protect your baskets from
one another.” When it comes to handling a failure, it is important to delegate, so that
the failed compartment itself is not responsible for its own recovery.

 Distribution can take several forms. The one you probably think of first involves
replicating an important database across several servers such that, in the event of a
hardware failure, the data are safe because copies are readily available. If you are
really concerned about those data, then you may go as far as placing the replicas in
different buildings in order not to lose all of them in the case of fire—or to keep them
independently operable when one of them suffers a complete power outage. For the
really paranoid, those buildings would need to be supplied by different power grids,
better yet in different countries or on separate continents.

What does resilience mean?
Merriam-Webster defines resilience as follows:

 The ability of a substance or object to spring back into shape
 The capacity to recover quickly from difficulties

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

28 CHAPTER 2 A walk-through of the Reactive Manifesto

2.4.1 Compartmentalization and bulkheading

The further apart the replicas are kept, the smaller the probability of a single fault
affecting all of them. This applies to all kinds of failures, whether software, hardware,
or human: reusing one computing resource, operations team, set of operational pro-
cedures, and so on creates a coupling by which multiple replicas can be affected syn-
chronously or similarly. The idea behind this is to isolate the distributed parts or, to
use a metaphor from ship building, to use bulkheading.

 Figure 2.11 shows the schematic design of a large cargo ship whose hold is sepa-
rated by bulkheads into many compartments. When the hull is breached for some rea-
son, only those compartments that are directly affected will fill up with water; the
others will remain properly sealed, keeping the ship afloat.

One of the first examples of this building principle was the Titanic, which featured 15
bulkheads between bow and stern and was therefore considered unsinkable.7 That par-
ticular ship did in fact sink, so what went wrong? In order to not inconvenience passen-
gers (in particular the higher classes) and to save money, the bulkheads extended only
a few feet above the water line, and the compartments were not sealable at the top.
When five compartments near the bow were breached during the collision with the ice-
berg, the bow dipped deeper into the water, allowing the water to flow over the top of
the bulkheads into more and more compartments until the ship sank.

 This example—although certainly one of the most terrible incidents in marine his-
tory—perfectly demonstrates that bulkheading can be done wrong in such a way that
it becomes useless. If the compartments are not truly isolated from each other, failure
can cascade among them to bring down the entire system. One example from distrib-
uted computing designs is managing fault tolerance at the level of entire application
servers, where one failure can lead to the failure of other servers by overloading or
stalling them.

 Modern ships employ full compartmentalization where the bulkheads extend
from keel to deck and can be sealed on all sides, including the top. This does not
make the ships unsinkable, but in order to obtain a catastrophic outcome, the ship
needs to be mismanaged severely and run with full speed against a rock.8 That meta-
phor translates in full to computer systems.

7 “There is no danger that Titanic will sink. The boat is unsinkable and nothing but inconvenience will be suf-
fered by the passengers.” —Phillip Franklin, White Star Line vice president, 1912.

8 See, for example, the Costa Concordia disaster: https://en.wikipedia.org/wiki/Costa_Concordia_disaster.

Figure 2.11 The term bulkheading comes from ship building and means the vessel is
segmented into fully isolated compartments.

www.itbook.store/books/9781617291807

https://en.wikipedia.org/wiki/Costa_Concordia_disaster
https://itbook.store/books/9781617291807

29Reacting to failure

2.4.2 Using circuit breakers

No amount of planning and optimization will guarantee that the services you imple-
ment or depend on abide by their latency bounds. We will talk more about the nature
of the things that can go wrong when discussing resilience, but even without knowing
the source of the failure, there are some useful techniques for dealing with services
that violate their bounds.

 When users are momentarily overwhelming a service, then its response latency will
rise, and eventually it will start failing. Users will receive their responses with more
delay, which in turn will increase their own latency until they get close to their own
limits. In the image server example in section 2.1.2, you saw how adding an explicit
queue protected the client by rejecting requests that would take more than the accept-
able response time to service. This is useful when there is a short spike in demand for
the service. If the image database were to fail completely for several minutes, the
behavior would not be ideal. The queue would fill with a backlog of requests that,
after a short time, would be useless to process. A first step would be to cull the old
queue entries, but the queue would refill immediately with still more queries that
would take too long to process.

 In order to stop this effect from propagating across the entire chain of user–service
relationships, users need to shield themselves from the overwhelmed service during
such time periods. The way to do this is well known in electrical engineering: install a
circuit breaker, as shown in figure 2.12.

 The idea here is simple: when involving another service, monitor the time it takes
for the response to come back. If the time is consistently greater than the allowed
threshold this user has factored into its own latency budget for this particular service

Service

Circuit breaker
Request

ClosedOpen

Half open

Periodic sample

Fail fast

Figure 2.12 A circuit breaker in electrical engineering protects a circuit from being
destroyed by a current that is too high. The software equivalent does the same thing for
a service that would otherwise be overwhelmed by too many requests.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

30 CHAPTER 2 A walk-through of the Reactive Manifesto

call, then the circuit breaker trips; from then on, requests will take a different route of
processing that either fails fast or gives degraded service, just as in the case of over-
flowing the bounded queue in front of the service. The same should also happen if
the service replies with failures repeatedly, because then it is not worth the effort to
send requests.

 This not only benefits the user by insulating it from the faulty service but also has the
effect of reducing the load on the struggling service, giving it some time to recover and
empty its queues. It would also be possible to monitor such occurrences and reinforce
the resources for the overwhelmed service in response to the increased load.

 When the service has had some time to recuperate, the circuit breaker should snap
back into a half-closed state in which some requests are sent in order to test whether
the service is back in shape. If not, then the circuit breaker can trip again immedi-
ately; otherwise, it closes automatically and resumes normal operations. The Circuit
Breaker pattern is discussed in detail in chapter 12.

2.4.3 Supervision

In section 2.2, a simple function call returned a result synchronously:

val result = f(42)

In the context of a larger program, an invocation of f might be wrapped in an excep-
tion handler for reasonable error conditions, such as invalid input leading to a divide-
by-zero error. Implementation details can result in exceptions that are not related to
the input values. For example, a recursive implementation might lead to a stack over-
flow, or a distributed implementation might lead to networking errors. There is little
the user of the service can do in those cases:

try {
f(i)

} catch {
case ex: java.lang.ArithmeticException => Int.MaxValue
case ex: java.lang.StackOverflowError => ???
case ex: java.net.ConnectException => ???

}

Responses—including validation errors—are communicated back to the user of a ser-
vice, whereas failures must be handled by the one who operates the service. The term
that describes this relationship in a computer system is supervision. The supervisor is
responsible for keeping the service alive and running.

 Figure 2.13 depicts these two different flows of information. The service internally
handles everything it knows how to handle; it performs validation and processes
requests, but any exceptions it cannot handle are escalated to the supervisor. While
the service is in a broken state, it cannot process incoming requests. Imagine, for
example, a service that depends on a working database connection. When the connec-
tion breaks, the database driver will throw an exception. If you tried to handle this

Reasonable
response

Now what?

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

31Losing strong consistency

case directly within the service by attempting to establish a new connection, then that
logic would be mixed with all the normal business logic of this service. But, worse, this
service would need to think about the big picture as well. How many reconnection
attempts make sense? How long should it wait between attempts?

 Handing those decisions off to a dedicated supervisor allows the separation of
concerns—business logic versus specialized fault handling—and factoring them out
into an external entity also enables the implementation of an overarching strategy for
several supervised services. The supervisor could, for example, monitor how fre-
quently failures occur on the primary database back-end system and fail over to a sec-
ondary database replica when appropriate. In order to do that, the supervisor must
have the power to start, stop, and restart the services it supervises: it is responsible for
their lifecycle.

 The first system that directly supported this concept was Erlang/OTP, implement-
ing the Actor model (discussed in chapter 3). Patterns related to supervision are
described in chapter 12.

2.5 Losing strong consistency
One of the most famous theoretical results on distributed systems is Eric Brewer’s CAP
theorem,9 which states that any networked shared-data system can have at most two of
three desirable properties:

 Consistency (C) equivalent to having a single up-to-date copy of the data
 High availability (A) of that data (for updates)
 Tolerance to network partitions (P)

This means that during a network partition, at least one of consistency and availability
must be sacrificed. If modifications continue during a partition, then inconsistencies
can occur. The only way to avoid that would be to not accept modifications and
thereby be unavailable.

 As an example, consider two users editing a shared text document using a service
like Google Docs. Hopefully, the document is stored in at least two different locations

9 S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant
Web Services,” ACM SIGACT News 33, no. 2 (2002), 51-59, http://dl.acm.org/citation.cfm?id=564601.

Failure

Request

Response

Figure 2.13 Supervision means that normal
requests and responses (including negative ones
such as validation errors) flow separately from
failures: while the former are exchanged between
the user and the service, the latter travel from the
service to its supervisor.

www.itbook.store/books/9781617291807

http://dl.acm.org/citation.cfm?id=564601
https://itbook.store/books/9781617291807

32 CHAPTER 2 A walk-through of the Reactive Manifesto

in order to survive a hardware failure of one of them, and both users randomly con-
nect to some replica to make their changes. Normally, the changes will propagate
between them, and each user will see the other’s edits; but if the network link between
the replicas breaks down while everything else keeps working, both users will continue
editing and see their own changes but not the changes made by the other. If both
replace the same word with different improvements, then the result will be that the
document is in an inconsistent state that needs to be repaired when the network link
starts working again. The alternative would be to detect the network failure and forbid
further changes until it is working again—leading to two unhappy users who not only
will be unable to make conflicting changes but also will also be prevented from work-
ing on completely unrelated parts of the document.

 Traditional data stores are relational databases that provide a very high level of
consistency guarantees, and customers of database vendors are accustomed to that
mode of operation—not least because a lot of effort and research has gone into mak-
ing databases efficient in spite of having to provide ACID10 transaction semantics. For
this reason, distributed systems have so far concentrated critical components in a way
that provides strong consistency.

 In the example of two users editing a shared document, a corresponding strongly
consistent solution would mean that every change—every keypress—would need to be
confirmed by the central server before being displayed locally, because otherwise one
user’s screen could show a state that was inconsistent with what the other user saw.
This obviously does not work, because it would be irritating to have such high latency
while typing text—we are used to characters appearing instantly. This solution would
also be costly to scale up to millions of users, considering the high-availability setups
with log replication and the license fees for the big iron database.

 Compelling as this use case may be, Reactive systems present a challenging archi-
tecture change: the principles of resilience, scalability, and responsiveness need to be
applied to all parts of the system in order to obtain the desired benefits, eliminating
the strong transactional guarantees on which traditional systems were built. Eventu-
ally, this change will have to occur, though—if not for the benefits outlined in the pre-
vious sections, then for physical reasons. The notion of ACID transactions aims at
defining a global order of transactions such that no observer can detect inconsisten-
cies. Taking a step back from the abstractions of programming into the physical world,
Einstein’s theory of relativity has the astonishing property that some events cannot be
ordered with respect to each other: if even a ray of light cannot travel from the loca-
tion of the first event to the location of the second before that event happens, then
the observed order of the two events depends on how fast an observer moves relative
to those locations.

 Although we do not yet need to worry about computers traveling near the speed of
light with respect to each other, we do need to worry about the speed of light between

10 Atomicity, consistency, isolation, durability.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

33Losing strong consistency

even computers that are stationary. Events that cannot be connected by a ray of light
as just described cannot have a causal order between them. Limiting the interactions
between systems to proceed, at most, at the speed of light would be a solution to avoid
ambiguities, but this is becoming a painful restriction already in today’s processor
designs: agreeing on the current clock tick on both ends of a silicon chip is one of the
limiting factors when trying to increase the clock frequency.

2.5.1 ACID 2.0

Systems with an inherently distributed design are built on a different set of principles.
One such set is called BASE:

 Basically available
 Soft state (state needs to be actively maintained instead of persisting by default)
 Eventually consistent

The last point means that modifications to the data need time to travel between dis-
tributed replicas, and during this time it is possible for external observers to see data
that are inconsistent. The qualification “eventually” means the time window during
which inconsistency can be observed after a change is bounded; when the system does
not receive modifications any longer and enters a quiescent state, it will eventually
become fully consistent again.

 In the example of editing a shared document, this means although you see your
own changes immediately, you might see the other’s changes with some delay; and if
conflicting changes are made, then the intermediate states seen by both users may be
different. But once the incoming streams of changes end, both views will eventually
settle into the same state for both users.

 In a note11 written 12 years after the CAP conjecture, Eric Brewer remarks thus:

This [see above] expression of CAP served its purpose, which was to open the
minds of designers to a wider range of systems and tradeoffs; indeed, in the
past decade, a vast range of new systems has emerged, as well as much debate
on the relative merits of consistency and availability. The “2 of 3” formulation
was always misleading because it tended to oversimplify the tensions among
properties. Now such nuances matter. CAP prohibits only a tiny part of the
design space: perfect availability and consistency in the presence of partitions,
which are rare.

In the argument involving Einstein’s theory of relativity, the time window during
which events cannot be ordered is very short—the speed of light is rather fast for
everyday observations. In the same spirit, the inconsistency observed in eventually
consistent systems is also short-lived; the delay between changes being made by one
user and being visible to others is on the order of tens or maybe hundreds of millisec-
onds, which is good enough for collaborative document editing.

11 Eric Brewer, “CAP Twelve Years Later: How the ‘Rules’ Have Changed,” InfoQ, May 30, 2012, https://www
.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed.

www.itbook.store/books/9781617291807

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://itbook.store/books/9781617291807

34 CHAPTER 2 A walk-through of the Reactive Manifesto

 BASE has served as an important step in evolving our understanding of which prop-
erties are useful and which are unattainable, but as a definitive term it is too imprecise.
Another proposal brought forward by Pat Helland at React Conf 2014 is ACID 2.0:

 Associative
 Commutative
 Idempotent
 Distributed

The last point just completes the familiar acronym, but the first three describe under-
lying mathematical principles that allow operations to be performed in a form that is
eventually consistent by definition: if every action is represented such that it can be
applied in batches (associative) and in any order (commutative) and such that apply-
ing it multiple times is not harmful (idempotent), then the end result does not depend
on which replica accepts the change and in which order the updates are disseminated
across the network—even resending is fine if reception is not yet acknowledged.

 Other authors, such as Peter Bailis and Martin Kleppmann, are pushing the enve-
lope of how far we can extend consistency guarantees without running into the forbid-
den spot of the CAP theorem: with the help of tracking the causality relationship
between different updates, it seems possible to get very close to ACID semantics while
minimizing the sacrifice in terms of availability. It will be interesting to see where this
field of research will be in 10 years.

2.5.2 Accepting updates

Only during a network partition is it problematic to accept modifications on both dis-
connected sides, although even for this case solutions are emerging in the form of
conflict-free replicated data types (CRDTs). These have the property of merging
cleanly when the partition ends, regardless of the modifications that were done on
either side.

 Google Docs employs a similar technique called operational transformation.12 In the
scenario in which replicas of a document get out of sync due to a network partition,
local changes are still accepted and stored as operations. When the network connec-
tion is back in working condition, the different chains of operations are merged by
bringing them into a linearized sequence. This is done by rebasing one chain on top
of the other so that instead of operating on the last synchronized state, the one chain
is transformed to operate on the state that results from applying the other chain
before it. This resolves conflicting changes in a deterministic way, leading to a consis-
tent document for both users after the partition has healed.

 Data types with these nice properties come with certain restrictions in terms of
which operations they can support. There will naturally be problems that cannot be

12 David Wang, Alex Mah, and Soren Lassen, “Google Wave Operational Transformation,” July 2010,
http://mng.bz/Bry5.

www.itbook.store/books/9781617291807

http://mng.bz/Bry5
https://itbook.store/books/9781617291807

35The need for Reactive design patterns

stated using them, in which case you have no choice but to concentrate these data in
one location only and forgo distribution. But our intuition is that necessity will drive
the reduction of these issues by researching alternative models for the respective
problem domain, forming a compromise between the need to provide responsive ser-
vices that are always available and the business-level desire for strong consistency. One
example from the real world is automated teller machines (ATMs): bank accounts are
the traditional example of strong transactional reasoning, but the mechanical imple-
mentation of dispensing cash to account owners has been eventually consistent for a
long time.

 When you go to an ATM to withdraw cash, you would be annoyed with your bank if
the ATM did not work, especially if you needed the money to buy that anniversary
present for your spouse. Network problems do occur frequently, and if the ATM
rejected customers during such periods, that would lead to lots of unhappy custom-
ers—we know that bad stories spread a lot easier than stories that say “It just worked as
it was supposed to.” The solution is to still offer service to the customer even if certain
features like overdraft protection cannot work at the time. You might, for example,
get less cash than you wanted while the machine cannot verify that your account has
sufficient funds, but you would still get some bills instead of a dire “Out of Service”
error. For the bank, this means your account may be overdrawn, but chances are that
most people who want to withdraw money have enough to cover the transaction. And
if the account has turned into a mini loan, there are established means to fix that:
society provides a judicial system to enforce those parts of the contract that the
machine could not, and in addition the bank charges fees and earns interest as long as
the account holder owes it money.

 This example highlights that computer systems do not have to solve all the issues
around a business process in all cases, especially when the cost of doing so would be
prohibitive. It can also be seen as a system that falls back to an approximate solution
until its nominal functionality can be restored.

2.6 The need for Reactive design patterns
Many of the discussed solutions and most of the underlying problems are not new.
Decoupling the design of different components of a program has been the goal of
computer science research since its inception, and it has been part of the common lit-
erature since the famous 1994 Design Patterns book.13 As computers became more and
more ubiquitous in our daily lives, programming moved accordingly into the focus of
society and changed from an art practiced by academics and later by young “fanatics”
in their basements to a widely applied craft. The growth in sheer size of computer sys-
tems deployed over the past two decades led to the formalization of designs building
on top of the established best practices and widening the scope of what we consider

13 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Professional
(1994).

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

36 CHAPTER 2 A walk-through of the Reactive Manifesto

charted territory. In 2003, Enterprise Integration Patterns14 covered message passing
between networked components, defining communication and message-handling pat-
terns—for example, implemented by the Apache Camel project. The next step was
called service-oriented architecture (SOA).

 While reading this chapter, you will have recognized elements of earlier stages,
such as the focus on message passing and services. The question naturally arises, what
does this book add that has not already been described sufficiently elsewhere? Espe-
cially interesting is a comparison to the definition of SOA in Arnon Rotem-Gal-Oz’s
SOA Patterns (Manning, 2012):

DEFINITION: Service-oriented architecture (SOA) is an architectural style
for building systems based on interactions of loosely coupled, coarse-grained,
and autonomous components called services. Each service exposes processes
and behavior through contracts, which are composed of messages at
discoverable addresses called endpoints. A service’s behavior is governed by
policies that are external to the service itself. The contracts and messages are
used by external components called service consumers.

This definition focuses on the high-level architecture of an application, which is made
explicit by demanding that the service structure be coarse-grained. The reason for this
is that SOA approaches the topic from the perspective of business requirements and
abstract software design, which without doubt is very useful. But as we have argued,
technical reasons push the coarseness of services down to finer levels and demand
that abstractions like synchronous blocking network communication be replaced by
explicitly modeling the message-driven nature of the underlying system.

2.6.1 Managing complexity

Lifting the level of abstraction has proven to be the most effective measure for increas-
ing the productivity of programmers. Exposing more of the underlying details seems
like a step backward on this count, because abstraction is usually meant to hide com-
plications from view. This consideration neglects the fact that there are two kinds of
complexity:

 Essential complexity is the kind that is inherent in the problem domain.
 Incidental complexity is the kind that is introduced solely by the solution.

Coming back to the example of using a traditional database with transactions as the
backing store for a shared document editor, the ACID solution tries to hide the essential
complexity present in the domain of networked computer systems, introducing inci-
dental complexity by requiring the developer to try to work around the performance
and scalability issues that arise.

14 Gregor Hohpe and Bobby Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley Professional (2003).

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

37The need for Reactive design patterns

 A proper solution exposes all the essential complexity of the problem domain,
making it accessible to be tackled as is appropriate for the concrete use case, and
avoids burdening the user with incidental complexity that results from a mismatch
between the chosen abstraction and the underlying mechanics.

 This means that as your understanding of the problem domain evolves—for exam-
ple, recognizing the need for distribution of computation at much finer granularity
than before—you need to keep reevaluating the existing abstractions in view of
whether they capture the essential complexity and how much incidental complexity
they add. The result will be an adaptation of solutions, sometimes representing a shift
in which properties you want to abstract over and which you want to expose. Reactive
service design is one such shift, which makes some patterns like synchronous, strongly
consistent service coupling obsolete. The corresponding loss in level of abstraction is
countered by defining new abstractions and patterns for solutions, akin to restacking
the building blocks on top of a realigned foundation.

 The new foundation is message orientation, and in order to compose large-scale
applications on top of it, you need suitable tools to work with. The patterns discussed
in the third part of this book are a combination of well-worn, comfortable instruments
like the Circuit Breaker pattern as well as emerging patterns learned from wider usage
of the Actor model. But a pattern consists of more than a description of a prototypical
solution; more important, it is characterized by the problem it tries to solve. The main
contribution of this book is therefore to discuss Reactive design patterns in light of
the four tenets of the Reactive Manifesto.

2.6.2 Bringing programming models closer to the real world

Our final remark on the consequences of Reactive programming takes up the strands
that shone through in several places already. You have seen that the desire to create
self-contained pieces of software that deliver service to their users reliably and quickly
led to a design that builds on encapsulated, independently executed units of compu-
tation. The compartments between the bulkheads form private spaces for services that
communicate only using messages in a high-level messaging language.

 These design constraints are familiar from the physical world and from our society:
humans also collaborate on larger tasks, perform individual tasks autonomously, com-
municate via high-level language, and so on. This allows us to visualize abstract soft-
ware concepts using well-known, customary images. We can tackle the architecture of
an application by asking, “How would you do it given a group of people?” Software
development is an extremely young discipline compared to the organization of labor
between humans over the past millennia, and by using the knowledge we have built
up, we have an easier time breaking down systems in ways that are compatible with the
nature of distributed, autonomous implementation.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

38 CHAPTER 2 A walk-through of the Reactive Manifesto

 Of course, we should stay away from abuses of anthropomorphism: we are slowly
eliminating terminology like “master/slave” in recognition that not everybody takes
the technical context into account when interpreting them.15 But even responsible
use offers plentiful opportunities for spicing up possibly dull work a little: for exam-
ple, by calling a component responsible for writing logs to disk a Scribe. Implement-
ing that class will have the feel of creating a little robot that will do certain things you
tell it to and with which you can play a bit—others call that activity writing tests and
make a sour face while saying so. With Reactive programming, you can turn this
around and realize: it’s fun!

2.7 Summary
This chapter laid the foundation for the rest of the book, introducing the tenets of the
Reactive Manifesto:

 Responsive
 Resilient
 Elastic
 Message-driven

We have shown how the need to stay responsive in the face of component failure
defines resilience, and likewise how the desire to withstand surges in the incoming
load elucidates the meaning of scalability. Throughout this discussion, you have seen
the common theme of message orientation as an enabler for meeting the other three
challenges.

 In the next chapter, we will introduce the tools of the trade: event loops, Futures
and Promises, Reactive Extensions, and the Actor model. All these make use of the
functional programming paradigm, which we will look at first.

15 Although terminology offers many interesting side notes: for example, a client is someone who obeys (from
the Latin cluere), whereas server derives from slave (from the Latin servus)—so a client–server relationship is
somewhat strange when interpreted literally.
 An example of naming that can easily prompt out-of-context interpretation is a hypothetical method name
like harvest_dead_children(). In the interest of reducing nontechnical arguments about code, it is best
to avoid such terms.

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

SOFTWARE DEVELOPMENT

M odern web applications serve potentially vast
numbers of users- and they need to keep working
as servers fail and new ones come online, users

overwhelm limited resources, and information is distributed
globally. A Reactive application adjusts to partial failures and
varying loads, remaining responsive in an ever-changing
distributed environment. The secret is message-driven
architecture- and design patterns to organize it.

Reactive Design Patterns presents the principles, patterns, and
best practices of Reactive application design. You'll learn how
to keep one slow component from bogging down others with
the Circuit Breaker pattern, how to shepherd a many-staged
transaction to completion with the Saga pattern, how to divide
data sets by Sharding, and much more. You'll even see how to
keep your source code readable and the system testable
despite many potential interactions and points of failure.

WHAT•s INSIDE

• The definitive guide to the Reactive Manifesto
• Patterns for flow control, delimited consistency, fault

tolerance, and much more
• Hard-won lessons about what doesn't work
• Architectures that scale under tremendous load

Most examples use Scala, Java, and Akka. Readers should be
familiar with distributed systems.

Dr. Roland Kuhn led the Akka team at Lightbend and coauthored
the Reactive Manifesto. Brian Hanafee and Jamie Allen are
experienced distributed systems architects.

To download their free eBook in PDF, ePub, and Kindle formats, owners of
this book should visit manning.com/books/reactive-design-patterns

Jll MANNING US$ 49.99 I Can $65.99

"Does an excellent job
explaining Reactive
architecture and design,
starting with first principles
and putting them into a
practical context."
- From the Foreword by Jonas Boner

Creator of Akka

"If the Reactive Manifesto
gave us a battle cry, this
work gives us the strategic
handbook for battle."

- Joel Kotarski, The Rawlings Group

"An engaging tour of
distributed computing
and the building blocks
of responsive, resilient
software."

- William Chan, linked In

"This book is so reactive,
it belongs on the left-hand
side of the periodic table!"
- Andy Hicks, Tanis Systems

9 7

www.itbook.store/books/9781617291807

https://itbook.store/books/9781617291807

	coverSample
	CopyrightSamplePages
	BriefContents
	SampleCh02
	coverB

