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Probabilistic programma
in a nultshell

In this chapter, you’ll learn how to make everyday decisions by using a probabilistic
model and an inference algorithm—the two main components of a probabilistic
reasoning system. You’ll also see how modern probabilistic programming languages
make creating such reasoning systems far easier than a general-purpose language
such as Java or Python would. This chapter also introduces Figaro, the probabilistic
programming language based on Scala that’s used throughout the book.
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4 CHAPTER 1 Probabilistic programming in a nutshell

1.1 What is probabilistic programming?

Probabilistic programming is a way to create systems that help us make decisions in the
face of uncertainty. Lots of everyday decisions involve judgment in determining rele-
vant factors that we don’t directly observe. Historically, one way to help make deci-
sions under uncertainty has been to use a probabilistic reasoning system. Probabilistic
reasoning combines our knowledge of a situation with the laws of probability to deter-
mine those unobserved factors that are critical to the decision. Until recently, probabi-
listic reasoning systems have been limited in scope, and have been hard to apply to
many real-world situations. Probabilistic programming is a new approach that makes
probabilistic reasoning systems easier to build and more widely applicable.

To understand probabilistic programming, you’ll start by looking at decision mak-
ing under uncertainty and the judgment calls involved. Then you’ll see how probabi-
listic reasoning can help you make these decisions. You'll look at three specific kinds
of reasoning that probabilistic reasoning systems can do. Then you’ll be able to under-
stand probabilistic programming and how it can be used to build probabilistic reason-
ing systems through the power of programming languages.

1.1.1 How do we make judgment calls?

In the real world, the questions we care about rarely have clear yes-or-no answers. If
you’re launching a new product, for example, you want to know whether it will sell
well. You might think it will be successful, because you believe it’s well designed and
your market research indicates a need for it, but you can’t be sure. Maybe your com-
petitor will come out with an even better product, or maybe it has a fatal flaw that will
turn off the market, or maybe the economy will take a sudden turn for the worse. If
you require being 100% sure, you won’t be able to make the decision of whether to
launch the product (see figure 1.1).

The language of probability can help make decisions like these. When launching a
product, you can use prior experience with similar products to estimate the probabil-
ity that the product will be successful. You can then use this probability to help decide
whether to go ahead and launch the product. You might care not only about whether
the product will be successful, but also about how much revenue it will bring, or alter-
natively, how much you’ll lose if it fails. You can use the probabilities of different out-
comes to make better-informed decisions.

Okay, so probabilistic thinking can help you make hard decisions and judgment
calls. But how do you do that? The general principal is expressed in the Fact note.

FACT A judgment call is based on knowledge + logic.

You have some knowledge of the problem you’re interested in. For example, you
know a lot about your product, and you might have done some market research to
find out what customers want. You also might have some intelligence about your com-
petitors and access to economic predictions. Meanwhile, logic helps you get answers
to your questions by using your knowledge.
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Last year’s Next year’s
performance performance

VN

Figure 1.1 Last year everyone loved my product, but what will happen next year?

You need a way of specifying the knowledge, and you need logic for getting answers to
your questions by using the knowledge. Probabilistic programming is all about provid-
ing ways to specify the knowledge and logic to answer questions. Before I describe
what a probabilistic programming system is, I’ll describe the more general concept of
a probabilistic reasoning system, which provides the basic means to specify knowledge
and provide logic.

1.1.2 Probabilistic reasoning systems help make decisions

Probabilistic reasoning is an approach that uses a model of your domain to make deci-
sions under uncertainty. Let’s take an example from the world of soccer. Suppose the
statistics show that 9% of corner kicks result in a goal. You’re tasked with predicting
the outcome of a particular corner kick. The attacking team’s center forward is 6' 4"
and known for her heading ability. The defending team’s regular goalkeeper was just
carted off on a stretcher and has been replaced by a substitute playing her first game.
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6 CHAPTER 1 Probabilistic programming in a nutshell

2. You supply knowledge
about the preconditions
of this particular

1. You encode your knowledge Probabilistic corner kick.
about corner kicks and reasoning system
the relevant factors. \
— | Corner-kick model
Evidence
« Tall center forward
R * Inexperienced goalie

+ Strong wind

Inference algorithm

Query
- * Will a goal be scored?

Answer

5. The system returns the —— " Yes: 20%; No: 80% 3. You tell the system
answer as probabilities. what outcome you

want to know.

4. The system uses the inference
algorithm to predict the outcome.

Figure 1.2 How a probabilistic reasoning system predicts the outcome of a corner kick

Besides that, there’s a howling wind that makes it difficult to control long kicks. So
how do you figure out the probability?

Figure 1.2 shows how to use a probabilistic reasoning system to find the answer.
You encode your knowledge about corner kicks and all the relevant factors in a corner-
kick model. You then supply evidence about this particular corner kick, namely, that
the center forward is tall, the goalie is inexperienced, and the wind is strong. You tell the
system that you want to know whether a goal will be scored. The inference algorithm
returns the answer that a goal will be scored with 20% probability.

KEY DEFINITIONS

General knowledge—What you know to hold true of your domain in general
terms, without considering the details of a particular situation

Probabilistic model—An encoding of general knowledge about a domain in quan-
titative, probabilistic terms

Evidence—Specific information you have about a particular situation
Query—A property of the situation you want to know

Inference—The process of using a probabilistic model to answer a query, given
evidence
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In probabilistic reasoning, you create a model that captures all the relevant general
knowledge of your domain in quantitative, probabilistic terms. In our example, the
model might be a description of a corner-kick situation and all the relevant aspects of
players and conditions that affect the outcome. Then, for a particular situation, you
apply the model to any specific information you have to draw conclusions. This spe-
cific information is called the evidence. In this example, the evidence is that the center
forward is tall, the goalie is inexperienced, and the wind is strong. The conclusions
you draw can help you make decisions—for example, whether you should get a differ-
ent goalie for the next game. The conclusions themselves are framed probabilistically,
like the probability of different skill levels of the goalie.

The relationship between the model, the information you provide, and the
answers to queries is well defined mathematically by the laws of probability. The pro-
cess of using the model to answer queries based on the evidence is called probabilistic
inference, or simply inference. Fortunately, computer algorithms have been developed
that do the math for you and make all the necessary calculations automatically. These
algorithms are called inference algorithms.

Figure 1.3 summarizes what you’ve learned.

Probabilistic The evidence contains
reasoning system specific information
about a situation.

The probabilistic
model expresses

general knowledge
about a situation. —|— ( Probabilistic model

The inference
algorithm uses N |

Evidence |
themodelto —— | |
answer queries, — | Inference algorithm
given evidence. [ Queries |

U |

The answers to / | Answer

queries are framed The queries express the
as probabilities of things that will help you
different outcomes. make a decision.

Figure 1.3 The basic components of a probabilistic reasoning system

In a nutshell, what we’ve just discussed are the constituents of a probabilistic reason-
ing system and how you interact with one. But what can you do with such a system?
How does it help you make decisions? The next section describes three kinds of rea-
soning that can be performed by a probabilistic reasoning system.
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8 CHAPTER 1 Probabilistic programming in a nutshell

1.1.3 Probabilistic reasoning systems can reason in three ways

Probabilistic reasoning systems are flexible. They can answer queries about any aspect
of your situation, given evidence about any other aspect. In practice, probabilistic rea-
soning systems perform three kinds of reasoning:

m  Predict future events. You’ve already seen this in figure 1.2, where you predict
whether a goal will be scored based on the current situation. Your evidence
will typically consist of information about the current situation, such as the
height of the center forward, the experience of the goalie, and the strength of
the wind.

m Infer the cause of evenis. Fast-forward 10 seconds. The tall center forward just
scored a goal with a header, squirting under the body of the goalie. What do
you think of this rookie goalkeeper, given this evidence? Can you conclude that
she’s poorly skilled? Figure 1.4 shows how to use a probabilistic reasoning sys-
tem to answer this question. The model is the same corner-kick model you used
before to predict whether a goal would be scored. (This is a useful property of
probabilistic reasoning: the same model that can be used to predict a future
result can be used after the fact to infer what caused that result.) The evidence
here is the same as before, together with the fact that a goal was scored. The
query is the skill level of the goalie, and the answer provides the probability of
various skill levels.

The evidence contains
knowledge of both
preconditions and
outcomes.

Probabilistic \

reasoning system

Evidence

Corner-kick model + Preconditions
o Tall center forward

o Inexperienced goalie
o Strong wind

— « Outcome

o A goal was scored

The inference L— | Inference algorithm
algorithm reasons —— Query
about the query, _ « How good is the goalie?
given all known
preconditions
and outcomes.

Answer

« Poor: 50%; Average: 30%; . .

Good: 20% The query is a possible

cause of the outcome.

Figure 1.4 By altering the query and evidence, the system can now infer why a goal was
scored.
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If you think about it, the first reasoning pattern describes reasoning forward in
time, predicting future events based on what you know about the current situa-
tion, whereas the second reasoning pattern describes reasoning backward in time,
inferring past conditions based on current outcomes. When you build probabilis-
tic models, typically the models themselves follow a natural temporal sequence. A
player takes the corner kick, then the wind operates on the ball as it’s coming in,
then the center forward leaps up to try to head the ball, and then the goalie tries
to make a save. But the reasoning can go both forward and backward. This is a key
feature of probabilistic reasoning, which I'll repeat throughout the book: the
direction of reasoning doesn’t necessarily follow the direction of the model.

m  Learn from past events to better predict future events. Now fast-forward another 10
minutes. The same team has won another corner kick. Everything is similar to
before in this new situation—tall center forward, inexperienced goalie—but
now the wind has died down. Using probabilistic reasoning, you can use what
happened in the previous kick to help you predict what will happen on the next
kick. Figure 1.5 shows how to do this. The evidence includes all evidence from
last time (making a note that it was from last time), as well as the new informa-
tion about the current situation. In answering the query about whether a goal

The evidence contains knowledge of both
preconditions and outcomes of previous
situations, as well as preconditions of
the current situation.

Evidence
Probabilistic « Previous corner kick
reasoning system o Tall center forward

o Inexperienced goalie

Corner-kick model ° Strong wind
o A goal was scored

The inference « Current corner kick

algorithm reasons > Tall center forward

about the previous — o Inexperienced goalie

situations to infer ° Weak wind

factors (like the skill level L —»| Inference algorithm

of the goalie) that hold —— | o Query

in the new situation. J « Will a goal be scored
this time?

The algorithm uses A
these factors to improve nswer

its prediction of the — *+ Yes: 25%; No: 75%
outcome of the new

situation.

The query is an outcome
of the new situation.

Figure 1.5 By taking into account evidence from the outcome of the last corner kick, the
probabilistic reasoning system can produce a better prediction of the next corner kick.
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10 CHAPTER 1 Probabilistic programming in a nutshell

will be scored this time, the inference algorithm first infers properties of the sit-
uation that led to a goal being scored the first time, such as the skill levels of the
center forward and goalie. It then uses these updated properties to make a pre-
diction about the new situation.

All of these types of queries can help you make decisions, on many levels:

= You can decide whether to substitute a defender for an attacker based on the
probability that a goal will be scored with or without the extra defender.

= You can decide how much to offer the goalie in her next contract negotiation
based on your assessment of her skill.

= You can decide whether to use the same goalie in the next game by using what
you’ve learned about the goalie to help predict the outcome of the next game.

LEARNING A BETTER MODEL

The preceding three reasoning patterns provide ways to reason about specific situa-
tions, given evidence. Another thing you can do with a probabilistic reasoning system
is learn from the past to improve your general knowledge. In the third reasoning pat-
tern, you saw how to learn from a particular past experience to better predict a spe-
cific future situation. Another way to learn from the past is to improve the model
itself. Especially if you have a lot of past experiences to draw on, such as a lot of corner
kicks, you might want to learn a new model representing your general knowledge of
what typically happens in a corner kick. As figure 1.6 shows, this is achieved by a learn-
ing algorithm. Somewhat different from an inference algorithm, the goal of a learning
algorithm is to produce a new model, not to answer queries. The learning algorithm
begins with the original model and updates it based on the experience to produce the
new model. The new model can then be used to answer queries in the future. Presum-

ably, the answers produced when using the new model will be better informed than
when using the original model.
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The evidence about previous
o situations constitutes the data.
Probabilistic

reasoning system \

Original corner-
kick model Past experience 1

« Tall center forward

* Inexperienced goalie

« Strong wind

Past experience 2

. . Past experience 3
The learning algorithm L—»| Learning algorithm Etc.

uses the original model —
and the data to produce

J

3

i

a new model. Before
The evidence is provided
After about a new situation.
)
New corner-
kick model \
-~
New evidence
* Tall center forward
« Inexperienced goalie
. . » Weak wind
The inference algorithm || Inference algorithm
uses the new model to —— |
answer queries about \ J Query
the new situation. » Will a goal be scored
this time?
Answer

* Yes: 15%; No: 85%

Figure 1.6 You can use a learning algorithm to learn a new model based on a set of experiences.
This new model can then be used for future inferences.

Now you know what probabilistic reasoning is. What then, is probabilistic programming?

1.1.4 Probabilistic programming systems: probabilistic reasoning

systems expressed in a programming language
Every probabilistic reasoning system uses a representation language to express its proba-
bilistic models. There are a lot of representation languages out there. You may have
heard of some of them, such as Bayesian networks (also known as belief networks)
and hidden Markov models. The representation language controls what models can
be handled by the system and what they look like. The set of models that can be repre-
sented by a language is called the expressive power of the language. For practical appli-
cations, you’d like to have as large an expressive power as possible.

A probabilistic programming system is, very simply, a probabilistic reasoning system in
which the representation language is a programming language. When I say program-
ming language, I mean that it has all the features you typically expect in a programming
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12 CHAPTER 1 Probabilistic programming in a nutshell

language, such as variables, a rich variety of data types, control flow, functions, and so
on. As you’ll come to see, probabilistic programming languages can express an extremely
wide variety of probabilistic models and go far beyond most traditional probabilistic
reasoning frameworks. Probabilistic programming languages have tremendous expres-
sive power.

Figure 1.7 illustrates the relationship between probabilistic programming systems
and probabilistic reasoning systems in general. The figure can be compared with fig-
ure 1.3 to highlight the differences between the two systems. The main change is that
models are expressed as programs in a programming language rather than as a
mathematical construct like a Bayesian network. As a result of this change, evidence,
queries, and answers all apply to variables in the program. Evidence might specify par-
ticular values for program variables, queries ask for the values of program variables,
and answers are probabilities of different values of the query variables. In addition, a
probabilistic programming system typically comes with a suite of inference algorithms.
These algorithms apply to programs written in the language.

The model is expressed

as a program in a The evidence relates
programming ) to values of program
language rather Figaro variables. Prog

than a mathematical |
construct. —» | Probabilistic model

The probabilistic |

programming system | Evidence |
rovides a suite of .

i’:lference algorithms /’V Inference algorithm

that apply to models | Queries |
written in the language.
The answers are Answer

probabilities of different ——
values of the query variables.

The queries are
for values of other
program variables.

Figure 1.7 A probabilistic programming system is a probabilistic reasoning system that uses a
programming language to represent probabilistic models.

Although many kinds of probabilistic programming systems exist (see appendix B for
a survey), this book focuses on functional, Turing-complete systems. Functional means
that they’re based on functional programming, but don’t let that scare you—you
don’t need to know concepts such as lambda functions to use functional probabilistic
programming systems. All this means is that functional programming provides the
theoretical foundation behind these languages that lets them represent probabilistic
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models. Meanwhile, Turing-complete is jargon for a programming language that can
encode any computation that can be done on a digital computer. If something can be
done on a digital computer, it can be done with any Turing-complete language. Most
of the programming languages you’re familiar with, such as C, Java, and Python, are
Turing-complete. Because probabilistic programming languages are built on Turing-
complete programming languages, they’re extremely flexible in the types of models
that can be built.

KEY DEFINITIONS

Representation language—A language for encoding your knowledge about a
domain in a model

Expressive power—The ability of a representation language to encode various
kinds of knowledge in its models

Turing-complete—A language that can express any computation that can be
performed on a digital computer

Probabilistic programming language—A probabilistic representation language
that uses a Turing-complete programming language to represent knowledge

Appendix B surveys some probabilistic programming systems besides Figaro, the sys-
tem used in this book. Most of these systems use Turing-complete languages. Some,
including BUGS and Dimple, don’t, but they’re nevertheless useful for their intended
applications. This book focuses on the capabilities of Turing-complete probabilistic
programming languages.

REPRESENTING PROBABILISTIC MODELS AS PROGRAMS

But how can a programming language be a probabilistic modeling language? How
can you represent probabilistic models as programs? I'll hint at the answer to this
question here but save a deeper discussion for later in the book, when you have a bet-
ter idea of what a probabilistic program looks like.

A core idea in programming languages is execution. You execute a program to
generate output. A probabilistic program is similar, except that instead of a single
execution path, it can have many execution paths, each generating a different out-
put. The determination of which execution path is followed is specified by random
choices throughout the program. Each random choice has a number of possible
outcomes, and the program encodes the probability of each outcome. Therefore, a
probabilistic program can be thought of as a program you randomly execute to gen-
erate an output.

Figure 1.8 illustrates this concept. In the figure, a probabilistic programming sys-
tem contains a corner-kick program. This program describes the random process of
generating the outcome of a corner kick. The program takes some inputs; in our
example, these are the height of the center forward, the experience of the goalie, and
the strength of the wind. Given the inputs, the program is randomly executed to gen-
erate outputs. Each random execution results in a particular output being generated.
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1. A probabilistic program Probabilistic
describes a process that programming system

randomly generates
outputs, given inputs.\_, Corner-kick program

Random execution

No goal

* Tall center forward
* Inexperienced goalie
+ Strong wind

:

2. Given the inputs, the 3. The probability of an output
program can be randomly is the probability of execution
executed many times to paths that result in that
produce different outputs. output. In this example the

probability of a goal is Ya.

Figure 1.8 A probabilistic program defines a process of randomly generating outputs, given inputs.

Because every random choice has multiple possible outcomes, many possible execu-
tion paths exist, resulting in different outputs. Any given output, such as a goal, can be
generated by multiple execution paths.

Let’s see how this program defines a probabilistic model. Any particular execution
path results from a sequence of random choices having specific outcomes. Each ran-
dom choice has a probability of occurring. If you multiply all these probabilities
together, you get the probability of the execution path. So the program defines the
probability of every execution path. If you imagine running the program many times,
the fraction of times any given execution path will be generated is equal to its proba-
bility. The probability of an output is the fraction of times the program is run that
result in that output. In figure 1.8, a goal is generated by 1/4 of the runs, so the prob-
ability of a goal is 1/4.

NOTE You might be wondering why the block in figure 1.8 is labeled Ran-
dom Execution rather than Inference Algorithm, as it has been in other fig-
ures. Figure 1.8 shows what a probabilistic program means, as defining a
random execution process, rather than how you use a probabilistic program-
ming system, which is by using an inference algorithm to answer queries,
given evidence. So although the structure of the figures is similar, they convey
different concepts. As a matter of fact, random execution forms the basis for
some inference algorithms as well, but many algorithms aren’t based on sim-
ple random execution.
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MAKING DECISIONS WITH PROBABILISTIC PROGRAMMING

It’s easy to see how you can use a probabilistic program to predict the future. Just
execute the program randomly many times, using what you know about the present
as inputs, and observe how many times each output is produced. In the corner-kick
example of figure 1.8, you executed the program many times, given the inputs of
tall center forward, inexperienced goalie, and strong wind. Because 1/4 of those
runs resulted in a goal, you can say that the probability of a goal, given these inputs,
is 25%.

The magic of probabilistic programming, however, is that it can also be used for all
the kinds of probabilistic reasoning described in section 1.3.1. It can be used not only to
predict the future, but also to infer facts that led to particular outcomes; you can
“unwind” the program to discover the root causes of the outcomes. You can also apply a
program in one situation, learn from the outcome, and then use what you’ve learned to
make better predictions in the future. You can use probabilistic programming to help
make all the decisions that can be informed by probabilistic thinking.

How does this work? Probabilistic programming became practical when people
realized that inference algorithms that work on simpler representation languages like
Bayesian networks can be extended to work on programs. Part 3 of this book presents
a variety of inference algorithms that make this possible. Fortunately, probabilistic
programming systems come with a range of builtin inference algorithms that apply
automatically to your programs. All you have to do is provide your knowledge of your
domain in the form of a probabilistic program and specify the evidence, and the sys-
tem takes care of the inference and learning.

In this book, you’ll learn probabilistic reasoning through probabilistic program-
ming. You’ll learn, first of all, what a probabilistic model is and how it can be used to
draw conclusions. You'll also learn some basic manipulations that are performed to
draw those conclusions from a model made up of simple components. You'll learn a
variety of modeling techniques and how to implement them by using probabilistic
programming. You’ll also gain an understanding of how the probabilistic inference
algorithms work, so you can design and use your models effectively. By the end of this
book, you’ll be able to use probabilistic programming confidently to draw useful con-
clusions that inform your decisions in the face of uncertainty.

1.2  Why probabilistic programming?

Probabilistic reasoning is one of the foundational technologies of machine learning.
It’s used by companies such as Google, Amazon, and Microsoft to make sense of the
data available to them. Probabilistic reasoning has been used for applications as
diverse as predicting stock prices, recommending movies, diagnosing computers, and
detecting cyber intrusions. Many of these applications use techniques you’ll learn in
this book.
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16 CHAPTER 1 Probabilistic programming in a nutshell

From the previous section, two points stand out:

= Probabilistic reasoning can be used to predict the future, infer the past, and
learn from the past to better predict the future.

= Probabilistic programming is probabilistic reasoning using a Turing-complete
programming language for representation.

Put these two together and you have a slogan expressed in the Fact note.
FACT Probabilistic reasoning + Turing-complete = probabilistic programming

The motivation for probabilistic programming is that it takes two concepts that are
powerful in their own right and puts them together. The result is an easier and more
flexible way to use computers to help make decisions under uncertainty.

1.2.1 Better probabilistic reasoning

Most existing probabilistic representation languages are limited in the richness of the
systems they can represent. Some relatively simple languages such as Bayesian net-
works assume a fixed set of variables and aren’t flexible enough to model domains in
which the variables themselves can change. More-advanced languages with more flexi-
bility have been developed in recent years. Some (for example, BUGS) also provide
programming-language features including iteration and arrays, without being Turing-
complete. The success of languages such as BUGS shows a need for richer, more struc-
tured representations. But moving to fullfledged, Turing-complete languages opens a
world of possibilities for probabilistic reasoning. It’s now possible to model long-run-
ning processes with many interacting entities and events.

Let’s consider the soccer example again, but now imagine that you’re in the busi-
ness of sports analytics and want to recommend personnel decisions for a team. You
could use accumulated statistics to make your decisions, but statistics don’t capture
the context in which they were accumulated. You can achieve a more fine-grained,
context-aware analysis by modeling the soccer season in detail. This requires model-
ing many dependent events and interacting players and teams. It would be hard to
imagine building this model without the data structures and control flow provided by
a full programming language.

Now let’s think about the product launch example again, and look at making deci-
sions for your business in an integrated way. The product launch isn’t an isolated inci-
dent, but follows phases of market analysis, research, and development, all of which
have uncertainty in their outcome. The results of the product launch depend on all
these phases, as well as an analysis of what else is available in the market. A full analysis
will also look at how your competitors will respond to your product, as well as any new
products they might bring. This problem is hard, because you have to conjecture
about competing products. You may even have competitors you don’t know about yet.
In this example, products are data structures produced by complex processes. Again,
having a full programming language available to create the model would be helpful.
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One of the nice things about probabilistic programming, however, is that if you want
to use a simpler probabilistic reasoning framework, you can. Probabilistic programming
systems can represent a wide range of existing frameworks, as well as systems that can’t
be represented in other frameworks. This book teaches many of these frameworks using
probabilistic programming. So in learning probabilistic programming, you’ll also mas-
ter many of the probabilistic reasoning frameworks commonly used today.

12.2 Better simulation languages

Turing-complete probabilistic modeling languages already exist. They're commonly
called simulation languages. We know that it’s possible to build simulations of complex
processes such as soccer seasons by using programming languages. In this context, I
use the term simulation language to describe a language that can represent the execu-
tion of complex processes with randomness. Just like probabilistic programs, these sim-
ulations are randomly executed to produce different outputs. Simulations are as widely
used as probabilistic reasoning, in applications from military planning to component
design to public health to sports predictions. Indeed, the widespread use of sophisti-
cated simulations demonstrates the need for rich probabilistic modeling languages.

But a probabilistic program is much more than a simulation. With a simulation,
you can do only one of the things you can do with a probabilistic program: predict the
future. You can’t use it to infer the root causes of the outcomes that are observed.
And, although you can update a simulation with known current information as you go
along, it’s hard to include unknown information that must be inferred. As a result, the
ability to learn from past experience to improve future predictions and analyses is lim-
ited. You can’t use simulations for machine learning.

A probabilistic program is like a simulation that you can analyze, not just run. The
key insight in developing probabilistic programming is that many of the inference
algorithms that can be used for simpler modeling frameworks can also be used on
simulations. Hence, you have the ability to create a probabilistic model by writing a
simulation and performing inferences on it.

One final word. Probabilistic reasoning systems have been around for a while, with
software such as Hugin, Netica, and Bayesial.ab providing Bayesian network systems.
But the more expressive representation languages of probabilistic programming are
so new that we’re just beginning to discover their powerful applications. I can’t hon-
estly tell you that probabilistic programming has already been used in a large number
of fielded applications. But some significant applications exist. Microsoft has been
able to determine the true skill level of players of online games by using probabilistic
programming. Stuart Russell at the University of California at Berkeley has written a
program to help enforce the United Nations Comprehensive Nuclear-Test-Ban Treaty
by identifying seismic events that could indicate a nuclear explosion. Josh Tenenbaum
at the Massachusetts Institute of Technology (MIT) and Noah Goodman at Stanford
University have created probabilistic programs to model human cognition with con-
siderable explanatory success. At Charles River Analytics, we’ve used probabilistic
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programming to infer components of malware instances and determine their evolu-
tion. But I believe these applications are only scratching the surface. Probabilistic pro-
gramming systems are reaching the point where they can be used by larger numbers
of people to make decisions in their own domains. By reading this book, you have a
chance to get in on this new technology on the ground floor.

1.3 Introducing Figaro: a probabilistic programming language

In this book, you’ll use a probabilistic programming system called Figaro. (I named
Figaro after the character from Mozart’s opera “The Marriage of Figaro.” I love
Mozart and played Dr. Bartolo in a Boston production of the opera.) The main goal of
the book is to teach the principles of probabilistic programming, and the techniques
you learn in this book should carry over to other probabilistic programming systems.
Some of the available systems are listed with a brief description in appendix B. A sec-
ondary goal, however, is to give you hands-on experience with creating practical prob-
abilistic programs, and provide you with tools you can use right away. For that reason,
a lot of the examples are made concrete in Figaro code.

Figaro, which is open source and maintained on GitHub, has been under develop-
ment since 2009. It’s implemented as a Scala library. Figure 1.9 shows how Figaro uses

The probabilistic model
takes the form of a set of
Figaro data structures
called elements. Figaro

R
tEIeme'ntbsI correspond I~ | Probabilistic model

o variables in your

model, like the height | Figaro
of the center forward elements

or the outcome of the Seal The evidence is information
corner kick. LT cala about the values of elements.

You write Scala code to

create these elements.

R

Inference algorithm |
You perform inference - | Evidence |
by running one of Figaro’s —> lgaro
inference algorithms on — algorithms |
your model, using Scala Queries |
the evidence. LT |

/ -
Inference is invoked by

a Scala function call.
—> | Answers The queries request information

The answers provide the / about the values of elements.

probabilities of different

values of elements.

Figure 1.9 How Figaro uses Scala to provide a probabilistic programming system
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Scala to implement a probabilistic programming system. The figure elaborates on fig-
ure 1.7, which describes the main components of a probabilistic programming system.
Let’s start with the probabilistic model. In Figaro, the model consists of any number of
data structures known as elements. Each element represents a variable that can take on
any number of values in your situation. These data structures are implemented in Scala,
and you write a Scala program to create a model using these data structures. You can
supply evidence by providing information about the values of elements, and you can
specify which elements you want to know about in your query. For the inference algo-
rithm, you choose one of Figaro’s builtin inference algorithms and apply it to your
model, to answer your query, given the evidence. The inference algorithms are imple-
mented in Scala, and invoking an inference algorithm is simply a Scala function call.
The results of inference are probabilities of various values of your query elements.

Figaro’s embedding in Scala provides some major advantages. Some of these come
from embedding in a general-purpose host language, compared to a standalone prob-
abilistic language. Others come specifically because of the favorable properties of
Scala. Here’s why it’s good to embed a probabilistic programming language in a
general-purpose host language:

= The evidence can be derived using a program in the host language. For exam-
ple, you might have a program that reads a data file, processes the values in
some way, and provides that as evidence for the Figaro model. It’s much harder
to do this in a standalone language.

= Similarly, you can use the answers provided by Figaro in a program. For exam-
ple, if you have a program used by a soccer manager, the program can take the
probability of a goal being scored to recommend to the manager what to do.

= You can embed general-purpose code inside the probabilistic program. For exam-
ple, suppose you have a physics model that simulates the trajectory of a headed
ball through the air. You can incorporate this model inside a Figaro element.

= You can use general programming techniques to build your Figaro model. For
example, you might have a map containing Figaro elements corresponding to
all the players in your squad and choose the appropriate elements for a situa-
tion based on the players involved in that situation.

Here are some reasons that Scala is a particularly good choice of language for embed-
ding a probabilistic programming system in:

= Because Scala is a functional programming language, Figaro gets to benefit
from functional programming too. Functional programming has been instru-
mental in probabilistic programming, and many models can be written natu-
rally in a functional manner, as I’ll show in part 2.

= Scala is object-oriented; one of the beauties of Scala is that it is both functional
and object-oriented. Figaro is also object-oriented. As I’ll describe in part 2,
object-orientation is a useful way to express several design patterns in probabi-
listic programming.
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Finally, some of Figaro’s advantages go beyond its embedding in Scala. These include
the following:

Figaro can represent an extremely wide range of probabilistic models. The val-
ues of Figaro elements can be any type, including Booleans, integers, doubles,
arrays, trees, graphs, and so on. The relationships between these elements can
be defined by any function.

Figaro provides a rich framework for specifying evidence by using its conditions

and constraints.
= Figaro features a good variety of inference algorithms.

= Figaro can represent and reason about dynamic models of situations that vary

over time.

= Figaro can include explicit decisions in its models and supports inferring opti-

mal decisions.

Using Scala

Because Figaro is a Scala library, you’ll need a working knowledge of Scala to use
Figaro. This is a book on probabilistic programming, so | don’t teach Scala in this
book. Many great resources for learning Scala are available, such as Twitter’s Scala
School (http://twitter.github.io/scala_school). But in case you aren’t yet confident
with Scala, | explain the Scala features used in the code as | go along. You'll be able
to follow the book even if you don’t know Scala yet.

You don’t need to be a Scala wizard to benefit from probabilistic programming and
Figaro, and | avoid using some of the more advanced and obscure features of Scala
in this book. On the other hand, improving your Scala skills can help you become a
better Figaro programmer. You might even find that your Scala skills improve as a

result of reading this book.

For several reasons, Figaro is a favorable language for learning probabilistic pro-

gramming:

Being implemented as a Scala library, Figaro can be used in Java and Scala pro-
grams, making it easy to integrate into applications.

Also related to being implemented as a library, rather than its own separate lan-
guage, Figaro provides the full functionality of the host programming language
to build your models. Scala is an advanced, modern programming language
with many useful features for organizing programs, and you automatically bene-
fit from those features when using Figaro.

Figaro is fully featured in terms of the range of algorithms it provides.

This book emphasizes practical techniques and practical examples. Wherever possi-
ble, I explain the general modeling principle, as well as describe how to implement it

in Figaro. This will stand you in good stead no matter what probabilistic programming

system you end up using. Not all systems will be capable of easily implementing all the
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techniques in this book. For example, few object-oriented probabilistic programming
systems currently exist. But with the right foundation, you can find a way to express
what you need in your chosen language.

1.3.1 Figaro vs. Java: building a simple probabilistic programming system

To illustrate the benefits of probabilistic programming and Figaro, I'll show a simple
probabilistic application written two ways. First, I'll show you how to write it in Java, with
which you might be familiar. Then, I'll show you what it looks like in Scala using Figaro.
Although Scala has some advantages over Java, that’s not the main difference I’ll point
out here. The key idea is that Figaro provides capabilities for representing probabilistic models
and performing inference with them that aren’t available without probabilistic programming.

Our little application will also serve as a Hello World example for Figaro. Imagine
someone who gets up in the morning, checks if the weather is sunny, and utters a
greeting that depends on the weather. This happens two days in a row. Also, the
weather on the second day is dependent on the first day: the second day is more likely
to be sunny if the first day is sunny. These English language statements can be quanti-
fied numerically by the numbers in table 1.1.

Table 1.1 Quantifying the probabilities in the Hello World example

Today’s weather

Sunny 0.2
Not sunny 0.8
Today’s greeting
If today’s weather is sunny “Hello, world!” 0.6
“Howdy, universe!” 0.4
If today’s weather isn’t sunny “Hello, world!” 0.2
“Oh no, not again” 0.8

Tomorrow’s weather

If today’s weather is sunny Sunny 0.8
Not sunny 0.2

If today’s weather isn’t sunny Sunny 0.05
Not sunny 0.95

Tomorrow’s greeting

If tomorrow’s weather is sunny “Hello, world!” 0.6
“Howdy, universe!” 0.4
If tomorrow’s weather isn’t sunny “Hello, world!” 0.2
“Oh no, not again” 0.8
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The forthcoming chapters explain exactly how to interpret these numbers. For now,
it’s enough to have an intuitive idea that today’s weather will be sunny with probability
0.2, meaning that it’s 20% likely that the weather will be sunny today. Likewise, if
tomorrow’s weather is sunny, tomorrow’s greeting will be “Hello, world!” with proba-
bility 0.6, meaning that it’s 60% likely that the greeting will be “Hello, world!” and it’s
40% likely that the greeting will be “Howdy, universe!”

Let’s set for ourselves three reasoning tasks to perform with this model. You saw in
section 1.1.3 that the three types of reasoning you can do with a probabilistic model
are to predict the future, infer past events that led to your observations, and learn from
past events to better predict the future. You’ll do all of these with our simple model.
The specific tasks are as follows:

1 Predict the greeting today.

2 Given an observation that today’s greeting is “Hello, world!” infer whether
today is sunny.

3 Learn from an observation that today’s greeting is “Hello, world!” to predict
tomorrow’s greeting.

Here’s how to do these tasks in Java.

Listing 1.1 Hello World in Java

class HelloWorldJava {

static String greetingl = "Hello, world!";
: : : . Define the

static String greeting2 = "Howdy, universe!"; greeﬁngs

static String greeting3 = "Oh no, not again";

static Double pSunnyToday = 0.2;

static Double pNotSunnyToday = 0.8;

static Double pSunnyTomorrowIfSunnyToday = 0.8;

static Double pNotSunnyTomorrowIfSunnyToday = 0.2;

static Double pSunnyTomorrowIfNotSunnyToday = 0.05;

static Double pNotSunnyTomorrowIfNotSunnyToday = 0.95; Specﬁythe

static Double pGreetinglTodayIfSunnyToday = 0.6; numerical

static Double pGreeting2TodayIfSunnyToday = 0.4; parameters

static Double pGreetinglTodayIfNotSunnyToday = 0.2; of the model

static Double pGreeting3IfNotSunnyToday = 0.8;

static Double pGreetinglTomorrowIfSunnyTomorrow = 0.5;

static Double pGreeting2TomorrowIfSunnyTomorrow = 0.5;

static Double pGreetinglTomorrowIfNotSunnyTomorrow = 0.1;

static Double pGreeting3TomorrowIfNotSunnyTomorrow = 0.95;

static void predict() { Predict

Double pGreetinglToday = today’s
pSunnyToday * pGreetinglTodayIlfSunnyToday + greeﬁng
pNotSunnyToday * pGreetinglTodayIfNotSunnyToday; using the
System.out.println("Today's greeting is " + greetingl + rules of
"with probability " + pGreetinglToday + "."); probabilistic
} inference
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static void infer() {
Double pSunnyTodayAndGreetinglToday =
pSunnyToday * pGreetinglTodayIfSunnyToday; Infer today’s
Double pNotSunnyTodayAndGreetinglToday = Wemher
pNotSunnyToday * pGreetinglTodayIfNotSunnyToday; gwenthq
Double pSunnyTodayGivenGreetinglToday = observation
. that today’s
pSunnyTodayAndGreetinglToday / greeting is
(pSunnyTodayAndGreetinglToday + “Hello, world!”
pNotSunnyTodayAndGreetinglToday) ;
System.out.println("If today's greeting is " + greetingl +
", today's weather is sunny with probability " +
pSunnyTodayGivenGreetinglToday + ".");

using the rules
of probabilistic
inference

static void learnAndPredict ()

Double pSunnyTodayAndGreetinglToday =
pSunnyToday * pGreetinglTodayIfSunnyToday;

Double pNotSunnyTodayAndGreetinglToday =
pNotSunnyToday * pGreetinglTodayIfNotSunnyToday;

Double pSunnyTodayGivenGreetinglToday =
pSunnyTodayAndGreetinglToday /
(pSunnyTodayAndGreetinglToday +

pNotSunnyTodayAndGreetinglToday) ;
Double pNotSunnyTodayGivenGreetinglToday = Learn from

1 - pSunnyTodayGivenGreetinglToday; obserwng,
Double pSunnyTomorrowGivenGreetinglToday = that€od§ys
pSunnyTodayGivenGreetinglToday * §reeﬂngls '
Hello, world!
pSunnyTomorrowIfSunnyToday + .
. . to predict
pNotSunnyTodayGivenGreetinglToday * tomorrow’s
pSunnyTomorrowIfNotSunnyToday; . .
) . greeting using
Double pNotSunnyTomorrowGivenGreetinglToday = the rules of
1 - pSunnyTomorrowGivenGreetinglToday; probabﬂhﬁc

Double pGreetinglTomorrowGivenGreetinglToday = inference
pSunnyTomorrowGivenGreetinglToday *
pGreetinglTomorrowIfSunnyTomorrow +
pNotSunnyTomorrowGivenGreetinglToday *
pGreetinglTomorrowIfNotSunnyTomorrow;
System.out.println("If today's greeting is " + greetingl +
", tomorrow's greeting will be " + greetingl +
" with probability " +
pGreetinglTomorrowGivenGreetinglToday) ;

public static void main(Stringl[] args)

predict () ; Main method
infer() ; that performs
learnAndPredict () ; all the tasks

I'won’t describe how the calculations are performed using the rules of inference here.
The code uses three rules of inference: the chain rule, the total probability rule, and
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Bayes’ rule. All these rules are explained in detail in chapter 9. For now, let’s point out
two major problems with this code:

There’s no way to define a structure to the model.

The definition of the model is contained in a list of variable names with double
values. When I described the model at the beginning of the section and showed
the numbers in table 1.1, the model had a lot of structure and was relatively
understandable, if only at an intuitive level. This list of variable definitions has
no structure. The meaning of the variables is buried inside the variable names,
which is always a bad idea. As a result, it’s hard to write down the model in this
way, and it’s quite an error-prone process. It’s also hard to read and understand
the code afterward and maintain it. If you need to modify the model (for exam-
ple, the greeting also depends on whether you slept well), you’ll probably need
to rewrite large portions of the model.

Encoding the rules of inference yourself is difficult and error-prone.

The second major problem is with the code that uses the rules of probabilistic
inference to answer the queries. You have to have intimate knowledge of the
rules of inference to write this code. Even if you have this knowledge, writing
this code correctly is difficult. Testing whether you have the right answer is also
difficult. And this is an extremely simple example. For a complex application, it
would be impractical to create reasoning code in this way.

Now let’s look at the Scala/Figaro code.

Listing 1.2 Hello World in Figaro

import com.cra.figaro.language.{Flip, Select}

import com.cra.figaro.library.compound.If Import Figaro
import com.cra.figaro.algorithm.factored.VariableElimination constructs
object HelloWorld f{

val sunnyToday = Flip(0.2)

val greetingToday = If (sunnyToday,

Select (0.6 -> "Hello, world!", 0.4 -> "Howdy, universe!"),

Select (0.2 -> "Hello, world!", 0.8 -> "Oh no, not again")) Define the
val sunnyTomorrow = If (sunnyToday, Flip(0.8), Flip(0.05)) model
val greetingTomorrow = If (sunnyTomorrow,

Select (0.6 -> "Hello, world!", 0.4 -> "Howdy, universe!"),

Select (0.2 -> "Hello, world!", 0.8 -> "Oh no, not again"))
def predict() { .

val result = VariableElimination.probability (greetingToday, EI::;E

println("Today’s greeting is \"Hello, world!\" " +

"Hell 1d:n : ;
ello, world!™") greeting using

an inference

"with probability " + result + ".") algorithm
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def infer() { Use an inference

greetingToday.observe ("Hello, world!") algorithm to infer

val result = VariableElimination.probability (sunnyToday, true) today%vmaﬂmn
println("If today's greeting is \"Hello, world!\", today’s " + given the observation
"weather is sunny with probability " + result + ".") that today’s greeting

} is “Hello, world!”

def learnAndPredict () {
greetingToday.observe ("Hello, world!")
val result = VariableElimination.probability (greetingTomorrow,
"Hello, world!")
println("If today's greeting is \"Hello, world!\", " +
"tomorrow's greeting will be \"Hello, world!\" " +
"with probability " + result + ".")

Learn from
observing that
today’s greeting is
“Hello, world!” to
predict tomorrow’s
greeting using an
inference algorithm

def main(args: Array[Stringl)
predict () Main method
infer () that performs
learnAndPredict () all the tasks

}
}

I’ll wait until the next chapter to explain this code in detail. For now, I want to point
out that it solves the two problems with the Java code. First, the model definition
describes exactly the structure of the model, in correspondence with table 1.1. You
define four variables: sunnyToday, greetingToday, sunnyTomorrow, and greeting-
Tomorrow. Each has a definition that corresponds to table 1.1. For example, here’s the
definition of greetingToday:

val greetingToday = If (sunnyToday,
Select (0.6 -> "Hello, world!", 0.4 -> "Howdy, universe!™")

Select (0.2 -> "Hello, world!", 0.8 -> "Oh no, not again"))

This says that if today is sunny, today’s greeting is “Hello, world!” with probability 0.6
and “Howdy, universe!” with probability 0.4. If today isn’t sunny, today’s greeting is
“Hello, world!” with probability 0.2 and “Oh no, not again” with probability 0.8. This is
exactly what table 1.1 says for today’s greeting. Because the code explicitly describes
the model, the codes is much easier to construct, read, and maintain. And if you need
to change the model (for example, by adding a sleepQuality variable), this can be
done in a modular way.

Now let’s look at the code to perform the reasoning tasks. It doesn’t contain any
calculations. Instead, it instantiates an algorithm (in this case, the variable elimination
algorithm, one of several algorithms available in Figaro) and queries the algorithm to
get the probability you want. Now, as described in part 3, this algorithm is based on
the same rules of probabilistic inference that the Java program uses. All the hard work
of organizing and applying the rules of inference is taken care of by the algorithm.
Even for a large and complex model, you can run the algorithm, and all the inference
is taken care of.
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14 Summary

Making judgment calls requires knowledge + logic.

In probabilistic reasoning, a probabilistic model expresses the knowledge, and
an inference algorithm encodes the logic.

Probabilistic reasoning can be used to predict future events, infer causes of past
events, and learn from past events to improve predictions.

Probabilistic programming is probabilistic reasoning, where the probabilistic
model is expressed using a programming language.

A probabilistic programming system uses a Turing-complete programming lan-
guage to represent models and provides inference algorithms to use the models.
Figaro is a probabilistic programming system implemented in Scala that pro-
vides functional and object-oriented programming styles.

1.5 Exercises

Solutions to selected exercises are available online at www.manning.com/books/
practical-probabilistic-programming.

1

Imagine that you want to use a probabilistic reasoning system to reason about
the outcome of poker hands.

a What kind of general knowledge could you encode in your model?

b Describe how you might use the system to predict the future. What'’s the evi-
dence? What’s the query?

¢ Describe how you might use the system to infer past causes of current obser-
vations. What’s the evidence? What’s the query?

d Describe how the inferred past causes can help you with your future predictions.

In the Hello World example, change the probability that today’s weather is sunny

according to the following table. How do the outputs of the program change?
Why do you think they change this way?

Today’s weather

Sunny 0.9

Not sunny 0.1

Modity the Hello World example to add a new greeting: “Hi, galaxy!” Give this
greeting some probability when the weather is sunny, making sure to reduce
the probability of the other greetings so the total probability is 1. Also, modify the
program so that all the queries print the probability of “Hi, galaxy!” instead of
“Hello, world!” Try to do this for both the Java and Figaro versions of the Hello
World program. Compare the process for the two languages.
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