
M A N N I N G

Andrew G. Psaltis

Understanding the real-time pipeline

S A M P L E C H A P T E R

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

Streaming Data
Understanding the real-time pipeline

by Andrew G. Psaltis

 Chapter 1

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

v

brief contents
PART 1 A NEW HOLISTIC APPROACH...1

1 ■ Introducing streaming data 3

2 ■ Getting data from clients: data ingestion 14

3 ■ Transporting the data from collection tier:
decoupling the data pipeline 38

4 ■ Analyzing streaming data 58

5 ■ Algorithms for data analysis 77

6 ■ Storing the analyzed or collected data 95

7 ■ Making the data available 113

8 ■ Consumer device capabilities and limitations
accessing the data 135

PART 2 TAKING IT REAL WORLD...157

9 ■ Analyzing Meetup RSVPs in real time 159

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

3

Introducing
streaming data

Data is flowing everywhere around us, through phones, credit cards, sensor-equipped
buildings, vending machines, thermostats, trains, buses, planes, posts to social media,
digital pictures and video—and the list goes on. In a May 2013 report, Scandina-
vian research center Sintef estimated that approximately 90% of the data that
existed in the world at the time of the report had been created in the preceding
two years. In April 2014, EMC, in partnership with IDC, released the seventh annual
Digital Universe study (www.emc.com/about/news/press/2014/20140409-01.htm),
which asserted that the digital universe is doubling in size every two years and
would multiply 10-fold between 2013 and 2020, growing from 4.4 trillion gigabytes
to 44 trillion gigabytes. I don’t know about you, but I find those numbers hard to
comprehend and relate to. A great way of putting that in perspective also comes from

This chapter covers
 Differences between real-time and streaming data

systems

 Why streaming data is important

 The architectural blueprint

 Security for streaming data systems

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

4 CHAPTER 1 Introducing streaming data

that report: today, if a byte of data were a gallon of water, in only 10 seconds there would
be enough data to fill an average home. In 2020, it will only take 2 seconds.

 Although the notion of Big Data has existed for a long time, we now have technol-
ogy that can store all the data we collect and analyze it. This does not eliminate the
need for using the data in the correct context, but it is now much easier to ask inter-
esting questions of it, make better and faster business decisions, and provide services
that allow consumers and businesses to leverage what is happening around them.

 We live in a world that is operating more and more in the now—from social media,
to retail stores tracking users as they walk through the aisles, to sensors reacting to
changes in their environment. There is no shortage of examples of data being used
today as it happens. What is missing, though, is a shared way to both talk about and
design the systems that will enable not merely these current services but also the sys-
tems of the future.

 This book lays down a common architectural blueprint for how to talk about and
design the systems that will handle all the amazing questions yet to be asked of the
data flowing all around us. Even if you’ve never built, designed, or even worked on a
real-time or Big Data system, this book will serve as a great guide. In fact, this book
focuses on the big ideas of streaming and real-time data. As such, no experience with
streaming or real-time data systems is required, making this perfect for the developer
or architect who wants to learn about these systems. It’s also written to be accessible to
technical managers and business decision makers.

 To set the stage, this chapter introduces the concepts of streaming data systems,
previews the architectural blueprint, and gets you set to explore in-depth each of the
tiers as we progress. Before I go over the architectural blueprint used throughout the
book, it’s important that you gain an understanding of real-time and streaming sys-
tems that we can build upon.

1.1 What is a real-time system?
Real-time systems and real-time computing have been around for decades, but with the
advent of the internet they have become very popular. Unfortunately, with this popu-
larity has come ambiguity and debate. What constitutes a real-time system?

 Real-time systems are classified as hard, soft, and near. The definitions I use in this
book for hard and soft real-time are based on Hermann Kopetz’s book Real-Time Systems
(Springer, 2011). For near real-time I use the definition found in the Portland Pattern
Repository’s Wiki (http://c2.com/cgi/wiki?NearRealTime). For an example of the
ambiguity that exists, you don’t need to look much further than Dictionary.com’s
definition: “Denoting or relating to a data-processing system that is slightly slower
than real-time.” To help clear up the ambiguity, table 1.1 breaks out the common
classifications of real-time systems along with the prominent characteristics by which
they differ.

 You can identify hard real-time systems fairly easily. They are almost always found
in embedded systems and have very strict time requirements that, if missed, may result

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

5What is a real-time system?

in total system failure. The design and implementation of hard real-time systems are
well studied in the literature, but are outside the scope of this book. (If you are inter-
ested, check out the previously mentioned book by Hermann Kopetz.)

 Determining whether a system is soft or near real-time is an interesting exercise,
because the overlap in their definitions often results in confusion. Here are three
examples:

 Someone you are following on Twitter posts a tweet, and moments later you see
the tweet in your Twitter client.

 You are tracking flights around New York using the real-time Live Flight Track-
ing service from FlightAware (http://flightaware.com/live/airport/KJFK).

 You are using the NASDAQ Real Time Quotes application (www.nasdaq.com/
quotes/real-time.aspx) to track your favorite stocks.

Although these systems are all quite different, figure 1.1 shows what they have in
common.

Table 1.1 Classification of real-time systems

Classification Examples Latency measured in Tolerance for delay

Hard Pacemaker, anti-lock
brakes

 Microseconds–milliseconds None—total system fail-
ure, potential loss of life

Soft Airline reservation sys-
tem, online stock
quotes, VoIP (Skype)

Milliseconds–seconds Low—no system failure,
no life at risk

Near Skype video, home
automation

Seconds–minutes High—no system failure,
no life at risk

Real-time

computation

Data

Data

Data

Input data to process
(tweet, stock change,

flight status)

Processed data being
consumed by clients

Figure 1.1 A generic real-time system with consumers

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

6 CHAPTER 1 Introducing streaming data

In each of the examples, is it reasonable to conclude that the time delay may only last
for seconds, no life is at risk, and an occasional delay for minutes would not cause
total system failure? If someone posts a tweet, and you see it almost immediately, is
that soft or near real-time? What about watching live flight status or real-time stock
quotes? Some of these can go either way: what if there were a delay in the data due to
slow Wi-Fi at the coffee shop or on the plane? As you consider these examples, I
think you will agree that the line differentiating soft and near real-time becomes
blurry, at times disappears, is very subjective, and may often depend on the consumer
of the data.

 Now let’s change our examples by taking the consumer out of the picture and
focusing on the services at hand:

 A tweet is posted on Twitter.
 The Live Flight Tracking service from FlightAware is tracking flights.
 The NASDAQ Real Time Quotes application is tracking stock quotes.

Granted, we don’t know how these systems work internally, but the essence of what we
are asking is common to all of them. It can be stated as follows:

 Is the process of receiving data all the way to the point where it is ready for consump-
tion a soft or near real-time process?

Graphically, this looks like figure 1.2.

Does focusing on the data processing and taking the consumers of the data out of the
picture change your answer? For example, how would you classify the following?

 A tweet posted to Twitter
 A tweet posted by someone whom you follow and your seeing it in your Twitter

client

If you classified them differently, why? Was it due to the lag or perceived lag in seeing
the tweet in your Twitter client? After a while, the line between whether a system is soft

Data

Data

Data

Input data to process
(tweet, stock change,

flight status)

Real-time

computation

Figure 1.2 A generic real-time
system with no consumers

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

7Differences between real-time and streaming systems

or near real-time becomes quite blurry. Often people settle on calling them real-time.
In this book, I aim to provide a better way to identify these systems.

1.2 Differences between real-time and streaming systems
It should be apparent by now that a system may be labeled soft or near real-time based
on the perceived delay experienced by consumers. We have seen, with simple exam-
ples, how the distinction between the types of real-time system can be hard to discern.
This can become a larger problem in systems that involve more people in the conver-
sation. Again, our goal here is to settle on a common language we can use to describe
these systems. When you look at the big picture, we are trying to use one term to
define two parts of a larger system. As illustrated in figure 1.3, the end result is that it
breaks down, making it very difficult to communicate with others with these systems
because we don’t have a clear definition.

On the left-hand side of figure 1.3 we have the non-hard real-time service, or the com-
putation part of the system, and on the right-hand side we have the clients, called the
consumption side of the system.

DEFINITION: STREAMING DATA SYSTEM In many scenarios, the computation
part of the system is operating in a non-hard real-time fashion, but the clients
may not be consuming the data in real time due to network delays, applica-
tion design, or a client application that isn’t even running. Put another way,
what we have is a non-hard real-time service with clients that consume data
when they need it. This is called a streaming data system—a non-hard real-time

Non-hard real-time

computation

Data

Data

Data

Input data to process
(tweet, stock change,

flight status)

Processed data being
consumed by clients

Non-hard real-time system

(computation)

Clients

(consumption)

Figure 1.3 Real-time computation and consumption split apart

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

8 CHAPTER 1 Introducing streaming data

system that makes its data available at the moment a client application needs
it. It’s neither soft nor near—it is streaming.

Figure 1.4 shows the result of applying this definition to our example architecture
from figure 1.3.

The concept of streaming data eliminates the confusion of soft versus near and real-
time versus not real-time, allowing us to concentrate on designing systems that
deliver the information a client requests at the moment it is needed. Let’s use our
examples from before, but this time think about them from the standpoint of
streaming. See if you can split each one up and recognize the streaming data service
and streaming client.

 Someone you are following on Twitter posts a tweet, and moments later you see
the tweet in your Twitter client.

 You are tracking flights around New York using the real-time Live Flight Track-
ing service from FlightAware.

 You are using the NASDAQ Real Time Quotes application to track your favor-
ite stocks.

How did you do? Here is how I thought about them:

 Twitter—A streaming system that processes tweets and allows clients to request
the latest tweets at the moment they are needed; some may be seconds old, and
others may be hours old.

 FlightAware—A streaming system that processes the most recent flight status data
and allows a client to request the latest data for particular airports or flights.

Streaming

computation

Data

Data

Data

Input data to process
(tweet, stock change,

flight status)

Processed data being
consumed by clients

Streaming data service Streaming clients

Figure 1.4 A first view of a streaming data system

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

9The architectural blueprint

 NASDAQ Real Time Quotes—A streaming system that processes the price quotes
of all stocks and allows clients to request the latest quote for particular stocks.

Did you notice that doing this exercise allowed you to stop worrying about soft or near
real-time? You got to think and focus on what and how a service makes its data avail-
able to clients at the moment they need it. Thinking about it this way, you can say that
the system is an in-the-moment system—any system that delivers the data at the point in
time when it is needed. Granted, we don’t know how these systems work behind the
scenes, but that’s fine. Together we are going to learn to assemble systems that use
open source technologies to consume, process, and present data streams.

1.3 The architectural blueprint
With an understanding of real-time and streaming systems in general under our belt,
we can now turn our attention to the architectural blueprint we will use throughout
this book. Throughout our journey we are going to follow an architectural blueprint
that will enable us to talk about all streaming systems in a generic way—our pattern
language. Figure 1.5 depicts the architecture we will follow. Take time to become
familiar with it.

Long term

storage

In-memory

data store

Analysis

tier

Message

queuing tier

Collection

tier

Data

access tier

We will not be covering this in
detail. But you may want to persist

analyzed data for future use.

Sometimes we need to reach
back to get data that has

just been analyzed.

Browser,

device, vending

machine, etc.

Browser,

device, vending

machine, etc.

Figure 1.5 The streaming data architectural blueprint

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

10 CHAPTER 1 Introducing streaming data

As we progress, we will zoom in and focus on each of the tiers shown in figure 1.5
while also keeping the big picture in mind. Although our architecture calls out the
different tiers, remember these tiers are not hard and rigid, as you may have seen in
other architectures. We will call them tiers, but we will use them more like LEGO
pieces, allowing us to design the correct solution for the problem at hand. Our tiers
don’t prescribe a deployment scenario. In fact, they are in many cases distributed
across different physical locations.

 Let’s take our examples from before and walk through how Twitter’s service maps
to our architecture:

 Collection tier—When a user posts a tweet, it is collected by the Twitter services.
 Message queuing tier —Undoubtedly, Twitter runs data centers in locations across

the globe, and conceivably the collection of a tweet doesn’t happen in the same
location as the analysis of the tweet.

 Analysis tier—Although I’m sure a lot of processing is done to those 140 charac-
ters, suffice it to say, at a minimum for our examples, Twitter needs to identify
the followers of a tweet.

 Long-term storage tier—Even though we’re not going to discuss this optional tier
in depth in this book, you can probably guess that tweets going back in time
imply that they’re stored in a persistent data store.

 In-memory data store tier—The tweets that are mere seconds old are most likely
held in an in-memory data store.

 Data access—All Twitter clients need to be connected to Twitter to access the
service.

Walk yourself through the exercise of decomposing the other two examples and see
how they fit our streaming architecture:

 FlightAware—A streaming system that processes the most recent flight status
data and allows a client to request the latest data for particular airports or
flights.

 NASDAQ Real Time Quotes—A streaming system that processes the price quotes
of all stocks and allows clients to request the latest quote for particular stocks.

How did you do? Don’t worry if this seemed foreign or hard to break down. You will
see plenty more examples in the coming chapters. As we work through them together,
we will delve deeper into each tier and discover ways that these LEGO pieces can be
assembled to solve different business problems.

1.4 Security for streaming systems
As you reflect on our architectural blueprint, you may notice that it doesn’t explic-
itly call out security. Security is important in many cases, but it can be overlaid on
this architecture naturally. Figure 1.6 shows how security can be applied to this
architecture.

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

11How do we scale?

We won’t be spending time discussing security in depth, but along the way I will call it
out so you can see how it fits and think about what it may mean for the problems
you’re solving. If you’re interested in taking a deeper look at security and distributed
systems, see Ross Anderson’s Security Engineering: A Guide to Building Dependable Distrib-
uted Systems (Wiley, 2008). This book also is available for free at www.cl.cam.ac.uk/
~rja14/book.html.

1.5 How do we scale?
From a high level, there are two common ways of scaling a service: vertically and
horizontally.

 Vertical scaling lets you increase the capacity of your existing hardware (physical or
virtual) or software by adding resources. A restaurant is a good example of the limita-
tions of vertical scaling. When you enter a restaurant, you may see a sign that tells you
the maximum occupancy. As more patrons come in, more tables may be set up and
more chairs added to accommodate the crowd—this is scaling vertically. But when
the maximum capacity is reached, you can’t seat any more customers. In the end, the
capacity is limited by the size of the restaurant. In the computing world, adding more
memory, CPUs, or hard drives to your server are examples of vertical scaling. But as
with the restaurant, you’re limited by the maximum capacity of the system, physical
or virtual.

Long-term
storage

Browser,

device, vending

machine, etc.

In-memory
data store

Analysis
tier

Message

queuing tier

Collection tier

Data access
tier

This may be over the public
internet and require that

the data be secured.

This may be over
the public internet
and require that

the data be secured.

Authentication

Authentication

Authorization

Authorization

Browser,

device, vending

machine, etc.

Figure 1.6 The architectural blueprint with security identified

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

12 CHAPTER 1 Introducing streaming data

 Horizontal scaling approaches the problem from a different angle. Instead of
continuing to add resources to a server, you add servers. A highway is a good exam-
ple of horizontal scaling. Imagine a two-lane highway that was originally constructed
to handle 2,000 vehicles an hour. Over time more homes and commercial buildings
are built along the highway, resulting in a load of 8,000 vehicles per hour. As you
might imagine (and perhaps have experienced), the results are terrible traffic jams
during rush hour and overall unpleasant commutes. To alleviate these issues, more
lanes are added to the highway—now it is horizontally scaled and can handle the
traffic. But it would be even more efficient if it could expand (add lanes) and con-
tract (remove lanes) based on traffic demands. At an airport security checkpoint,
when there are few travelers TSA closes down screening lines, and when the volume
increases they open lines up. If you’re hosting your service with one of the major
cloud providers (Google, AWS, Microsoft Azure), you may be able to take advantage
of this elasticity—a feature they often call auto-scaling. The basic idea is that as
demand for your service increases, servers are automatically added, and as demand
decreases, servers are removed.

 In modern-day system design, our goal is to have horizontal scaling—but that
doesn’t mean that we won’t use vertical scaling too. Vertical scaling is often employed
to determine an ideal resource configuration for a service, and then the service is
scaled out. But in this book, when the topic of scaling comes up, the focus will be on
horizontal, not vertical scaling.

1.6 Summary
Now that you have an idea of the architectural blueprint, let’s see where we have been:

 We defined a real-time system.
 We explored the differences between real-time and streaming (in-the-moment)

systems.
 We developed an understanding of why streaming is important.
 We laid out an architectural blueprint.
 We discussed where security for streaming systems fits in.

Don’t worry if some of this is slightly fuzzy at this point, or if teasing apart the different
business problems and applying the blueprint seems overwhelming. I will walk through
this slowly over many different examples in the coming chapters. By the end, these
concepts will seem much more natural.

 We are now ready to dive into each of the tiers to find out what they’re composed
of and how to apply them in the building of a streaming data system. Which tier
should we tackle first? Take a look at a slightly modified version of our architectural
blueprint in figure 1.7.

 We’re going to take on the tiers one at a time, starting from the left with the collec-
tion tier. Don’t let the lack of emphasis on the message queuing tier in figure 1.7

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

13Summary

bother you—in certain cases where it serves a collection role, I’ll talk about it and
clear up any confusion. Now, on to our first tier, the collection tier—our entry point
for bringing data into our streaming, in-the-moment system.

Long term

storage

In-memory

data store

Analysis

tier

Message

queuing tier

Collection

tier

Data

access tier

We will not be covering this in
detail. But you may want to persist

analyzed data for future use.

Sometimes we need to reach
back to get data that has

just been analyzed.

Browser,

device, vending

machine, etc.

Browser,

device, vending

machine, etc.

Figure 1.7 Architectural blueprint with emphasis on the first tier

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

Andrew G. Psaltis

A
s humans, we’re constantly fi ltering and deciphering
the information streaming toward us. In the same way,
streaming data applications can accomplish amazing tasks

like reading live location data to recommend nearby services,
tracking faults with machinery in real time, and sending
digital receipts before your customers leave the shop. Recent
advances in streaming data technology and techniques make
it possible for any developer to build these applications if they
have the right mindset. This book will let you join them.

Streaming Data is an idea-rich tutorial that teaches you to think
about effi ciently interacting with fast-fl owing data. Through
relevant examples and illustrated use cases, you’ll explore
designs for applications that read, analyze, share, and store
streaming data. Along the way, you’ll discover the roles of key
technologies like Spark, Storm, Kafka, Flink, RabbitMQ, and
more. This book offers the perfect balance between big-picture
thinking and implementation details.

What’s Inside
● The right way to collect real-time data
● Architecting a streaming pipeline
● Analyzing the data
● Which technologies to use and when

Written for developers familiar with relational database con-
cepts. No experience with streaming or real-time applications
required.

Andrew Psaltis is a software engineer focused on massively
scalable real-time analytics.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/streaming-data

$49.99 / Can $65.99 [INCLUDING eBOOK]

Streaming Data

DATA SCIENCE/PROGRAMMING

M A N N I N G

“The defi nitive book if
you want to master the

architecture of an
enterprise-grade

 streaming application.”
—Sergio Fernández González

Accenture

“A thorough explanation
and examination of the

different systems, strategies,
and tools for streaming

 data implementations.”
—Kosmas Chatzimichalis, Mach 7x

“A well-structured way to
learn about streaming data and
how to put it into practice in
modern real-time systems.”—Giuliano Araujo Bertoti, FATEC

“This book is all you need
to really understand what
streaming is all about!”
—Carlos Curotto, Globant

SEE INSERT

www.itbook.store/books/9781617292286

https://itbook.store/books/9781617292286

