
M A N N I N G

V. K. Cody Bumgardner
FOREWORD BY Jay Pipes

www.itbook.store/books/9781617292163

Dottie
Text Box
SAMPLE CHAPTER

https://itbook.store/books/9781617292163

OpenStack in Action
by V. K. Cody Bumgardner

Chapter 4

 Copyright 2016 Manning Publications

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

v

brief contents

PART 1 GETTING STARTED ..1

1 ■ Introducing OpenStack 3
2 ■ Taking an OpenStack test-drive 20
3 ■ Learning basic OpenStack operations 55
4 ■ Understanding private cloud building blocks 84

PART 2 WALKING THROUGH A MANUAL DEPLOYMENT.............111

5 ■ Walking through a Controller deployment 113
6 ■ Walking through a Networking deployment 161
7 ■ Walking through a Block Storage deployment 195
8 ■ Walking through a Compute deployment 216

PART 3 BUILDING A PRODUCTION ENVIRONMENT 239

9 ■ Architecting your OpenStack 241
10 ■ Deploying Ceph 259
11 ■ Automated HA OpenStack deployment with Fuel 277
12 ■ Cloud orchestration using OpenStack 303

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

84

Understanding private
cloud building blocks

In chapter 1 you were introduced to OpenStack. You learned how OpenStack fits
into the cloud ecosystem, reasons for adopting the technology, and the focus of this
book. In chapter 2 you went from those high-level concepts directly into a hands-on
test-drive of the OpenStack framework using DevStack. In chapter 3 you worked
through some examples that you might encounter working as an OpenStack opera-
tor and gained further insight into the structure of the framework.

 In this chapter, we’ll shift back to the high-level concepts. If the first chapter was
to introduce and inform you, the second to get you excited about the technology,
and the third to make you operationally comfortable, the fourth gives you a foun-
dational understanding of what’s really going on inside the OpenStack framework.

This chapter covers
 Understanding OpenStack core project interoperability

 Exploring the relationship between vendor hardware and
OpenStack

 Learning from a manual OpenStack install

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

85How are OpenStack components related?

 This chapter won’t be as thought-provoking as chapter 1 or as fun as chapters 2
and 3. But regardless of whether you’re a system administrator, developer, IT archi-
tect, or even a CTO, this is the most important chapter for your understanding of the
OpenStack framework. If you’ll be dealing with OpenStack in the trenches, this chap-
ter will build your OpenStack foundation, which will be deepened in chapters 5
through 8. If you’ll be working with OpenStack on a high level, even if you’re simply
responsible for a vendor-managed solution, this chapter will help you understand the
collection of interacting components that make up an OpenStack deployment.

 What are you waiting for? Let’s get started!

4.1 How are OpenStack components related?
Since the first public release of OpenStack in 2010, the framework has grown from a few
core components to nearly ten. There are now hundreds of OpenStack-related pro-
jects, each with various levels of interoperability. These projects range from OpenStack
library dependencies to projects where the OpenStack framework is the dependency.

 In an effort to provide structure around the diverse set of projects, the OpenStack
Foundation created several project designations, including core, incubated, library,
gating, supporting, and related. These project designations and their descriptions can
be found in table 4.1.

Incubated projects, once fully developed and accepted, will eventually function in the
same way core projects do. Library functions will be abstracted (not observable) by
core project interaction. Gating and supporting projects aren’t used to provide
resources in a deployed system, so you don’t need to worry about those. That leaves
the related projects, which as the name implies, have some affiliation with OpenStack,
even if the affiliation is self-nominated.

4.1.1 Understanding component communication

Often when someone refers to “OpenStack,” they’re referring to projects with a “core”
designation. Core projects can use the OpenStack trademark and must pass all “must-
pass” tests, as defined by the OpenStack Foundation. Simply put, core components

Table 4.1 Project designations

Project designation Description

Core Official OpenStack projects (most people use these)

Incubated Core projects in development (on track to become core)

Library Dependencies of core projects

Gating Integration test suites and deployment tools

Supporting Documentation and development infrastructure

Related Unofficial projects (self-associated projects)

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

86 CHAPTER 4 Understanding private cloud building blocks

are those that almost everyone will use in an OpenStack deployment. Projects like
Compute, Networking, Storage, shared services, and Dashboard are examples of pro-
jects with a core designation, as shown in table 4.2.

In addition to various project designations, there are also several topologies in which
you can deploy project components. If more of a specific resource (Storage, Compute,
Networking, and so on) is required, more component-specific servers can be added.
We’ll discuss the project designations and their related components in section 4.1.2.

DASHBOARD AUTHENTICATION COMMUNICATION

Let’s jump right in and take a look at how core components communicate. We’ll walk
through the process of accessing the OpenStack Dashboard, reviewing the VM cre-
ation options, and creating a virtual machine.

 You must first provide the Dashboard with your login credentials and obtain an
authentication token. The authentication token is saved as a cookie in your web
browser and used with subsequent requests. As shown in figure 4.1, you obtain an
authentication token from the Identity Service. While you can use the Dashboard
(instead of the CLI or APIs) to navigate through the rest of this example, we won’t
show the interaction with the Dashboard. Even during the login process, the Dash-
board just displays interactions between the web browser and the OpenStack APIs.
We’re primarily concerned with component interaction on the API level.

Table 4.2 Core projects

Project Codename Description

Compute Nova Manages virtual machine (VM) resources, including CPU,
memory, disk, and network interfaces

Networking Neutron Provides resources used by VM network interfaces,
including IP addressing, routing, and software-defined
networking (SDN)

Object Storage Swift Provides object-level storage accessible via RESTful APIs

Block Storage Cinder Provides block-level (traditional disk) storage to VMs

Identity Service
(shared service)

Keystone Manages role-based access control (RBAC) for Open-
Stack components; provides authorization services

Image Service
(shared service)

Glance Manages VM disk images; provides image delivery to
VMs and snapshot (backup) services

Telemetry Service
(shared service)

Ceilometer Centralized collection for metering and monitoring Open-
Stack components

Orchestration Service
(shared service)

Heat Template-based cloud application orchestration for Open-
Stack environments

Database Service
(shared service)

Trove Provides users with relational and non-relational data-
base services

Dashboard Horizon Provides a web-based GUI for working with OpenStack

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

87How are OpenStack components related?

Once you have your authentication token, you can take the second step and access the
Compute component to create your virtual machine (VM).

RESOURCE QUERY AND REQUEST COMMUNICATION
As explained in chapter 3, OpenStack works on a tenant model. If the OpenStack
deployment is a hotel of resources, you can think of tenants as rooms in the hotel.
Each tenant (room) is assigned a resource quota (a number of towels, beds, and so
on). OpenStack users (guests) are assigned to tenants (rooms) through the use of
roles. The identity information is kept by the Identity component, and the quota
information is maintained by the Compute component.

 In the Dashboard, when you click Launch Instance, the Compute component is
queried to determine what resources and configurations are available in your current
tenant. Based on the available options, you describe the VM you want and submit the
configuration for creation.

 The communication between components during a VM creation request is shown
in figure 4.2. Because the creation of a VM isn’t instantaneous, the process is executed
asynchronously, so after you submit a VM for provisioning, you’re returned to the
Dashboard. In the Dashboard, your browser will periodically update the VM status
information.

RESOURCE PROVISIONING COMMUNICATION

When VM creation requests are submitted, the Compute service component will inter-
act with other components to provision the requested VM. The first thing that hap-
pens is that the VM object record is registered with the Compute service component.
This object record contains information about the VM status and configuration—the
VM object isn’t the VM instance, only a record describing the instance.

 When components communicate in the VM creation process, they reference com-
mon objects, like this VM object. For instance, the Compute service component might
request a storage assignment from the Storage service component. The Storage ser-
vice component would then provision the requested storage and provide a reference
to a Storage object, which would then be referenced in the VM object record.

4. Use this token
 for authentication.

Identity

Keystone

Welcome to the
OpenStack dashboard

1. Log in
<username>

<password>

2. Is the user who
 they say they are?

3. Yes. Here’s an
 authentication
 token.

Figure 4.1 Dashboard login

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

88 CHAPTER 4 Understanding private cloud building blocks

As shown in figure 4.3, the Compute service component communicates with other
core components to provision and assign resources to the VM object. Compute will
first request infrastructure components like Storage and Networking. When the vir-
tual infrastructure has been assigned to the VM and referenced in the VM object, the
Image Service will prepare the virtual storage volume with the requested image or
snapshot. At this point the VM creation process is complete and the Compute compo-
nent can spawn the VM.

 As demonstrated in the previous figures, core components work in concert to pro-
vide OpenStack services. OpenStack interactions, even those in the Dashboard, even-
tually find their way to the OpenStack APIs.

 As you’ll see next, related projects often use API calls exclusively to interact with
OpenStack.

RELATED PROJECT COMMUNICATION

Let’s take a look at how Ubuntu Juju, a related project, interacts with OpenStack. Juju
is a cloud automation package that uses OpenStack for virtual infrastructure. Juju
automates the deployment and configuration of applications on virtual infrastructure
using application-specific charms.

1. What resources are
 available to create
 VMs?

2. You have a quota
 of X units of (CPU,
 RAM, Storage) resource,
 access to private and public
 networks, and an image for
 Ubuntu Linux 12.04.

Available
resources?

CPU/RAM/storage,
networks, image

Create myVM
CPU: 2, RAM: 863

Storage: 40GB private
network

Ubuntu Linux image

Provisioning
myVM…

Compute

Nova

3. Create myVM using
 resources indicated

4. Start process of
 provisioning myVM

Compute

Nova

Figure 4.2 Resource query and request

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

89How are OpenStack components related?

For the lack of a better description, Juju charms are collections of installation scripts
that define how services and applications integrate into virtual infrastructure. Because
infrastructure, including networks and storage, can be provisioned programmatically
using OpenStack, Juju can deploy entire application suites from a charm. Simply put,
Juju turns newly provisioned VM instances into applications. We discuss this process in
detail in later chapters, but essentially you tell an application charm how large you
want your instances to be and how many instances you want, and it does the work to
deploy your applications.

 The first step in using Juju in your OpenStack deployment is to deploy what Juju
calls its bootstrap, using the Juju CLI. The bootstrap is a VM that Juju uses to control its
automation processes. The deployment of the bootstrap, from a component perspec-
tive, is similar to what you’ve seen in recent figures (see figures 4.1, 4.2, and 4.3). The
difference here is that in place of the web browser making the request, it’s the Juju
application.

JUJU NODES FROM THE OPENSTACK PERSPECTIVE Juju nodes run the Ubuntu
Linux operating system and include Juju-specific automation tools. From the
OpenStack perspective, a Juju node is no different than any other VM
provided by OpenStack. As a related project, Juju makes use of resources pro-
vided by OpenStack, but that’s where the integration ends.

1. Create myMV with
 CPU:2, RAM: 8GB.

Compute

Nova

Networking

Storage

Neutron

Cinder
2. I need 40 GB for myVM.

3. Ok. 40 GB allocated.

4. I need a virtual adapter on
 private network for myVM.

5. Ok. Adapter assigned to myVM
 and placed on private network.

7. Ok. Image cloned
 to volume on myVM

6. I need Ubuntu Linux 12.04
 image cloned to 40 GB
 volume on myVM.

Image

Glance

Figure 4.3 Provisioning of resources

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

90 CHAPTER 4 Understanding private cloud building blocks

Once the bootstrap node has been started, Juju commands will be issued to the boot-
strap node, not directly to OpenStack APIs. The reason for this is that the provisioning
process is asynchronous, as mentioned earlier, and it’s sometimes time-consuming.
You don’t want to maintain a connection from the desktop to the OpenStack deploy-
ment while a 20-VM application is deployed.

 In chapter 12 you’ll walk through deploying WordPress using Juju as an orchestra-
tion tool and OpenStack as the back end. Let’s take a look at how Juju uses the boot-
strap VM to orchestrate application deployment. Consider an example where you use
Juju and OpenStack to deploy a load-balanced WordPress application with a clustered
MySQL back end. In this case, you have three types of service nodes: load-balancing,
WordPress (Apache/PHP), and MySQL DB. Using the Juju charm developed for
WordPress, you describe the number of nodes for each service, their virtual size (CPU,
RAM, and so on), and how the nodes relate. You submit this charm to your bootstrap
node, which then interacts with OpenStack to provision the application. This process
is shown in figure 4.4.

Let’s assume that OpenStack, through the direction of the bootstrap node, success-
fully provisions all the required virtual infrastructure. At this point you have a collec-
tion of VMs, but no applications. The bootstrap node polls OpenStack, watching for its
requested VMs to come online. Once the VMs are online, it will start a process outside
the OpenStack framework to complete the install. As shown in figure 4.5, the boot-
strap node will communicate directly with the newly provisioned VMs. From this point
forward, OpenStack simply provides the virtual infrastructure and is unaware of the
application roles assigned to each VM.

 We’ve now discussed how the components of OpenStack communicate on the log-
ical level. In the figures, we’ve illustrated component communication, as if everything
was communicating inside a single big node (physical instance). In practice, however,
OpenStack components will be distributed across many physical commodity servers in
a multi-node topology.

2. OK. I will start
 the process.

1. I want to create a
 WordPress cluster.

3. Provision load
 balancer, application,
 and database nodes.

4. OK. I will start
the process.Bootstrap

VM

OpenStack APIs

Networking

Shared services

StorageCompute

NovaNeutron Cinder

Figure 4.4 OpenStack interacting with a related project

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

91How are OpenStack components related?

4.1.2 Distributed computing model

Let’s take a look at the OpenStack component distribution model. In distributed com-
puting, there are several component distribution methods.

 In a mesh distribution, control and data are distributed on the node level, and no
central authority exists. This method is fully distributed, but maintaining concurrency
across nodes is more difficult than in a central-control model. Mesh distributions are
most often used when workloads are self-contained and require little coordination
beyond collecting results.

 On the other end of the spectrum, a hub-and-spoke distribution passes all control
and data through a central node, like spokes around a hub. Hub-and-spoke topologies
are generally limited in scale, due to the aggregation of both the control and data
plane to a central node. Hub-and-spoke is most often used for workloads with a high
degree of node-to-node communication and coordination.

 The OpenStack distribution model shares characteristics of both mesh and hub-
and-spoke distributions. Like mesh, once OpenStack provisions the virtual infrastruc-
ture, the infrastructure will continue to function without the involvement of a central
controller. But like hub-and-spoke, component interaction is coordinated through a
central API service. The node that maintains the API services is known as the OpenStack

Install MySQL and
configure an active/passive

DB cluster using hosts
DB_0 and DB_1.

Install Apache,
PHP, and WordPress
using the database
cluster DB_0/DB_1.

Install HAProxy
and load-balance

web traffic for
Web_0–Web_N.

Bootstrap
VM

Web_0 LB_1DB_0

Web_N

Virtual
servers

LB_1DB_1

Figure 4.5 Juju bootstrap controls the VMs

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

92 CHAPTER 4 Understanding private cloud building blocks

controller. The controller coordinates component requests and serves as the primary
interface for an OpenStack deployment.

GENERAL DISTRIBUTED COMPONENT MODEL

Briefly, let’s suspend our thinking around the idea of OpenStack components, and
focus on the hybrid mesh and hub-and-spoke distribution model implemented by
OpenStack. Figure 4.6 illustrates the interaction of nodes in the OpenStack distribu-
tion model. The client contacts the controller to make service requests. The control-
ler, while not an operational dependency of the nodes, is aware of the system-wide
status and inventory. The controller selects the appropriate nodes for the job and dis-
tributes the request.

OPENSTACK’S DISTRIBUTED COMPONENT MODEL

The general distributed component model presented in figure 4.6 is representative of
the way OpenStack components communicate. Let’s discuss one final abstract exam-
ple of this model before we look at OpenStack specifics. Suppose a distributed compo-
nent model, like the one shown in figure 4.6, was implemented in a content
management system, like the ones used to stream movies on demand. Consider two
movies streaming simultaneously to two users. The initial requests to stream a movie
were made from the clients to a controller, and the controller directed two nodes to
stream the two movies to the clients. Now, suppose that while the movies are stream-
ing, the controller experiences a catastrophic failure. The movie streams wouldn’t be
interrupted, and neither the clients nor the nodes would be aware of this event. In
this type of distributed model, new requests can’t be fulfilled until a controller is avail-
able, but existing operations will continue.

Is The Godfather
available for streaming?

Here it is!

Hey!
Node 1! Check for

The Godfather under Drama.
Node 2!

Check under Action.

Node 1

It’s not under
Action.

Node 2

Node 3Controller

Figure 4.6 Distributed component model

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

93How are OpenStack components related?

 Now let’s think about how OpenStack components behave. This time we’ll think
about components in relation to the OpenStack distribution model. The control por-
tion of the component will reside on the control node, and the provisioning compo-
nents will be distributed on the resource nodes. Figure 4.7 introduces OpenStack
components into the distributed model.

DISTRIBUTED COMPONENT INTERACTION IN VM PROVISIONING

In the OpenStack distributed model, many resource nodes can exist for a single con-
troller. OpenStack components are actually collections of services. As previously
stated, some services run on controller nodes and some on resource nodes. Depend-
ing on the component, there might be several services that run on the controller and
several more on resource nodes. For the Compute component alone, there are six
controller services. In comparison, the Compute resource nodes generally run a sin-
gle Compute component.

 Let’s take a look at what happens when a VM request is made. Figure 4.8 illustrates
the node-level interaction of distributed OpenStack components required to create a
VM. From a component perspective, nothing has changed from the previous figures.
What we want to demonstrate is how OpenStack components communicate when
components are distributed on multiple nodes.

VM-LEVEL COMPONENT COMMUNICATION

In a multi-node deployment, you’ll have multiple nodes for each primary node type
(compute, storage, network). The ratio of compute, network, and storage nodes will
be dependent on your requirements for these resources. Specific node types might

Controller

Physical
servers

Resource
nodes

Networking
API

Storage
API

Compute
API

Networking Compute Storage

Node 1 Node 2 Node 3

Figure 4.7 Distributed
OpenStack model

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

94 CHAPTER 4 Understanding private cloud building blocks

additionally be connected to other vendor components, such as storage nodes to ven-
dor storage systems and network nodes to vendor network devices. The way specific
vendor resources are used by OpenStack is explained in section 4.2.

 We’ve described OpenStack component relations from the component communi-
cation level and the distributed services level. Now we’ll take a look at what’s going on
from the perspective of the VM.

 Virtual machines, as the name implies, are virtualized representations of resources
that would be available on a single physical machine. A VM runs an operating system
(OS), just like a physical system, and any OS running on a general-purpose VM will
expect virtual hardware to behave exactly like physical hardware resources. This is to
say, the OS reads and writes to network and storage devices the same way it writes to
CPU registers or RAM. When a physical machine runs a hypervisor, the hypervisor does
the work of translating multiple virtual address spaces to a single physical address
space. In a distributed OpenStack component, not only do you have virtual resources,
but they’re also distributed on separate physical nodes. You need to understand how
the distribution of resources relates to what is seen by the VMs.

Controller

I need a virtual
network interface on
the “private” network

for myVM.

Networking
API

Storage
API

Compute
API

Networking

Web browser

I want to create a VM named myVM
with {CPU: 2; RAM: 8 GB; storage: 40 GB}
on the “private” network. Please load the

Ubuntu Linux 12.04 image on myVM.

OK. I'll start provisioning myVM.
I see you have

available resources.
Please create a VM of size

{CPU: 2; RAM: 8 GB}
on your hypervisor.

I see you have
available storage.

Please provision and
assign a 40 GB

volume to myVM.

I see you provide network
services for the “private”
network. Please create a

virtual interface for myVM.
Assign it to the “private”

network.

Here's the info for
that 40 GB volume. Make
sure myVM can see the
volume as a local disk.

Here's the info to get myVM on the
“private” network. Create a tunnel

interface for myVM from your
node to my node. I'll provide

the VM network services.

I need a 40 GB
volume for myVM.

Compute Storage

Figure 4.8 Distributed
component interaction

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

95How is OpenStack related to vendor technologies?

Although VM resources are provided by multiple component-specific nodes, from
the perspective of the VM all resources are provided by a single piece of hardware.
Figure 4.9 illustrates how resources from component-specific resource nodes are
combined to create a single VM.

 You can think of the VM as living on a specific compute node, but the actual data
will live on a storage node, and data communicated (Layer 3) by the VM lives (passes
through) the network node.

DISTRIBUTED VIRTUAL ROUTING (DVR) Until recent releases of OpenStack, L3
network functions like routing were typically performed by a small number of
dedicated network nodes. The Neutron/DVR subproject has emerged to man-
age the distribution of routing across compute and dedicated network nodes.

The OpenStack distributed architecture and component design allows for very efficient
deployment of virtual infrastructure. The OpenStack framework provides you with the
ability to manage many nodes across component-node types from a single system.

4.2 How is OpenStack related to vendor technologies?
For many years, the vendors that provided compute, storage, and network hardware
focused on marketing faster and more capable hardware. More recently, though,
hardware has been viewed as a commodity, software has become more interoperable,

Networking

Eth0
private

Compute Storage

8 GB
RAM

2
CPU

40 GB
storage

Physical
servers

Virtual
server

myVM

Two virtual CPUs and 8 GB of RAM
provisioned from the hypervisor
on the compute node. The instructions
executed on myVM will be physically
executed by hardware on the
compute node.

One virtual network interface
(eth0) provisioned as a port
(tap) on the compute node
virtual switch. The compute
node will connect to the
network node over a Generic
Routing Encapsulation (GRE)
tunnel. From the perspective
of myVM, the network interface
is on the same Layer 2 broadcast
domain as the network node.
The network node will provide
all Layer 3 services (routing,
addressing, tunneling, and
so on) on the Layer 2
network for myVM.

40 GB of storage
provisioned from the storage
node, connected via iSCSI to
the compute node. Storage
will exist physically on the
storage node. The compute
node through its hypervisor
will assign the volume to
myVM. Once attached to myVM,
the storage will appear to the
OS to be local block storage.

Figure 4.9 Component-VM relations

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

96 CHAPTER 4 Understanding private cloud building blocks

and vendors have begun to provide services such as cloud computing instead of just
hardware and software, offering consumers much more flexible choices.

 One of the greatest benefits provided by the OpenStack framework is vendor neu-
trality. By interfacing with the OpenStack APIs, you are assured a minimum level of
functionality regardless of the underlying hardware vendor you’re using. OpenStack
doesn’t free you from vendors altogether—you still need underlying servers, storage,
and network resources. But OpenStack allows you to make vendor choices based on
performance and price without taking into account sunk costs on vendor-specific
implementations and the lock-in of feature sets. Not only can you use existing hard-
ware and software with OpenStack, future purchases can be based on what OpenStack
provides, not vendor-specific features.

 In this section, we’ll discuss how OpenStack deals with vendor-specific integra-
tions. The term vendor is used loosely in this context and can refer to either open
source technologies or commercial products. In OpenStack it’s up to the vendor or
support community to develop the vendor-technology integration. Different Open-
Stack components have different ways of dealing with this integration, as you’ll see in
the following sections.

4.2.1 Using vendor storage systems with OpenStack

Let’s look at the types of vendor storage supported by OpenStack Block Storage (Cin-
der) and see how this integration is achieved. Figure 4.10 shows a logical view of stor-
age resource assignments and management.

 This figure shows the CPU and RAM portions of a VM being provided by a commod-
ity server. It also shows that the storage assigned to the VM is not on the commodity
server; it’s provided by a separate storage system. As you’ll soon learn, there are many
ways to provide that virtual block device to a VM.

STORAGE SYSTEM IN DEVSTACK In chapter 2 you walked through deploying
DevStack, but you didn’t do any specific configuration for storage. In that
single-node DevStack deployment, the storage resources were consumed
from the same computer as the compute resources. However, in multi-node
production deployments, compute and storage resources are isolated on spe-
cific storage and compute nodes and/or appliances.

The use of storage vendors and technologies isn’t limited to OpenStack Block Storage
(Cinder) and could even be used with OpenStack Object Storage (Swift). We’ll look at
Cinder because the storage it manages is used as part of a VM, and this chapter focuses
on the integration between OpenStack and vendor components. This is not to say that
OpenStack Object Storage is any less complex, just that it’s more self-contained and
isn’t used directly by a running VM (and thus is less relevant in this chapter).

HOW STORAGE IS USED BY VMS

In OpenStack and other environments that provide infrastructure as a service (IaaS),
virtual block storage devices are provisioned and assigned to VMs. The operating

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

97How is OpenStack related to vendor technologies?

systems running in the VMs manage the filesystems on their virtual block devices or
volumes.

 You might be wondering, “If the compute portion of a VM is provided by a server
and the storage is provided by a separate server or storage appliance, how are they
connected to provide a single VM?” The simple answer is that all resources eventually
make their way to the VM as virtual hardware, which is then connected together on
the hypervisor level. Take a look at figure 4.11, which shows a technical view of the log-
ical view shown previously in figure 4.10.

 In this figure, a vendor storage system is directly connected to a compute node
(connected through Peripheral Component Interconnect Express (PCI-E), Ethernet,
Fiber Channel (FC), Fiber Channel over Ethernet (FCoE), or vendor-specific commu-
nication link). The compute node and the storage system communicate using a storage
transport protocol such as Internet Small Computer System Interface (iSCSI), Network
File System (NFS), or a vendor-specific protocol. In short, storage can be provided to
the compute node running the hypervisor using many different methods, and it’s the
compute node’s job to present those resources to the virtual machine.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

OpenStack assigns
the VM’s compute
resource to commodity
server hardware.

Storage for the
VM is assigned to
a separate virtual
block device.

Server
hardware

NetApp
SANDELL

Net RAMCPU Disk

VM

Figure 4.10 OpenStack and
vendor storage system

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

98 CHAPTER 4 Understanding private cloud building blocks

Looking once again at figure 4.11, you can see that regardless of how the storage is
provided, the storage resources assigned to a specific VM end up managed as virtual
hardware on the same node that provides CPU and RAM resources to that VM.

 Let’s summarize what you’ve learned so far about OpenStack and vendor storage
systems:

 Operating systems use block storage devices for their filesystems.
 Hypervisors on compute nodes provide virtual block (OS-bootable) devices to

VMs.
 There are many ways to provide storage resources to a compute node running a

hypervisor.
 Vendor storage systems can be used to provide storage resources to compute

nodes.
 OpenStack manages the relationship between the hypervisor, the compute

node, and the storage system.

 In the next section you’ll learn just how OpenStack manages these resources.

HOW OPENSTACK SUPPORTS VENDOR STORAGE

You might be thinking, “OK, I understand how the storage is used, but how is it man-
aged by OpenStack?” Cinder is a modular system allowing developers to create plug-
ins (drivers) to support any storage technology and vendor. These modules might be
developed by a product development team in a corporation or a community effort.

 Figure 4.12 shows Cinder using a plug-in to manage a vendor storage system.
 As you learned earlier in this chapter, individual OpenStack components have spe-

cific responsibilities. In the case of Cinder, its responsibility is to translate the request
for storage from OpenStack Compute into an actionable request using the vendor-
specific API of a storage system.

Vendor storage resources
are provided directly to the
VM as virtual hardware,
managed by the hypervisor.

Storage transport
protocol

DELL

Net RAMCPU Disk

VM

Backend
technology

Figure 4.11 Vendor storage used by hypervisor

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

99How is OpenStack related to vendor technologies?

Obviously, if you’re going to translate one language or API to another, you need a min-
imum number of defined functions that can be related to each other. For each Open-
Stack release, there are a minimum number of required features and statistical
reports for each plug-in. If plug-ins aren’t maintained between releases, and addi-
tional functions and reports are required, they’re deprecated in subsequent releases.
The current lists of minimum features and reports (at the time of writing) are found
in tables 4.3 and 4.4. The most current list of plug-in requirements can be found on
the GitHub repository: http://docs.openstack.org/developer/cinder/devref/drivers
.html. However, as of the time of this writing, the list of Cinder plug-in minimum fea-
tures hasn’t changed since the Icehouse release.

Table 4.3 Minimum features

Feature name Description

Volume create/delete Creates/deletes a volume for a VM on a backend storage system

Volume attach/detach Attaches/detaches a volume to/from a VM on a backend storage system

Snapshot create/delete Takes a running snapshot of a volume on a backend storage system

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

NetApp
SANDELL

RAMCPU

VM

Storage vendor API

Vendor plug-in

Net

Server
hardware

Disk

Figure 4.12 Cinder manages vendor storage.

www.itbook.store/books/9781617292163

http://docs.openstack.org/developer/cinder/devref/drivers.html
http://docs.openstack.org/developer/cinder/devref/drivers.html
https://itbook.store/books/9781617292163

100 CHAPTER 4 Understanding private cloud building blocks

EXAMPLES OF VENDOR STORAGE IN OPENSTACK As previously stated, support
for vendor storage is provided by plug-ins in Cinder. Plug-ins have already
been developed by and for many vendors, including Coraid, Dell, EMC, Glus-
terFS, HDS, HP, Huawei, IBM, NetApp, Nexenta, Ceph, Scality, SolidFire,
VMware, Microsoft, Zadara, and Oracle. In addition to commercial vendors,
Cinder also supports storage provided by Linux Logical Volume Manager
(LVM) and NFS mounts. An up-to-date Cinder support matrix can be found
here: https://wiki.openstack.org/wiki/CinderSupportMatrix.

UNKNOWN OR INFINITE FREE SPACE In table 4.4, under free_capacity_gb, you’ll
notice that the values unknown and infinite can be used as free space values.
Situations where these values are necessary might exist, but from a general
operations perspective you should be aware that these are valid values for a
storage driver.

Volume from snapshot Creates a new volume from a previous snapshot on a backend storage
system

Get volume stats Reports the statistics on a specific volume

Image to volume Copies image to a volume that can be used by a VM

Volume to image Copies a volume used by a VM to a binary image

Clone volume Clones one VM volume to another VM volume

Extend volume Extends the size of a VM volume without destroying the data on the existing
volume

Table 4.4 Minimum reporting statistics

Statistic name Example Description

driver_version 1.0a Version of the vendor-specific driver for the reporting plug-in.

free_capacity_gb 1000 Amount of free space in gigabytes. If unknown or infinite,
the keywords “unknown” or “infinite” are reported.

reserved_percentage 10 Percentage of space that is reserved but not yet used (thin
provisioned volume allocation, not actual usage).

storage_protocol iSCSI Reports the storage protocol: iSCSI, FC, NFS, etc.

total_capacity_gb 102400 Amount of total capacity in gigabytes. If unknown or infinite,
the keywords “unknown” or “infinite” are reported.

vendor_name Dell Name of the vendor that provides the backend storage
system.

volume_backend_name Equ_vol00 Name of the volume on the vendor backend. This is needed
for statistical reporting and troubleshooting.

Table 4.3 Minimum features (continued)

Feature name Description

www.itbook.store/books/9781617292163

https://wiki.openstack.org/wiki/CinderSupportMatrix
https://itbook.store/books/9781617292163

101How is OpenStack related to vendor technologies?

4.2.2 Using vendor network systems with OpenStack

In OpenStack, it’s common for compute resources to be provided by server hardware,
storage resources by vendor storage systems, and networks by one or more vendors
simultaneously. Obviously, if a VM is running on a specific server, that server is provid-
ing all of the computational resources (CPU, RAM, I/O, and so on) for that VM.
Because a server can support more than one VM, this relationship is one-to-many from
the perspective of the server and one-to-one from the perspective of the VM. That is to
say that from a computation standpoint, the only resources consumed will come from
the server hosting the VM.

 As discussed in the previous section, although storage resources are technically
removed from the compute node, from the perspective of the VM this is also a one-to-
one relationship. In general, you’ll have a single node running on a single volume
that appears to the VM to be from a single container of virtual hardware.

 Figure 4.13 shows the logical view of network resource assignments and manage-
ment first introduced in chapter 1.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

OpenStack manages
vendor networks.

DELL

Net RAMCPU Disk

VM

Vendor network

Figure 4.13 OpenStack
and vendor networking

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

102 CHAPTER 4 Understanding private cloud building blocks

This figure represents a simplistic view of networking that suggests network resources
are to be consumed in the same one-to-one way as compute and storage. Unfortu-
nately, networking is not that simple. What the figure doesn’t show are the layers of
management that go into connecting two endpoints on a network. This section
describes OpenStack Networking (Neutron) and how it manages vendor networks.

 We’ll look first at how VMs use networking.

HOW NETWORKING IS USED BY VMS

Obviously, a network isn’t very useful with a single VM, so you can expect that there will
be, at a minimum, two VMs/nodes communicating. The way in which two nodes com-
municate depends on their relation to one another in the overall network. Table 4.5
summarizes several communication cases experienced in traditional virtual environ-
ments. These are described as traditional cases because software-defined networking
(SDN), regardless of vendor, has blurred the lines of this paradigm.

In the intra-host case, traffic is kept on the physical host and never reaches the vendor
network. The hypervisor can use its virtual switch (network) to pass traffic from one
host to another.

 In contrast, in both the inter-host-internal and inter-host-external cases, the hyper-
visor nodes and overall virtualization platform completely offload node communica-
tion to the vendor network.

 Figure 4.14 shows the traditional method of communication for nodes on the
same host. As of the time of writing, legacy Nova networking and the default distrib-
uted switch in VMware vSphere work this way.

 The figure shows three nodes on the same physical host. The two nodes on VLAN_1
communicate inside the host and don’t touch the vendor network. But communica-
tion between the two nodes on separate VLANs, VLAN_1 and VLAN_2, is offloaded to
the vendor network. The vendor network is completely in charge of making sure this
communication makes it to the intended destination, even when the endpoints are on
the same node. The detail needed to cover how the networking works in these cases is
beyond the scope of this chapter. What you need to understand is that OpenStack
abstracts a great deal of complexity from the vendor network. Complex vendor-
specific configurations are managed through plug-ins.

Table 4.5 Node communication cases

Case Description

Intra-host Communication on the same VLAN (L2 network) on the same physical
host

Inter-host-internal Communication between nodes on the same VLAN, but different hosts

Inter-host-external Communication between OpenStack hosts and endpoints on unknown
external networks (internet)

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

103How is OpenStack related to vendor technologies?

By now it should be clear that vendor networking is more complicated than simply pro-
visioning resources, which is what vendor storage systems do. Take a look at figure 4.15,
which shows two hosts communicating using a vendor network. Of course, you could
configure OpenStack to behave like a traditional virtualization framework and simply
offload all the communication to the vendor network, but this is undesirable for a
cloud platform. The details of why it’s undesirable are beyond the scope of this chap-
ter, but suffice it to say that this approach will not scale and will be a limiting factor in
how you manage and provision resources.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

Three nodes
live on same
physical host.

Communication between
the nodes on separate
VLANs is offloaded to
the vendor network.

The two nodes on
VLAN1 communicate
to each other inside
the host without
touching the vendor
network.

DELL

Net RAMCPU Disk

VM1

Net RAMCPU Disk

VM2

Net RAMCPU Disk

VM3

VLAN1

VLAN2

Vendor
network

Figure 4.14 Traditional
intra-host communication

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

104 CHAPTER 4 Understanding private cloud building blocks

Suppose you want to manage the network in figure 4.16 with the same level of granu-
larity you manage compute and storage resources. In this model, OpenStack Network-
ing (Neutron) interfaces directly with vendor network components, which allows
Neutron and its supported host to make their own network decisions.

 Let’s summarize what you’ve learned so far about OpenStack and vendor network-
ing systems:

 Traditional hypervisors and virtualization frameworks unintelligently offload
many functions to vendor networking.

 Traditional hypervisors and virtualization frameworks have little or no knowl-
edge of how networking was performed, even for their own VMs.

 Managing vendor networking is more complicated than controlling a one-to-
one relationship, like with vendor storage.

 Neutron is the codename for OpenStack Networking.

Net RAMCPU Disk

VM2

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

Two hosts
communicating
using a vendor
network.

Net RAMCPU Disk

VMVendor
network

This approach
will not scale.

!

DELL

Figure 4.15 Vendor networking
host-to-host

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

105How is OpenStack related to vendor technologies?

 Neutron integrates with vendor networking components to make networking
decisions for OpenStack.

We’ll take a look at how Neutron interfaces with vendor network components in the
next section.

HOW OPENSTACK SUPPORTS VENDOR NETWORKING

Just as Cinder uses vendor-specific plug-ins to communicate with vendor storage sys-
tems, Neutron uses plug-ins to manage vendor networking. As previously stated, plug-
ins translate between OpenStack APIs and vendor-specific APIs. The relationship
between Neutron and the vendor network is shown in figure 4.16.

 You might wonder just what is being managed on the vendor network. The answer
to this question is it depends. There are many networking vendors who produce many
types of networking devices. These devices must interoperate at least on the level of
network communication. After all, what good is a network if you can’t communicate
between networks and devices?

 Software-defined networking (SDN) supports the idea of a separation of network
management and communication functions. Because OpenStack Networking is a type

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

DELL

RAMCPU Disk

VM

Network
vendor API

Vendor
plug-in

Vendor
network

Net
Figure 4.16 Neutron
manages vendor networking.

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

106 CHAPTER 4 Understanding private cloud building blocks

of SDN, this so-called separation of the control plane and data plane is at the heart of
OpenStack Networking when dealing with vendor hardware and software.

OPENSTACK NETWORKING ALSO PROVIDES L3 SERVICES In the context of ven-
dor networking, OpenStack functions as a network controller. But it’s worth
noting that OpenStack networking does provide L3 services in the form of vir-
tual routing, DHCP, and other services.

Figure 4.17 shows Neutron managing network devices in the control plane through
the use of vendor-specific plug-ins. As you can see, the data plane never touches Neu-
tron. In fact, Neutron might have no low-level insight into how the communication
between the two nodes is happening. But Neutron knows that both nodes are on the
specific network hardware that it manages, so Neutron can configure the endpoints to
communicate, regardless of how the communication navigates the data plane.

OpenStack services

Networking

Shared services

StorageCompute

NovaNeutron Cinder

The control plane
(management) never
touches the data plane
(communication).

DELL

RAMCPU Disk

VM

RAMCPU Disk

VM

API

API

Data
plane

Control planes

Vendor
plug-in

Vendor
network

Vendor
network Net

NetFigure 4.17 The control and
data planes with OpenStack
Networking

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

107How is OpenStack related to vendor technologies?

In the next section, you’ll learn about the types of vendor networking used in OpenStack.

EXAMPLES OF VENDOR NETWORKING IN OPENSTACK

In early versions of OpenStack, networking was provided in a traditional way, with net-
working being managed by OpenStack Compute (Nova). As demand for network con-
trol outside the scope of OpenStack Compute grew, OpenStack Networking
(originally Quantum, and later Neutron) was developed as a separate project.

 As previously described, Neutron manages vendor networking using vendor-
specific plug-ins. As the community added more and more support for vendor net-
working, the need for further modularity through a standard plug-in module was
identified. The benefits of modular plug-ins include reduced redundant code, easier
vendor integration, and standardization of core network functions.

 With the release of OpenStack Havana in late 2013, the Neutron Modular Layer 2
(ML2) plug-in was introduced. The ML2 plug-in is divided into type and mechanism
drivers. Figure 4.18 shows the hierarchy of the ML2 plug-in with the type and mecha-
nism drivers.

 The type drivers, as the name suggests, are related to the type of network the plug-
in manages. You can think of the type driver as how Neutron manages the endpoints.
For example, Neutron could specify a tunnel be created between endpoints without
knowing anything about the network between the endpoints. This gets us back to the
discussion about the separation of control and data planes.

 The mechanism drivers are responsible for managing the virtual and physical net-
work devices that are attached to endpoints. These drivers create, update, and delete
network and port resources based on the requirements of the type driver.

Understanding SDN and OpenStack Networking
This is a very complicated topic, and you’ll probably want to go back and reread this
section a few times. You aren’t expected to fully understand SDN, but it’s important
that you understand the basic role of Neutron in relation to vendor networking.
Chances are that your local network expert (unless this is you), doesn’t know
any more about SDN, and by relation OpenStack Networking, than you do. Open-
Stack/Neutron works on the control plane to manage communication between VMs
that it manages, but it doesn’t control the data plane related to communication
between endpoints.

This is a new way of thinking about networking that really turns the traditional network
world on its head. I've just introduced the topic in this section to give you some
insight into how OpenStack can manage vendor networks without you having to hand
over your enterprise or data center to OpenStack control. As previously stated, Open-
Stack can be configured to work very traditionally in terms of network integration, but
the framework is well positioned to take advantage of the SDN model and technolo-
gies. The Open Networking Foundation (www.opennetworking.org) was founded to
promote SDN and is a good starting point for gaining a deeper understanding of SDN.

www.itbook.store/books/9781617292163

http://www.opennetworking.org
https://itbook.store/books/9781617292163

108 CHAPTER 4 Understanding private cloud building blocks

The goal of the ML2 plug-in is to replace many of the monolithic plug-ins that exist today.

EXAMPLES OF VENDOR NETWORKING IN OPENSTACK Neutron plug-ins have
been developed for many vendors, including Arista, Cisco, Nicira/VMware,
NEC, Brocade, IBM, and Juniper. In addition, ML2 drivers have been devel-
oped for Big Switch/Floodlight, Arista, Mellanox, Cisco, Brocade, Nicira/
VMware, and NEC.

The next section will touch on what you’ve learned in the first part of this book and
what will be covered in the second part.

4.3 Why walk through a manual deployment?
In chapter 1 you were introduced to OpenStack. In that introduction you learned how
OpenStack fits into the cloud ecosystem, why you might want to adopt the technology,
and what the focus of this book will be. In chapter 2, motivated by the fantastic possi-
bilities described in the first chapter, you took a limited test-drive of the OpenStack
framework, working through some exercises that didn’t require an in-depth knowl-
edge of the framework. Chapter 3 presented more examples, but this time from
an operational perspective, giving you further insight into the structure of the
framework. Finally, in this chapter you learned how OpenStack works through its
framework of components and interoperates with vendor hardware and software.

 You’ve covered a great deal in four chapters. If you completed all of the exercises
and have a working DevStack deployment, congratulate yourself! You might (unfortu-
nately) already be considered an OpenStack expert in many organizations. But
although the first part of this book may be sufficient to make you look like an expert,
there’s much more to learn before you take the leap to a multi-node production
deployment.

Networking

Neutron

API extension

GRE VXLAN VLAN Arista Cisco Linux
bridge OVS L2 pop

Mechanism driver

ML2 plug-in

Type driver

Figure 4.18 Network management with the Neutron ML2 plug-in

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

109Summary

 Part 2 of this book covers deploying OpenStack manually, going through each
command and configuration, and explaining both the steps involved and what they
mean. If your view is more high-level, or you plan on relying on a vendor for your
OpenStack support, you can skip to part 3, where we’ll cover topics related to design,
implementation, and even the economics of OpenStack production deployments.
This being said, even if you expect a fully managed OpenStack solution to be provided
by a vendor, there’s certainly value in knowing what’s going on under the covers. I rec-
ommend at least reviewing part 2, even if you don’t plan on personally deploying a
production OpenStack environment.

4.4 Summary
 OpenStack is a framework that consists of many projects.
 OpenStack project designations range from core (integral parts of OpenStack)

to related (projects that have some relation).
 OpenStack works using a collection of distributed core components.
 Core components communicate with each other using their respective APIs.
 OpenStack can manage vendor-provided hardware and software.
 OpenStack manages vendor-provided hardware and software through compo-

nent plug-ins.

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

V. K. Cody Bumgardner

O
penStack is an open source framework that lets you
create a private or public cloud platform on your own
physical servers. You build custom infrastructure, plat-

form, and software services without the expense and vendor
lock-in associated with proprietary cloud platforms like Ama-
zon Web Services and Microsoft Azure. With an OpenStack
private cloud, you can get increased security, more control,
improved reliability, and lower costs.

OpenStack in Action offers real-world use cases and step-by-step
instructions on how to develop your own cloud platform. This
book guides you through the design of both the physical hard-
ware cluster and the infrastructure services you’ll need. You’ll
learn how to select and set up virtual and physical servers,
how to implement software-defi ned networking, and technical
details of designing, deploying, and operating an OpenStack
cloud in your enterprise. You’ll also discover how to best tailor
your OpenStack deployment for your environment. Finally,
you’ll learn how your cloud can offer user-facing software and
infrastructure services.

What’s Inside
● Develop and deploy an enterprise private cloud
● Private cloud technologies from an IT perspective
● Organizational impact of self-service cloud computing

No prior knowledge of OpenStack or cloud development is
assumed.

Cody Bumgardner is the Chief Technology Architect at a large
university where he is responsible for the architecture, deploy-
ment, and long-term strategy of OpenStack private clouds and
other cloud computing initiatives.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/openstack-in-action

$54.99 / Can $63.99 [INCLUDING eBOOK]

OpenStack IN ACTION

CLOUD/SOFTWARE DEVELOPMENT

M A N N I N G

“An excellent primer on
 the complex world of cloud

computing and the OpenStack
software ecosystem.”

—From the Foreword by Jay Pipes,
Member, OpenStack Technical

Committee

“Provides enough theory
and practice to understand
the subject matter with just
 the right level of detail.”

—Hafi zur Rahman
Kii Corporation

“A fundamental resource
for learning, installing, and
managing this exciting piece
 of cloud infrastructure.”

—Michael Hamrah, Getty Images

“If you thought that AWS
was the only player, you need

 to read this book.”
—Kosmas Chatzimichalis

Mach 7x

SEE INSERT

www.itbook.store/books/9781617292163

https://itbook.store/books/9781617292163

