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Algorithms
Jor data analysis

This chapter covers

= Querying a stream
= Thinking about time

= Understanding four powerful summarization
techniques

Chapter 4 covered how the data flows through many stream-processing frameworks,
the delivery semantics, and fault tolerance. In this chapter we’re going to depart
from the architectural views and discuss the algorithmic side of stream processing,
often called streaming analytics or stream mining. We will focus on the what and why of
streaming analysis algorithms and occasionally dip our toes into the detailed Zow.
Don’t worry if you're looking for the detailed math or code behind the algorithms—
ample resources will be provided so that you can continue your learning.

Before we begin, I'll talk about how we perform queries with these tools. In
general, there are two types of queries that you may want to execute in a stream-
ing system:

Ad-hoc queries—These are queries asked one time about a stream. For exam-
ple: What is the maximum value seen so far in the stream? This style of query
is the same kind you would execute against an RDBMS.

77
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78 CHAPTER 5  Algorithms for data analysis

Continuous queries—These are queries that are, in essence, asked about the
stream at all times. For example: Determine the maximum value ever seen in

the stream emitted every five minutes and generate an alert if it exceeds a given
threshold.

Unfortunately, in the current technology landscape full of so many different stream-
processing frameworks, no two systems offer the same query language, and in many
cases there is no SQL-like query language available. Instead you express the algorith-
mic details programmatically. Table 5.1 shows the current state of query language sup-
port in each of the popular stream-processing frameworks (subject to change, as many
of these projects are being actively developed and are all maturing).

Table 5.1 Stream-processing framework query language support

Product Query language support

Apache Storm As of version 1.1.0 Apache Storm has had SQL support
(http://storm.apache.org/releases/1.1.0/storm-sqgl.html). As of this writing
it is still considered experimental and not ready for production use

Apache Samza Since version 0.9 of Apache Samza there has been a JIRA open for adding
query language support. As of this writing, that JIRA is still open, and
Samza does not have any query language support:
https://issues.apache.org/jira/browse/SAMZA-390.

Apache Flink Table API supporting SQL-like expressions (http://ci.apache.org/projects/
flink/flink-docs-release-0.9/libs/table.html).

Apache Spark Streaming SparkSQL/Hive language support (http://spark.apache.org/docs/latest/
sql-programming-guide.htmil).

Given the current state of SQI-like support in the market today, I won’t show imple-
mentation details for each product because they’re all different. But I will provide
guidance on implementing each algorithm with each stream-processing framework.
With a high-level understanding of the general way we may have to perform different
stream-mining activities, let’s discuss the constraints we must keep in mind.

5.1 Accepting constraints and relaxing

As you know from previous chapters, one of the unique aspects of a streaming system
is that we can’t store the entire stream because it’s unbounded and never-ending. Our
goal is to continually provide results to queries online. As data reaches the analysis
tier, the results must be recomputed or updated and potentially emitted. On the sur-
face, answering these types of queries may seem easy, but when you consider or design
algorithms that will process a stream, it is important to take into consideration the fol-
lowing constraints:

One-pass—You must assume that the data is not being archived and that you only
have one chance to process it. This can have significant consequences on your
algorithmic development. For example, many traditional data-mining algorithms
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are iterative and require multiple passes over the data. To work in a streaming
scenario, each of these needs to be modified accordingly. I find it helpful to
remember that you only get to touch the data one time.

Concept drift—This is a phenomenon that may impact your predictive models.
Concept drift may happen over time as your data evolves and various statisti-
cal properties of it change. Depending on the type of analysis you are doing
and the predictive models you have developed, you may need to take this into
consideration.

Resource constraints—For many data streams we have little to no control over the
arrival rate of the data. There may be times when, due to a temporary peak in
the data speed or volume and the resources at our disposal, an algorithm may
have to drop tuples that can’t be processed in time, called load shedding. This con-
straint is almost universal in streaming systems, but surprisingly few algorithms
take it into account. There are two general types, random and semantic; the latter
makes use of properties of the stream and quality-of-service parameters.'

Domain constrainis—Whereas the other constraints are almost universal to all
data streams, these are particular to your business domain. For example, if our
social network had 100,000,000 users and we wanted to do an analysis of all
emails sent between users, we would need to be able to store double that
amount of email addresses. Our storage requirements are easily in the multiple-
petabyte range. Being able to do simple statistics or distinct counts about this
stream would be challenging. This may appear to be a resource constraint, but
it’s our business data that causes the constraint.

Itis because of these constraints that virtually every streaming method uses some form
of synopsis. The basic idea we will see employed is an online synopsis that is used for
analysis. Many different kinds of synopsis can be created; as you will see, the exact
kind used will have a strong influence on the type of questions that can be answered.
Before we dig into these different mining activities, let’s look at time as it relates to
stream processing and its impact on streaming analysis.

5.2 Thinking about time

If you’ve worked with a data system where the data is static, such as Hadoop or an
RDBMS, you probably thought about time as you were executing queries. In a static
world you execute your MapReduce job, Spark job, Hive query, SQL query, or in some
other fashion query the data set and perhaps provide a time range in the where clause,
and you know the resulting data is all the data that is loaded within a given time range.
In contrast, with a streaming system, along with our constraints, the data is constantly
flowing. It may be out of order when we see it or delayed—and we can’t query all the

' For more information, see “Load Shedding in a Data Stream Manager” in Proceedings of the 29th International

Conference on Very Large Data Bases (2003, pages 309-320), http://dl.acm.org/ citation.cfm?id=1315479.
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data at once, because the stream never ends. Don’t worry—all is not lost. I'll discuss
concepts and approaches to thinking about time and solving common problems when
analyzing a stream of data.

STREAM TIME VS. EVENT TIME

Stream time is the time at which an event enters the streaming system. Fvent time is the
time at which the event occurs. Imagine we are collecting data from a fitness-tracking
device such as a Fitbit, and the data is flowing into our streaming system. Stream time
would be when the fitness event enters the analysis tier; event time would be when it
takes place on the device. Thinking back to our overall architecture, stream time is
when the event first enters the analysis tier. If the streaming analysis you're doing
relies on event time, realize that it’s often not the same as stream time. Often there
will be a variance, called time skew, sometimes significant, between when an event is
created and when it enters the system, as shown in figure 5.1.

Stream time
N

> Figure 5.1 Time skew between
Event time event time and stream time

Taking into consideration our working example, how would this impact our analysis of
the data? How will the drift impact the average speed for the runners we’re tracking?
Our ability to answer these questions is directly related to the next topic: windowing
techniques found in stream-processing systems. Keep the concept of time skew in
mind, and we will come back to these questions.

WINDOWS OF TIME
Due to its size and never-ending nature, the stream processing engine can’t keep an
entire stream of data in memory. This means we can’t perform traditional batch pro-
cessing on it. How then do we perform computations on it? The answer is: by using
windows of data. A window of data represents a certain amount of data that we can per-
form computations on. Figure 5.2 shows that a window of data is a small amount of
the data flowing through the system at a given point in time.

In figure 5.2, you see that the window is indeed a small part of the entire stream of
data. Itis a little more complex than that, but not much. The added complexity comes
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by the way of two attributes common to all windowing techniques: the trigger and evic-
tion policies. The trigger policy defines the rules a stream-processing system uses to
notify our code that it’s time to process all the data that is in the window. The eviction
policy defines the rules used to decide if a data element should be evicted from the
window. Both polices are driven by either time or the quantity of data in the window.
The distinction between the two policies and how time or the count of items come
into play will become clearer as we discuss windowing techniques, of which the two
most prominent in practice are sliding and tumbling.

5.2.1 Sliding window

The sliding window technique uses eviction and trigger policies that are based on time.
The two policies are manifested in the window length and sliding interval, as shown in
figure 5.3.

The window length represents the eviction policy—the duration of time that data
is retained and available for processing. In figure 5.3 the window length is two sec-
onds; as new data arrives, data that is older than two seconds will be evicted. The slid-
ing interval defines the trigger policy. In figure 5.3, the sliding interval is one second.

Window length

Sliding interval

Time (in seconds)

Figure 5.3 Sliding window showing the slide interval and the window length
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This means that every second our code would be triggered, and we would be able to
process the data in the sliding interval as well as the entire window length.

EXAMPLE USAGE
Going back to our Fitbit example, remember that we have the data flowing into our
streaming system. The head of product marketing has asked us to build a dashboard
that shows the average speed for all runners broken down by age groups, such as 12-17,
18-24, 25-34, and so on. The dashboard should be updated every 5 seconds, and the
averages should represent data for the last 30 minutes. Don’t worry about the dash-
board aspect; concentrate on the streaming analysis. How you would you handle this
using the sliding window technique?

We would want a window length of 30 minutes and a sliding interval of 5 seconds.
Remember to take into consideration stream time versus event time. Will your analysis
make sense if the window length and sliding interval are based on stream time?

FRAMEWORK SUPPORT

Not all current stream-processing frameworks support sliding windows or provide the
same level of support. Table 5.2 identifies the level of support for sliding windows in
each of the popular frameworks.

Table 5.2 Sliding window support in popular stream-processing frameworks

Framework Sliding window  Event or stream time Comments
Spark Streaming Yes Stream time Spark Streaming doesn’t allow custom
policies.
Storm No N/A Storm doesn’t provide native support

for sliding windowing, but it could be
implemented using timers.

Flink Yes Both Flink allows a user to define a custom
policy and trigger policies.

Samza No N/A Samza doesn’t provide direct support
for sliding windows.

The details of windowing support for Spark Streaming and Flink are both well docu-
mented on their respective project sites. Note that Spark Streaming only supports
windowing using stream time. If your application is sensitive to the differences between
stream time and event time, you will need to make sure your windowing sizes and
algorithms account for this.

For both Apache Storm and Apache Samza, it may be possible to implement slid-
ing window support, but it’s not natively supported by either of those tools. So, the
work you would have to do may be substantial and not as efficient as a framework that
natively supports sliding windows. Delving into the details of implementing this sup-
port in either framework is beyond the scope of this text. If that’s something you
need, check the latest additions of each as well as their JIRA tickets and email lists for
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discussions on windowing support. Considering that they’re all open source projects,
you may also contribute enhancements to one of the projects.

5.2.2 Tumbling window

A tumbling window offers a slight twist on the windowing concept. The eviction policy
is always based on the window being full, the trigger policy is based on either the
count of items in the window or time, and they break down into two distinct types:
count-based and temporal-based. First let’s consider count-based tumbling; figure 5.4
shows how this works.

Eviction and trigger policy

(count = 2)

| | |
| ' | Lo '

| | |
| | |

| | |
' | ' P |
| | |
L | L | e |
[ [ [
0 1 2

Time (in seconds)

Figure 5.4 Count-based tumbling window with an eviction and
trigger policy of two

In figure 5.4 both the eviction and trigger policies are equal to two: when two items
are in the window, the trigger will fire, and the window will be drained. This behavior
is irrespective of time—whether it takes one second or five hours for the window to
fill, the trigger and eviction polices will still execute when the count is reached.

Compare that to the temporal tumbling window in figure 5.5, a tumbling window
with an eviction and trigger policy of two seconds.

Eviction and trigger policy
(time = 2)

Time (in seconds)

Figure 5.5 Temporal tumbling window with an eviction and trigger policy of two seconds

www.itbook.store/books/9781617292286


https://itbook.store/books/9781617292286

84 CHAPTER 5  Algorithms for data analysis

In the case of figure 5.5, both policies are based on a two-second time frame. In this
case it doesn’t matter if there are three tuples or five tuples in the window. When
the time lapses, the trigger and eviction policies will fire, and the window will be
drained. This is distinctly different from the sliding window described in the preced-
ing section.

EXAMPLE USE

Let’s imagine that we manufacture a bicycle that is equipped with various sensors,
which emit data points such as GPS coordinates, current speed, current direction,
ambient temperature, and humidity. From this data set we are interested in under-
standing two metrics. First, we want to know the average speed of all our bikes every 30
seconds throughout the day. We may break this down by geography, but for now we
want a global count. Second, we want to know every time there are more than 100
people riding one of our bikes in a city. Take a moment and jot down how you would
handle these two scenarios using tumbling windows.

How did you do? For the first metric, we want our code to be triggered every 30
seconds. To ensure this, I would create a stream that contains only the speed measure-
ment from our sensors and set up a temporal tumbling window of 30 seconds. When
our code is triggered, we compute the average using all the tuples in the window at
that time. To break this down by geography later, we have a couple of options. One
way would be to not pre-filter the stream to contain only the speed measurement, but
have it contain the full message sent from the bicycle. Then every 30 seconds we can
extract the speed and we would also have the GPS coordinates in hand that we could
use to segment the data by any geographic boundary we wanted.

A second way would be to do more filtering. Taking this approach, we would have
our collection tier split the data out by geography first and then send it through the
rest of the tiers. Then we would have a specific stream: speed with geography. This
could be problematic and fairly inflexible. We would need to determine ahead of time
the geographic boundaries we used for segmentation and have a strategy for how to
handle changes to them.

Let’s now consider the second metric we want to capture: every time there are 100
people riding our bicycles in a city. To support this we would need to do two things.
First, we create a stream (that may or may not start from our collection tier) for every
new city we see in the data and then set up a count-based tumbling window using a
window size of 100. When the trigger policy executes, we would have all the tuples for
each city that reached 100 cyclists.

Okay, we’ve worked through two fairly simple examples. Now let’s take a look at
the current framework support for tumbling windows.

FRAMEWORK SUPPORT

Not all current stream-processing frameworks support tumbling windows or provide
the same level of support. Table 5.3 shows the level of support for tumbling windows
in each of the popular frameworks.
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Table 5.3 Tumbling window support in popular stream-processing frameworks

Framework Count Temporal Comments
Spark Streaming No No Currently you would need to build this.
Storm Yes Yes Although Storm does not have the native window-

ing support, we can easily implement this.

Flink Yes Yes Flink has built-in support for both types of tum-
bling windows.

Samza No Yes Samza does not provide direct support for sliding
windows.

At the time of this writing Apache Flink is the only framework that has built-in support
for tumbling windows, both count- and temporal-based. For the other frameworks the
level of effort to implement tumbling window support varies. As with all software, the
features available when you evaluate it will likely have changed, so if you need tum-
bling windows to solve your business problem, double-check the feature set of your
chosen tool.

We have now taken a look at the two most common types of windowing found in
modern stream-processing frameworks. This information is important to keep in
mind as we discuss summarization techniques.

5.3 Summarization techniques

In this section we are going to explore four summarization techniques that form the
basis for many different types of analysis you may perform as well as other data-mining
techniques you may use. You may wonder why we need to talk about summarizing a
stream and question why we need to settle for non-exact answers to questions. The
answer lies in the nature of stream processing. Remember, we don’t know if the
stream will ever end, nor can the entirety of it fit in memory. That makes it extremely
difficult to provide exact answers to questions about the data in the stream. In many
cases, having a high degree of confidence that the answer to a question is correct or
correct enough is adequate. Admittedly you may run into situations where an exact
answer must be known, but providing that level of exactness will come at a cost of pro-
cessing speed and/or implementation. When you are approached with a request to
provide exact numbers, it is important to dig in and find out whether a good estimate
would work.

NOTE I once worked on a streaming analytics project where we were told our
numbers had to be exact because that is how things had always been done in
the past (in the pre-streaming world). But due to how the clients were con-
suming the data, they could not end up with exact metrics. Do you know what
happened? You're right—nothing, because the reality was the picture of the
business did not change. As humans, we are good at seeing patterns, and if
the data being emitted from a stream-processing application is representative
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of the events occurring in a business—but down-sampled so there is less
data—the picture will have the same shape when visualized.

Some of the techniques I cover next are a little deeper. Take your time and if you need
to, take it slowly, section by section. Ready? Good, let’s now dig into our first summari-
zation technique: random sampling.

5.3.1 Random sampling

Often you may want to take a random sample from a stream. Pretend that we have
built a popular advertising network and our ad servers receive 10 million ad views per
minute. That’s great, but now we want to perform a statistical analysis of the ad serving
as it is happening. On the surface that seems pretty easy, but as you think about it you
realize that this data is moving fast, it never stops, and it doesn’t fit into memory. A via-
ble solution would be to sample the stream as it is flowing. How do we take a random
sample from a data set that you can’t hold in memory or on disk? How do we know
it’s random?

A common approach to solving this problem is to use a technique called reservoir
sampling. Reservoir sampling is based on the notion that we can hold a predetermined
number of stream values (the reservoir), and when a new one arrives we can probabi-
listically determine whether to add it to our collection or randomly select one of the
values already in the reservoir as the random sample. Figure 5.6 shows the general
flow of reservoir sampling; as new data arrives it goes through a sampling algorithm,
and a random sample is determined.

Let’s look at what is happening at each step in figure 5.6. Remember, our goal is to
ensure that after we process the 16th item, the elements in the reservoir represent a
random sample of all the data we have seen, and we have selected a random value. No

15 element reservoir

L4 ][5 1[e]
(7 L8 ]le]

Arriving stream
elements N Random sample

/7N N /77N
Sampl
Cio] o8] 7] e M 1 amping — 3/,

agorithm

»

Time

Figure 5.6 General flow of reservoir sampling with first new data item about to be
processed
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matter how many elements have been consumed from the stream, each element has
the same probability of being included in the reservoir. Keep in mind that figure 5.6
shows the state of the reservoir after we have processed the first 15 items. We are using
15, but the general rule is the reservoir is always filled with the first x values in the
stream, where x is the size of the reservoir. After the reservoir is filled and our applica-
tion is running for a while, we would expect the reservoir to contain a more distrib-
uted but random data set.
With that in mind, let’s discuss the steps identified in figure 5.6:

When the 16th data item arrives, we need to determine if it should be added to
the reservoir with a probability of k/n, where k is the size of the reservoir and n
is the data element number we are processing. Using these values, the probabil-
ity that this element should be inserted into the reservoir is 15/16, because we
have a reservoir of 15 and we are processing the 16th element.

To decide if we add element 16, we generate a random number between 0 and
1. If it is less than 15/16, then we add it to the reservoir and displace one of the
items already in the reservoir. If the random number is greater than 15/16,
then item 16 becomes our random sample.

If element 16 is added in step 2, then we randomly select any element in the res-
ervoir and replace it with the 16th element. The item selected is the random
number we use.

That’s reservoir sampling. Our next step would be to integrate it into our streaming
analysis framework of choice. Currently this algorithm is not provided out of the box
with any of the frameworks we have been discussing (Spark Streaming, Storm, Samza,
or Flink), but implementing this with any one of them should be fairly straightfor-
ward. To learn more about reservoir sampling, the original paper, Jeffrey Vitter’s
“Random Sampling with a Reservoir” (Association for Computing Machinery Transactions on
Mathematical Software, 1985, available at www.cs.umd.edu/~samir/498/vitter.pdf), is a
great place to start.

5.3.2 Counting distinct elements

You may want to count the distinct items in a stream, but remember we are con-
strained by memory and don’t have the luxury of storing the entire stream. In this sec-
tion we continue with our ad network example from section 5.3.1, where we have an
ad network that is serving 10 million ad views per minute. We’re going to try and
answer this question: How many distinct ads were shown in the last minute?

The preceding section showed how to take a random sample of that data flowing,
but if we wanted to count the distinct ads shown every minute, how would we do
that? You may be thinking, “It’s only 10 million items—I can store that in a hash
table or other data structure that provides search capabilities, and the problem is
solved.” That may be the case for our ad server, but what if we were building a net-
work intrusion detection system that had to operate at 40 Gbps (~78 million packets
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per second, assuming 64-byte packets)? In that case, and in any case where we can’t
store the entire stream, we need to rely on probabilistic algorithms to generate our
distinct counts.

There are two general categories of algorithms used to solve this problem:

Bit-pattern-based—The algorithms in this class are all based on the observation of
patterns of bits that occur at the beginning of the binary value of each element
of the stream. Using the bit pattern—more specifically, the leading zeros in the
binary representation of a hash of the stream element—the cardinality is deter-
mined. Some of the algorithms you would find in this category are Loglog,
HyperLoglog, and HyperLogLog++.

Order statistics-based—The algorithms in this class are based on order statistics,
such as the smallest values that appears in a stream. MinCount and Bar-Yossef
are two algorithms you would find in this category.

In modern practice the bit-pattern algorithms are most commonly used and are the
focus of the remainder of this section.?

Let’s now turn our attention to the bit-pattern-based algorithms; the most popular
and prevalent in practice are HyperLoglog and HyperLoglLog++. Conceptually,
HyperLoglLog and HyperLoglLog++ are the same, so I will refer to them collectively as
HyperLogLog for this discussion. Figure 5.7 shows the general flow of the algorithm.

Figure 5.7 shows the general flow of processing a new element with the HyperLog-
Log algorithm. Let’s walk through it from the top.

In step 1 is the ad ID that was viewed. In this case I've used a UUID—there’s
nothing special about using a UUID; for your data, if you have IDs, you could
use them.

In step 2 the string from step 1 is passed through a hash function, resulting in
the hashed value you see before step 3.

Step 4 is where the magic begins. Here we take the binary string of the hashed
value from step 3 and determine which register value, often called the bin, to
update and the value to update it with. The six least significant bits are used to
determine which register value position will be updated. The number of bits
used is called the precision; 1 chose six arbitrarily. If you use this algorithm for
your analysis, make sure you understand the precision implications. The binary
value of those bits 100010 is 34. Therefore, we are going to be updating the
value at index 34.

2 To learn more about the order statistics—based algorithms, a couple of good jumping off points are Ziv Bar-
Yossef’s “Counting Distinct Elements in a Data Stream” (Randomization and Approximation Techniques, 2002) at
https://link.springer.com/chapter,/10.1007/3-540-45726-7_1, and Frederic Giroire’s “Order Statistics and
Estimating Cardinalities of Massive Data Sets” (International Conference on Analysis of Algorithms, 2005) at
www.emis.ams.org/journals/DMTCS/pdfpapers/dmADO115.pdf.
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Register values

Figure 5.7 Processing a single stream element with the HyperLogLog
algorithm

Now that we know the index that will be updated, we determine the number of
leading zeros, starting from the right, for the rest of the bit string and add 1 to
it. In this case there are no 0s, so we end up with 0 + 1, and we update index
position 34 with the value of 1.

At this point you can determine the distinct counts (again, it’s an approxima-
tion) by taking the harmonic mean of all the register values.

That is the general flow of the algorithm. With this algorithm keep in mind that the
count of leading zeros in a bit string is used to estimate the cardinality of a stream.
Then to increase accuracy, the average of many estimates is taken to reduce bias and
the harmonic mean is used to reduce the impact of outliers. These algorithms have
their start with, and are enhancements to, the original work by Philippe Flajolet and
G. Nigel Martin’s “Probabilistic Counting Algorithms” (Journal of Computer and Systems
Science, 1985) and more recently Durand and Flajolet’s “LoglLog Counting of Large
Cardinalities” (Annual European Symposium on Algorithms, 2003).

HyperLoglLog++ provides several improvements over HyperLogLog, namely in the
reduction of memory usage and an increase in accuracy for a range of cardinalities.
Our focus has been on how these algorithms work conceptually so you know how to
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think about and use them.? In practice this algorithm isn’t hard to implement, and
in fact you may be able to find implementations readily available in the language
you’'re using.

A couple of other things to keep in mind regarding HyperLoglLog are that it uses
little space and is distributable. From a size and space standpoint, according to the
authors of the papers I mentioned, you can count one billion distinct items with an
accuracy of 2% using only 1.5 K of memory, which is quite impressive. From the dis-
tributed standpoint it is easy to perform a union operation between two HyperLogl.og
structures. When doing stream analysis, this will enable you to maintain summariza-
tions on each node that is analyzing data and then join them to determine an overall
approximate, distinct count.

You should also be able to integrate this into any of the streaming frameworks
we’ve been looking at. With this information you can now determine the approximate
distinct counts for your stream. In the next section we will look at an algorithm that
helps us answer a slightly different question.

5.3.3 Frequency

The preceding section discussed determining the distinct count for a stream. In this sec-
tion we’ll try to answer this question: How many times has stream element X occurred?
The most popular algorithm for answering this type of question is called Count-

See
chapter 9 Min Sketch.* This algorithm can be used any time you need count-based summaries of
section . . . . .
932 your data stream. In general Count-Min Sketch is designed to provide approximate
and code : : .
lsting answers to the following types of questions:
9.25 . . . .
~g A point query—You are interested in a particular stream element.

A range query—You are interested in frequencies in a given range.

An inner product query—You are interested in the join size of two sketches. For
our ad example we may use this to provide a summarization to this question:
What products were viewed after an ad was served?

These three types of questions are fundamental to a lot of streaming applica-
tions. In our ad-serving example, we may want to ask how often ad X has been
viewed. You will also find that similar questions are fundamental to network moni-
toring and analysis, where millions of packets per second are processed and there
is a strong desire to prevent malicious intent such as a Denial Of Service (DOS)

3 To understand the inner workings of these algorithms I encourage you to read Flajolet, Fusy, Gandouet, and
Meunier’s “HyperLogLog: The Analysis of a Near-optimal Cardinality Estimation Algorithm” (Conference
on Analysis of Algorithms, 2007) at http://algo.inria.fr/flajolet/Publications/FIFuGaMe07.pdf and Huele,
Nunkesser, and Hall’s “HyperLogLog in Practice: Algorithmic Engineering of a State of the Art Cardinality
Estimation Algorithm” (Proceedings of the EDBT, 2013 Conference) at https://static.googleusercontent.com/
media/research.google.com/en//pubs/archive/4067l .pdf.

Graham Cormode and S. Muthu Muthukrishnan first published an article on this algorithm in the Journal of
Algorithm (2004) titled “An Improved Data Stream Summary: The Count-Min Sketch and Its Applications.”
You can read it at http://dimacs.rutgers.edu/~graham/pubs/papers/cm-full. pdf.
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attack.” I'm sure you can come up with many more examples of when the Count-Min
Sketch algorithm could be useful; for now let’s dig into how this works.

Count-Min Sketch, as its name implies, was designed to count first and compute
the minimum next. Let’s get a of couple of definitions out of the way before we see
how this works diagrammatically. Count-Min Sketch is composed of a set of numeric
arrays, often called counters, the number of which is defined by the width w and the
length of each is defined by the length m. Each array is indexed starting at 0 and has a
range of {0...m — 1}. Each counter must be associated with a different hash function,
which must be pairwise independent—otherwise the algorithm won’t work as designed.
How this all comes together is shown in figure 5.8.

d

—

[o][o][o][0][o][o][0][o] [o][0][o][0][0][c][0][o]
[o][o][0][o][o][o][0][0][a][a][0][0][0][0][o][0]
[o][0][o][o][o][0][0][0] [o][0][0][o][0][o][o]l0] |
@@@@ @@@@ @@@@ @@@@ Figure 5.8 Setup of the

Count-Min Sketch algorithm
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h
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As figure 5.8 shows, this is a 2-dimensional array with all elements initialized to 0 and
each row associated with a different hash function. Using different hash functions
increases the accuracy of the summary while also reducing the probability of bad esti-
mates, as the chance of hash collisions has been reduced. For our ad network exam-
ple, the sketch will represent a probabilistic summarization of how many times an ad
was served. If our sketch looked like figure 5.8, we would have a 4 x 16 2-dimensional
array. Each row is independent and represents a bit array that we’ll use to keep count.

Now let’s walk through the process of updating the sketch as ad view data is stream-
ing into our system, as shown in figure 5.9.

Ad ID (82065728809f4befb24dce98df4a7a9e)

P RN The ad ID is hashed
into each of the cells.

h
h
h
h
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s/ / \ \
QA0 g o) o)) o)) ee]
[o][a][o]fo] [o](+][0][o] o][0][a]ko][0][0}a][a]
[Jfo](e]le) [el[e] [@)fe] [el[e] [l ) [0)[e] [e]
@@ @@ @@ @@ @@@@ @@ @ Figure 5.9 The update process for

the Count-Min Sketch algorithm

A W DN

5 For an idea of how this type of algorithm is used in network monitoring and analysis, a good place to start is
with Cormode and Muthukrishnan’s “What’s New: Finding Significant Differences in Network Data Streams
(INFOCOM, 2004) at http://infocom2004.ieee-infocom.org/Papers/33_1.PDF.
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In figure 5.9 we have an ID of an ad that we want to add to the sketch. The first step is
to hash the value using the hash function for each respective row and then increment
the count for the cell the value hashes to by 1. For our example, all the values were 0,
so the result counts are all 1. As ad view data continues to flow through our streaming
system, we will repeat this process of updating our sketch. After some time has passed,
we want to estimate how many times our ad from figure 5.9 was viewed. To get this fre-
quency estimate, we would use the following equation:

ESTIMATED COUNT =
min(h1(82065728809f4befb24dce98df4a7a9%),h2(82065 728809 4befb24dce9Sdf4aTal%e),
h3(82065728809f4befb24dce98df4aTa9%), h4(82065 728809 4befb24dce9Sdf4aTa))

In that function we’re hashing the ID of the ad we’re interested in. That gives us the
four cells to look at. That is a salient point that may not be obvious from the example
equation.

Specifically the result of hl is the hash that determines the counter to look up.
This is the same for h2, h3, and h4. We then take the minimum value from the four
cells. This value represents the approximate count for the number of times the ad was
viewed. Keep in mind that this algorithm will never undercount, but could overcount.
How accurate is this? In the original paper, the authors show that with a width of 8 and
a count of 128 (a 2-dimensional array of 8 x 128) the relative error was approximately
1.5%, and the probability of the relative error being 1.5% is 99.6%.

I find it fascinating that we can do this with little space and with little computational
cost. This is a pretty straightforward algorithm that can be used to answer a lot of ques-
tions. To learn more and gain a deeper understanding of the why behind it, read the
award-winning paper by Cormode and Muthukrishnan, “An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications (Journal of Algorithm, 2004).%

Up next we’re going to talk about a sketch that is closely related to the Count-Min
Sketch, except this one is used when you want to determine whether you’ve seen a
stream element before.

5.3.4 Membership

The question we’re asking now is: Has this stream element ever occurred in the
stream before?

That may seem like a tall order to fill. We know from earlier discussions that we
can’t store the whole stream—realistically we can’t even store an ID for every element
we’ve seen in the stream. You may wonder how then are we going to pull this off? Sim-
ple. We’re going to use a data structure that you should look to when trying to answer
membership type queries: a Bloom filter. A Bloom filter is tailor made for this specific
task. As with the other algorithms we’ve seen in this chapter, the Bloom filter’s accu-
racy is probabilistically bound, and as expected, this is configurable.

5 The paper can be found at http://dimacs.rutgers.edu/~graham/pubs/papers/cm-full.pdf.
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A unique feature of Bloom filters is that false positives are possible, but false nega-
tives are not. What exactly does that mean? It means that if the filter reports that the
stream element has not been seen, then that will always be true. But if the filter
reports that the element has been seen before, then that may or may not be true. In
the literature there are various advanced Bloom filters, but for our discussion we’ll
stick to the good old plain one. Once you understand how it works, you’ll be ready to
take on more complex ones.

A Bloom filter is composed of a binary bit array of length m and is associated with a
set of independent hash functions. Does that sound familiar? Remember from our dis-
cussion of the Count-Min Sketch that it’s composed of multiple arrays, each of width w
and length m—pretty interesting, huh? It doesn’t take many changes to go from one
to the other. Similar to the Count-Min Sketch, the elements of the bit array are
indexed starting at 0 ending at (m — 1), and because the Bloom filter is a binary bit
array of length m, the space requirements are m/8 bytes.

Figure 5.10 shows how this algorithm works.

Ad ID (82065728809f4befb24dce98df4a7a9e)

TN The ad ID is hashed by the

h1' hz :13 \h4 4 independent hashes and

s N \ \ then the corresponding bits
7 AN N are set to 1in the array.

» N | 2y
| o[ [ol(a] (ool o] o] [1F o](a] [[c][o]fe] |

Figure 5.10 A Bloom filter showing one stream element being processed

That’s it—quite straightforward. You may have already realized there will undoubtedly
be collisions as you process all your data, and those can lead to the false positives I
mentioned. When that happens, if the bit in the array is already set, it remains set.
Querying a Bloom filter to check the membership of a stream element is also quite
simple and comes down to this:

MEMBERSHIP of Stream Element Z = AND(h1(Z),h2(z),h3(z),h4(z));

With this, we compute each of the hashes and then check the array to see if all the ele-
ments are 1, and if any of them is 0 we are guaranteed that the element has never
been seen before. To dig deeper into Bloom filters, a great place to start is the original
article by Burton Bloom titled “Space/Time Trade-offs in Hash Coding with Allowable
Errors” (Communications of the ACM, 1970), there are many papers that have been pub-
lished since then that discuss more advanced bloom filters.”

7 Bloom’s article can be found at http:// citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.2080.
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This data structure can be used to determine whether you have ever seen a stream
element—before incurring the cost of performing an expensive computation that may
involve querying an external data store. Maybe you’re building a network-monitoring
application that keeps track of known bots and/or bad hosts. As you watch traffic flow
you can query a Bloom filter, and if it comes back positive that the packet was from a
malicious host, then you can perform the more costly operation to confirm if it is
indeed a packet that should be rejected. Maybe you’re not building either of these,
but I think you get the general idea here. It may not come as a surprise that this data
structure is called a filter;, as that is the most common use case.

54 Summary

In this chapter we took a step back from discussing architecture and dove into how to
think about querying a stream, considered the problems with time, and dug into four
popular summarization techniques. You learned about the following:

The different types of queries

How to think about time when dealing with a streaming system

Four powerful stream summarization techniques that form the basis of a lot of
streaming analysis programs.

I understand that some of this may have been a little deep. Don’t worry about it. As
you start to build out a streaming system, a lot of this will start to crystalize. You may
want to pick one of the summarization techniques and apply it to one of the problems
you’re trying to solve. The architecture may be fun, but the exciting part comes when
you apply what you’ve learned in this chapter. My hope is that you're ready to start ask-
ing questions of the data you're working with.

The next chapter covers how to store the results of the analysis you learned to per-
form in this chapter. This may be a good time to refill your coffee.
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