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The three rules
of probabilistic inference

In part 2 of this book, you learned all about writing probabilistic programs for a
variety of applications. You know that probabilistic programming systems use infer-
ence algorithms operating on these programs to answer queries, given evidence.
How do they do that? That’s what this part of the book is all about. It’s important
that you know about this, so you can design models and choose algorithms that
support fast and accurate inference.

This chapter covers
■ Three important rules for working with probabilistic 

models: 
– The chain rule, which lets you build complex 

models out of simple components
– The total probability rule, which lets you 

simplify a complex probabilistic model to 
answer simple queries

– Bayes’ rule, with which you can draw 
conclusions about causes from observations of 
their effects

■ The basics of Bayesian modeling, including how to 
estimate model parameters from data and use 
them to predict future cases
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258 CHAPTER 9 The three rules of probabilistic inference

This chapter begins with the basics of inference: the three rules of probabilistic infer-
ence. The inputs and output of each of the three rules is summarized in figure 9.1: 

■ First you’ll learn about the chain rule, which lets you go from simple (local con-
ditional probability distributions over individual variables) to complex (a full
joint probability distribution over all variables). 

■ The total probability rule, described in section 9.2, goes from complex (a full
joint distribution) back to simple (a distribution over a single variable). 

■ Finally, Bayes’ rule, described in section 9.3, is probably the most famous rule of
inference. Bayes’ rule lets you “flip” the direction of the dependencies, turning
a conditional distribution over an effect, given a cause, into a distribution over a
cause, given an effect. Bayes’ rule is essential to incorporating evidence, which
is often an observation of an effect, and inferring a cause. 

These three rules of inference can be used to answer queries.
 Before diving into the new material, let’s recap some definitions from chapter 4

that you need in this chapter:

■ Possible worlds—All states you consider possible
■ Probability distribution—An assignment of a probability between 0 and 1 to each

possible world, such that all of the probabilities add up to 1
■ Prior probability distribution—The probability distribution before seeing any

evidence
■ Conditioning on the evidence—The process of applying evidence to a probability

distribution

P(Subject)

P(Size | Subject)

P(Brightness | Subject)
P(Subject, Size, Brightness)

The chain rule

P(Subject)P(Subject, Size, Brightness)

The total probability rule

P(Subject)

P(Size | Subject)
P(Subject | Size)

Bayes’ rule

Figure 9.1 Inputs and output of 
each of the three rules of 
probabilistic inference. The chain 
rule lets you turn a set of 
conditional probability 
distributions into a joint 
probability distribution. The total 
probability rule lets you take a 
joint probability distribution  over 
a set of variables and produce a 
distribution over a single 
variable. Bayes’ rule lets you 
“invert” a conditional probability 
distribution over an effect, given 
a cause, into a conditional 
probability distribution over the 
cause, given the effect.
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259The chain rule: building joint distributions from conditional probability distributions

■ Posterior probability distribution—The probability distribution after seeing the evi-
dence; the result of conditioning

■ Conditional probability distribution—Rule that specifies a probability distribution
over one variable for every combination of values of some other variables

■ Normalizing—The process of proportionally adjusting a set of numbers so they
add up to 1

NOTE For each of the rules, a sidebar presents generic mathematical defini-
tions. These are useful if you want a deeper understanding; and if you’re com-
fortable with the mathematical notation, this more abstract discussion can
help cement the principles. If not, feel free to skip these sidebars. The main
thing is that you understand why and how the rule is used. 

9.1 The chain rule: building joint distributions from 
conditional probability distributions
As you may recall, chapter 4 covered how a probabilistic model defines a probability
distribution over possible worlds, as well as the ingredients of probabilistic models:
variables, dependencies, functional forms, and numerical parameters. I hinted that
the chain rule is the essential mechanism that turns these ingredients into a probabil-
ity distribution over possible worlds. I promised you a full discussion of the chain rule
in part 3, and now it’s time for that discussion.

 How does the chain rule define a probability distribution over possible worlds? In
other words, how does it specify a number between 0 and 1 for each possible world? Let’s revisit
our Rembrandt example from chapter 4. Let’s start with the variables Subject, Size,
and Brightness, and assume you’re given the dependency model where Size and
Brightness both depend on Subject but not on each other. You’re also given a specifi-
cation of a probability distribution over Subject; a CPD of Size, given Subject; and a
CPD of Brightness, given Subject. These ingredients are summarized in figure 9.2.
(For Subject, which doesn’t depend on anything, I use the same CPD table notation as
the other variables, except that there are no conditioning variables and only one row.)

 Now, a possible world specifies a value for each of the variables Subject, Size, and
Brightness. How do you get the probability of a possible world? For example, what’s P(Subject
= People, Size = Large, Brightness = Dark)? According to the chain rule, this is simple.
You find the correct entries in the CPD tables and multiply them together. So, in this case, 

P(Subject = People, Size = Large, Brightness = Dark) = 

P(Subject = People) × P(Size = Large | Subject = People) × P(Brightness = Dark | 
Subject = People) =

0.8 × 0.5 × 0.8 = 

0.32
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260 CHAPTER 9 The three rules of probabilistic inference

You can use the same formula for all possible values of Subject, Size, and Brightness,
and get the result shown in table 9.1. This result is called a joint probability distribution
over Subject, Size, and Brightness, because it specifies the probability of each joint
value of these three variables.

Table 9.1 Joint probability distribution resulting from applying the chain rule to the CPDs in figure 9.1.
You multiply P(Subject) by P(Size | Subject) and P(Brightness | Subject). The probabilities add up to 1.

Subject Size Brightness Probability

People Small Dark 0.8 × 0.25 × 0.8 = 0.16

People Small Bright 0.8 × 0.25 × 0.2 = 0.04

People Medium Dark 0.8 × 0.25 × 0.8 = 0.16

People Medium Bright 0.8 × 0.25 × 0.2 = 0.04

People Large Dark 0.8 × 0.5 × 0.8 = 0.32

People Large Bright 0.8 × 0.5 × 0.2 = 0.08

Landscape Small Dark 0.2 × 0.25 × 0.3 = 0.015

Landscape Small Bright 0.2 × 0.25 × 0.7 = 0.035

Landscape Medium Dark 0.2 × 0.5 × 0.3 = 0.03

BrightnessSize

Subject

Probability values for Size,
given Subject

Probability values for Brightness,
given Subject

0.25 0.5 0.25

People Landscape

Subject

Probability values for Subject

0.8 0.2

People

Small

Subject Size

Landscape

0.25

Medium

0.25

Large

0.5

0.3 0.7

People

Dark

Subject Brightness

Landscape

0.8

Bright

0.2

Figure 9.2 Bayesian network structure and CPDs for the chain rule example
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261The chain rule: building joint distributions from conditional probability distributions

The truth is, I’ve cheated a little bit. The standard chain rule for three variables says
that for the third variable, you need to condition its probability on both the first two
variables. So rather than 

P(Subject = People, Size = Large, Brightness = Dark) = 

P(Subject = People) × P(Size = Large | Subject = People) × P(Brightness = Dark | 
Subject = People)

you should be computing

P(Subject = People, Size = Large, Brightness = Dark) = 

P(Subject = People) × P(Size = Large | Subject = People) × P(Brightness = Dark | 
Subject = People, Size = Large)

That would be the officially correct statement of the chain rule. But I’m taking advan-
tage of specific knowledge I have about the dependencies, namely that Brightness
doesn’t depend on Size, only Subject. Brightness is conditionally independent of Size,
given Subject: 

P(Brightness = Dark | Subject = People, Size = Large) = 

P(Brightness = Dark | Subject = People)

So I can legitimately simplify the chain rule the way I have. Anytime you have a Bayes-
ian network and want to use the chain rule to define the full probability distribution
over all variables, you can always simplify the rule so that each variable depends only
on its parents in the network. On the other hand, if Brightness wasn’t conditionally
independent of Size, given Subject, you’d have to use the longer form. Bayesian net-
works and the chain rule go hand in hand. A Bayesian network specifies exactly the
form of the chain rule to use in building up the joint distribution.

 That’s all there is to the chain rule, a simple but crucial rule in probabilistic mod-
eling. The chain rule is essential to understanding not only Bayesian networks but
also generative models in general. Because probabilistic programs are encodings of
generative models, now that you understand the chain rule, you have a fundamental
understanding of the probabilistic model defined by a probabilistic program.

Landscape Medium Bright 0.2 × 0.5 × 0.7 = 0.07

Landscape Large Dark 0.2 × 0.25 × 0.3 = 0.015

Landscape Large Bright 0.2 × 0.25 × 0.7 = 0.035

Table 9.1 Joint probability distribution resulting from applying the chain rule to the CPDs in figure 9.1.
You multiply P(Subject) by P(Size | Subject) and P(Brightness | Subject). The probabilities add up to 1.

Subject Size Brightness Probability
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262 CHAPTER 9 The three rules of probabilistic inference

The generic chain rule
This chain rule is a generic principle that applies to any dependency model and any
set of CPDs for the variables, in whatever functional form. As long as each variable
has a CPD that specifies a probability distribution over its values for any possible val-
ues of the variables it depends on, you can get the probability of any joint assignment
to all variables by multiplying the correct numbers in the CPDs. 

In mathematical notation, you start with two variables X and Y, such that Y depends
on X. You’re given P(X), a probability distribution over the values of X, and P(Y | X),
the CPD of Y given X. The chain rule takes these two ingredients P(X) and P(Y | X), and
turns them into a probability distribution P(X,Y) over X and Y jointly. For every possible
value x of X and y of Y, the chain rule is defined by this simple formula:

P(X = x,Y = y) = P(X = x)P(Y = y | X = x)

NOTATION ALERT It’s standard practice to use uppercase letters like X and Y
to represent variables, and lowercase letters like x and y for values.

You have a convenient way to indicate that this formula holds for every value x and y:

P(X,y) = P(X)P(Y | X)

This easy-to-remember formula is shorthand for many formulas about specific values
x and y.

What if you have more than two variables? The chain rule generalizes to any number
of variables. Suppose you have variables X1, X2, …, Xn. In the standard statement of
the chain rule, you don’t make any independence assumptions, so each variable
depends on all variables that precede it. The full chain rule, using shorthand notation,
is as follows:

P(X1,X2,…Xn) = P(X1)P(X2 | X1)P(X3 | X1,X2)…P(Xn | X1,X2,…Xn–1)

Let’s see what this formula says. It says that to get the joint probability distribution
over X1, X2,…Xn, you start with X1 and get its probability, and then you look at X2,
which depends on X1, and get its appropriate probability out of its CPD. Then you
get the probability of X3, which depends on X1 and X2, from its CPD, continuing
recursively until finally, you get the appropriate probability of Xn, which depends on
all previous variables, from its CPD. This formula, by the way, is the reason for the
name chain rule. You compute a joint probability distribution from a chain of condi-
tional distributions.

Our multivariable chain rule formula didn’t make any assumptions about dependen-
cies, especially not independence relationships. Adding independence information
can significantly simplify the formula. Instead of including all previous variables on the
right-hand side of the “|” for a given variable, you need to include only the variables it
directly depends on in the dependency model. For example, let’s consider the three
variables Subject, Size, and Brightness. If you were to follow formula (3), you’d get 

P(Subject, Size, Brightness) = P(Subject) P(Size | Subject) P(Brightness | Subject,
Size)
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263The total probability rule: getting simple query results from a joint distribution

9.2 The total probability rule: getting simple query results 
from a joint distribution
The chain rule lets you build a joint distribution out of simple CPDs, say, a joint distri-
bution over Subject, Size, and Brightness. Typically, your query will be about a particu-
lar variable or small number of variables. For example, you might want to infer the
identity of a painter based on observations of a painting. Suppose you have a joint dis-
tribution over all of the variables. How do you get a probability distribution over a sin-
gle variable? The principle is simple: the probability of any value of the variable is
equal to the sum of probabilities of all joint assignments to all variables that are consis-
tent with that value.

 You already saw this basic principle in chapter 4: the probability of any fact is the sum
of the probabilities of possible worlds consistent with that fact. So to get the probability that
Subject = Landscape, you add the probabilities of all possible worlds consistent with
Subject = Landscape. Because each world consists of a joint assignment of values to all
variables, including Subject, you look for the worlds in which the value assigned to
Subject is Landscape. This simple principle usually goes by the fancy name of the law
of total probability, but I prefer to call it the more mundane total probability rule. 

 The use of the total probability rule is illustrated in figure 9.3. You start with the
prior probability distribution shown in the top of the figure. You then condition on
the evidence that Size = Small to obtain the posterior distribution in the middle. You
use the usual two steps: first, you cross out all assignments of values to the variables
inconsistent with the evidence that Size = Small, and then you normalize the remain-
ing probabilities so that they sum to 1. On the bottom of the figure, you use the total
probability rule to compute the probability that the painting is a landscape, given the
evidence. You add the probabilities of all rows in which the value of the Subject vari-
able is Landscape.

 Notice how the posterior probability of a row in which the value of Size is anything
other than Small is 0. This is always the case, because you cross out worlds inconsistent
with the evidence and set their probability to 0. So, in fact, 

P(Subject = Landscape, Brightness = Dark | Size = Small)

is equal to

P(Subject = Landscape, Brightness = Dark, Size = Small | Size = Small)

(continued)

But according to the network, Brightness doesn’t depend on Size, only Subject. So
you can simplify this formula to 

P(Subject, Size, Brightness) = P(Subject) P(Size | Subject) P(Brightness | Subject) 

And indeed, this is the formula used to compute table 9.1.
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264 CHAPTER 9 The three rules of probabilistic inference

People Small 0.16

People Small 0.04

People Medium 0.16

People Medium 0.04

People Large 0.32

People Large

P(Subject, Size, Brightness)

P(Subject, Size, Brightness | Size = Small)

Dark

Bright

Dark

Bright

Dark

Bright 0.08

Landscape Small 0.015

Landscape Small 0.035

Landscape Medium 0.03

Landscape Medium 0.07

Landscape Large 0.015

Landscape Large

Dark

Bright

Dark

Bright

Dark

Bright 0.035

People Small 0.64

People Small 0.16

People Medium 0

People Medium 0

People Large 0

People Large

Dark

Bright

Dark

Bright

Dark

Bright 0

Landscape Small 0.06

Landscape Small 0.14

Landscape Medium 0

Landscape Medium 0

Landscape Large 0

Landscape Large

Dark

Bright

Dark

Bright

Dark

Bright 0

Evidence

• Size = Small

P(Subject = Landscape |

Size = Small) =

0.06 + 0.14 + 0 + 0 + 0 + 0 = 0.2

1. Start with all
the possible
worlds and their
probabilities.

2. Use the evidence to
cross out inconsistent
worlds by setting their
probability to zero.

3. Then normalize to
get the posterior
probability
distribution.

4. Add up the probabilities
consistent with the query
Subject = Landscape.

Subject Size ProbabilityBrightness

Subject Size ProbabilityBrightness

Figure 9.3 Using the total probability rule to answer a query. The total probability of a value of a 
variable is the sum of probabilities of all joint assignments consistent with the value.
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265The total probability rule: getting simple query results from a joint distribution

You can see that P(Subject = Landscape | Size = Small), which is the sum of two rows in
the middle table in figure 9.3, can be expressed by the following summation:

P(Subject = Landscape | Size = Small) = 

P(Subject = Landscape, Brightness = Dark | Size = Small) + P(Subject = Landscape,
Brightness = Bright | Size = Small)

A concise way of writing this summation uses the Greek letter , which is the standard
mathematical notation for addition:

P(Subject = Landscape | Size = Small) = 

b P(Subject = Landscape, Brightness = b | Size = Small) (1)

On the right-hand side of this equation, b stands for any possible value of Brightness,
and b means you add the following terms for all possible values of Brightness. We say
we’re “summing out” Brightness. Now, formula (1) holds for any possible values of
Subject and Size, so you can use the snappy shorthand from the previous section:

P(Subject | Size) = b P(Subject, Brightness = b | Size)

The generic total probability rule
Now that you’ve seen the total probability rule applied to our example, you’re ready
to see the general mathematical definition. It’s the same simple principle, but the
notation is a little messier. You have a joint probability distribution over a set of vari-
ables, and you want to sum out some of those variables to get a distribution over the
other variables. For example, you might have a joint distribution over Color, Bright-
ness, Width, and Height. You want a distribution over Color and Brightness and to
sum out Width and Height. Now, your joint distribution over all of the variables may
be conditioned on some other set of variables, such as Rembrandt and Subject. To
keep the formulas short, you’ll use the initial of each variable. Also, let’s assume that
the possible values of Width and Height are small and large. According to the total
probability rule

P(C = yellow, B = bright | R = true, S = landscape) =

P(C = yellow, B = bright, W = small, H = small | R = true, S = landscape) +

P(C = yellow, B = bright, W = small, H = large | R = true, S = landscape) +

P(C = yellow, B = bright, W = large, H = small | R = true, S = landscape) +

P(C = yellow, B = bright, W = large, H = large | R = true, S = landscape) 
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266 CHAPTER 9 The three rules of probabilistic inference

There’s a technical term you might encounter when you start with a joint distribution
over a set of variables and you sum out some of the variables to get a probability distri-
bution over the remaining variables. This resulting distribution is called the marginal
distribution over the remaining variables, and the process of summing out variables to
get the marginal distribution over other variables is called marginalization. Most typi-
cally, you sum out all but one of the variables and end up with the marginal distribu-
tion over a single variable.

 Now you’ve covered two of the three rules of probabilistic inference. Let’s turn our
attention to the last, and possibly the most interesting one.

(continued)

You can write this in mathematical notation. Let’s call the variables that you want the
distribution X1,…,Xn, and the variables to be summed out Y1,…,Ym. Let’s call the vari-
ables you’re conditioning on Z1,…,Zl. The total probability rule says that for any values
x1,…,xn of X1,…,Xn and z1,…,zl of Z1,…,Zl:

P(X1 = x1,…,Xn = xn | Z1 = z1,…,Z1 = zl) =

y1 y2…y3 P(X1 = x1,…,Xn = xn,Y1 = y1,…,Ym = ym | Z1 = z1,…,Z1 = z1)

All this is saying is that to get the conditional probability that the target variables
X1,…,Xn have values x1,…,xn, you take the sum of all cases in the full conditional dis-
tribution over all variables in which the values of the target variables match the values
x1,…,xn. 

Because this formula holds for all values x1,…,xn and z1,…,zl, you can use the same
shorthand as in section 2.1 and write

P(X1,…,Xn | Z1,…,Z1) = y1 y2…ym P(X1,…,Xn, Y1 = y1,…,Ym = ym | Z1,…,Z1)

Another notational trick makes the total probability rule an easy formula to remem-
ber. If you have a set of variables X1,…,Xn, you can summarize them all with a bold-
face X. So X is shorthand for X1,…Xn. Likewise, you can use a bold lowercase x as
shorthand for the values x1,…,xn. 

NOTATION ALERT It’s common to use nonbold, italic letters like X and x for indi-
vidual variables or values, and boldface X and x for sets of variables or values.

So for specific values x and z, you have

P(X = x | Z = z) = y P(X = x,Y = y | Z = z)

Generalizing over all values x and z, you finally get the pithy formula

P(X | Z) = yP(X,Y = y | Z)

This summarizes the total probability rule.
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267Bayes’ rule: inferring causes from effects

9.3 Bayes’ rule: inferring causes from effects
The final piece of the puzzle in reasoning about probabilistic models is Bayes’ rule,
named after Rev. Thomas Bayes, an eighteenth-century mathematician who first dis-
covered how to infer knowledge about causes from observations about effects. Bayes’
rule lets you compute the conditional probability of a cause, given its effect, by combining the prior
probability of the cause (before you know anything about the effect) and the probability of the
effect, given the cause. 

9.3.1 Understanding, cause, effect, and inference

Bayes’ rule is related to the notions of cause and effect, which in turn are related to
the dependencies in your model. In an ordinary program, when one variable X uses
the value of another variable Y in its definition, changing the value of Y can result in a
change to X. So, in a sense, Y is a cause of X. In the same way, if you’re building a prob-
abilistic model where X depends on Y, Y is often a cause of X. For example, consider
Subject and Brightness. You modeled Brightness as depending on Subject, and typi-
cally a painter might decide what type of painting to paint before deciding how bright
it should be. So in this sense, Subject is a cause of Brightness.

 I’m using the word cause a little loosely here. A more accurate description is to say
that you’re modeling the generative process of the data. In this process, you imagine the
painter first choosing the subject, and then based on that, choosing the brightness. So
the painter first generates a value for the Subject variable, which then gets passed to
the generation of the value of the Size variable. When a model follows a generative
process, you loosely use the words cause and effect when the value of one variable is
being used by another.

 Figure 9.4 shows a slightly more elaborate example of a generative process,
described by a Bayesian network. In this example, the first variable that gets generated
is whether the painting is by Rembrandt or not, because the identity of the painter
influences everything about the painting. Then the painter chooses the Subject,
which in turn helps determine the Size and Brightness. The reason Size depends on
both Rembrandt and Subject is that landscapes by different painters might tend to
have different sizes; similarly for Brightness.

 The right-hand side of figure 9.4 makes an important point. Although the gener-
ative process follows the arrows in the model, inference about the model can go in
any direction. In fact, in this example, our goal is to decide whether the painting is a
Rembrandt, so the inference will go in the opposite direction from the generative
process. I’ve emphasized this point throughout the book; the direction of the arrows
in the network isn’t necessarily the direction in which you expect to do inference.
Don’t let the way you typically reason about a domain (for example, “I look at the
painting’s brightness to decide who the artist is”) guide the way you structure the net-
work. Instead, think about the generative process. In most cases, following the genera-
tive process results in the simplest and clearest model. You can infer in any direction
you want.
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268 CHAPTER 9 The three rules of probabilistic inference

Okay, so I’ve said you can infer in the opposite direction from the arrows in the net-
work. How do you do that? Bayes’ rule is the answer! Let’s look at the two-variable
example in figure 9.5. Here, the network follows the natural generative process in
which Subject determines Size. You’re given, as ingredients, P(Subject) and P(Size |
Subject). First, let’s think about inference in the forward direction, following the gen-
erative process. Suppose you observe that Subject = Landscape, and you want to query
the posterior probability of Size. You can get it directly from P(Size | Subject). If you
want to infer an effect from evidence about a cause, you have that information imme-
diately available.

But often you observe evidence about an effect, and you want to infer something
about a possible cause of that effect. You want to invert the model, because you want
to get P(Subject | Size), which is the probability of the cause, given the effect. Bayes’
rule makes this possible. 

9.3.2 Bayes’ rule in practice

The operation of Bayes’ rule is simple. I’ll show how it works first and then explain
each of the steps. The full process is illustrated in figure 9.6. You start with the model

BrightnessSize

Subject

Rembrandt

Generative process Inference

Follows the
direction of
the arrows

Goes in any
direction

Figure 9.4 Network arrows often follow the generative process, but inference can be in any direction.

Probability values for Size, given Subject

0.25 0.5 0.25

People Landscape

Subject

Probability values for Subject

0.8 0.2 People

Small

Subject Size

Landscape

0.25

Medium

0.25

Large

0.5

Subject Size

Figure 9.5 Two-variable model for the Bayes’ rule example
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269Bayes’ rule: inferring causes from effects

from figure 9.5. Then you observe evidence that Size = Large. You want to compute a
posterior probability distribution over Subject given this evidence—you want to com-
pute P(Subject | Size = Large). Here’s what you do:

1 Calculate P(Subject = People) P(Size = Large | Subject = People) = 0.8 × 0.5 =
0.4, and P(Subject = Landscape) P(Size = Large | Subject = Landscape) = 0.2 ×
0.25 = 0.05. These numbers are shown in the middle table of figure 9.6.

2 Normalize this table to get the answer you want. The normalizing factor is 0.4 +
0.05 = 0.45. So, P(Subject = People | Size = Large) = 0.4 / 0.45 = 0.8889, and
P(Subject = Landscape | Size = Large) = 0.05 / 0.45 = 0.1111. This answer is
shown in the bottom table of figure 9.6.

Now, why does this work? You have the ingredients for this process in the chain
rule and the total probability rule. You’re going to construct the joint probability
distribution from the CPD ingredients by using the chain rule, as you learned in
section 9.1. Then you’ll apply the chain rule again, this time in the opposite direction.

0.25 0.5 0.25

People Landscape

Subject

0.8 0.2 People

Small

Subject Size

Landscape

0.25

Medium

0.25

Large

0.5

People Landscape

Subject

0.8 x 0.5 = 0.4 0.2 x 0.25 = 0.05

People Landscape

Subject

0.4 / (0.4 +

0.05) = 0.8889

0.05 / (0.4 + 0.05) =

0.1111

Subject Size

Evidence

• Size = Large

1. Compute P(Subject = People) P(Size = Large | Subject = People).
Compute P(Subject = Landscape) P(Size = Large | Subject = Landscape).
This becomes a table that assigns a number to People (0.4)
and Landscape (0.05).

2. Normalize this table so the numbers add up to .1
This amounts to dividing each entry by 0.4 + 0.05.

3. This results in numbers for P(Subject = People | Size = Large)
and P(Subject = Landscape | Size = Large).
Altogether, this table represents P(Subject | Size = Large).

Figure 9.6 Bayes’ rule in operation
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270 CHAPTER 9 The three rules of probabilistic inference

Finally, you’ll use the total probability rule to complete the calculation. Here are
the steps:

1 Take P(Subject) and P(Size | Subject) and apply the chain rule to get P(Subject,
Size) = P(Subject) P(Size | Subject).

2 Using the chain rule, but breaking things up in the inverse direction, you can
write P(Size, Subject) = P(Size) P(Subject | Size).

3 Because P(Subject, Size) and P(Size, Subject) are equal, you can put 1 and 2
together to get P(Size) P(Subject | Size) = P(Subject) P(Size | Subject).

4 Divide by P(Size) on both sides of this equation to get

You now have the answer to your query, P(Subject | Size) on the left-hand side. This is
the formula typically referred to as Bayes’ rule, but it’s not yet in usable form, because
it includes P(Size), which you don’t have, so there’s one more step.

1 Use the total probability rule and the chain rule to express P(Size) in terms you
know. First, use the total probability rule to write P(Size) = s P(Subject = s,
Size). Then, use the chain rule to write P(Subject = s, Size) = P(Subject = s)
P(Size | Subject = s). Finally, combine those to get P(Size) = s P(Subject = s)
P(Size | Subject = s). 

2 You get your final answer:

You can see how this answer relates to the two steps illustrated in figure 9.6. The first
step computes the numerator P(Subject) P(Size = Large | Subject) for each of the two
possible values of Subject. Now, take a look at the denominator. You add P(Subject = s)
P(Size | Subject = s) for each possible value s of Subject. But this is just the quantity
you computed in the first step for each value of Subject. The denominator adds
together all of the quantities you computed in the first step. So you need to divide
each of these quantities by their total. This is another way of saying that you normalize
those quantities, which you do in step 2.

 Although Bayes’ rule is simple, there’s more to learn about it. Bayes’ rule provides
the basis for the Bayesian modeling framework, which is the subject of the next sec-
tion. That section also goes into more depth on how Bayes’ rule works, and provides a
sidebar on the generic Bayes’ rule. 

P Subject Size  P Subject P Size Subject 
P Size 

--------------------------------------------------------------------=

P Subject Size Large=  P Subject P Size Large= Subject 
sP Subject s= P Size Large= Subject s= 
-------------------------------------------------------------------------------------------------------------------=
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9.4 Bayesian modeling
Bayes’ rule provides the basis for a general approach to modeling, in which you infer
knowledge about causes from observations of their effects, and then apply that knowl-
edge to other potential effects. 

 This section demonstrates Bayesian modeling by using the coin-toss scenario you
first encountered in chapter 2. Based on the results of 100 coin tosses (the effects of
the model), you’ll do the following: 

■ Use Bayes’ rule to infer the bias of the coin (the cause of the effects) 
■ Demonstrate several methods to predict the result of the 101st coin toss

– The maximum a posteriori (MAP) method
– The maximum likelihood estimation (MLE) method
– The full Bayesian method

Figure 9.7 reproduces the Bayesian network for the example where you’re trying to
predict the toss of the 101st coin, based on the outcome of the first 100 tosses. You
have three variables: the Bias of the coin, the NumberOfHeads in the first 100 tosses,
and the outcome of Toss101. Bias is generated first, and then all of the coin tosses
depend on Bias. If Bias is known, the coin tosses are independent. Remember, when I
say that Bias is generated first, I’m describing the generative process, not that Bias is
known first. This is yet another example indicating that the order in which variables
are generated isn’t necessarily the order of inference. In our example, Bias is gener-
ated first, but inference goes from NumberOfHeads to Bias.

You’re using the beta-binomial model, so Bias is characterized by a beta distribution,
whereas NumberOfHeads is characterized by a binomial distribution that depends on
Bias. As a reminder:

■ The binomial variable characterizes the number of times a random process
comes out a certain way, out of a total number of attempts. In our example, a
binomial is used to characterize the number of times a coin toss comes out
heads. A binomial variable is parameterized by the probability that each attempt
comes out the right way.

■ This probability is the bias of the coin. If you knew the bias of the coin, this
could be a specific value. But in this scenario, you don’t know the bias, and
you’re trying to estimate it based on the outcomes of the coin tosses. Therefore,

Toss101NumberOfHeads

Bias

Figure 9.7 Bayesian network 
for the coin-toss example
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272 CHAPTER 9 The three rules of probabilistic inference

you model the bias by using a random variable. Specifically, you use the beta
distribution, which is a continuous distribution, to model this bias. For a contin-
uous distribution, you use a probability density function (PDF) instead of specify-
ing the probability of each value. A beta distribution has two parameters,  and
.  can intuitively be understood as representing the number of heads you’ve
previously seen, plus one. Similarly for  and tails. As mentioned in chapter 4,
you use the beta distribution because it works well with the binomial. You’ll see
why in this section.

The outcome of any future coin toss is given by a Flip, in which the probability it
comes out heads is equal to Bias. As is implied by the Bayesian network, the future
coin toss depends directly only on the bias. If the bias is known, the other coin tosses
don’t add any information. But if the bias is unknown, the first 100 coin tosses provide
information about the bias that can then be used to predict the 101st coin toss.

9.4.1 Estimating the bias of a coin

How do you use this model to predict a future coin toss based on the outcome of the
first 100? This is where Bayesian modeling comes in. In Bayesian modeling, you can
use Bayes’ rule to infer a posterior probability distribution over the bias from observ-
ing the number of tosses that came out heads. You can then use this posterior distribu-
tion to predict the next toss. 

 This process is shown in figure 9.8. If you observe thousands of tosses and 40% of
them come out heads, you might infer that the bias is probably close to 0.4. If you
don’t have as many tosses, the inference will be less confident. These inferences are
the direct result of applying Bayes’ rule. Getting back to our example, if you see 63
heads in 100 coin tosses, you can compute a posterior distribution over Bias given that
NumberOfHeads = 63, and then use this to predict Toss101.

 To achieve this, you start with a prior distribution for Bias. The beta distribution is
characterized by two parameters,  and . Let’s call the parameters of the prior beta

Toss 101NumberOfHeads

Bias

1. Observe the
number of heads.

3. Use the posterior
Bias distribution to
predict the next toss.

2. Infer a posterior distribution
over the bias using Bayes’ rule.

Figure 9.8 Order of inference in the biased coin example
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distribution for Bias 0 and 0. Remember from chapter 2 that 0 and 0 represent the
number of imaginary heads and tails you’ve seen prior to observing any real tosses,
plus one. To get the posterior distribution, you add the actual number of heads and
tails to those imaginary numbers. For example, suppose you start with beta(2, 5). This
means that you imagine having seen 1 head and 4 tails (because 0 is the number of
imagined heads plus one, and similarly for 0). You then observe 63 heads and 37 tails.
The posterior distribution over the bias is given by beta(65, 42). If you call the param-
eters of the posterior beta distribution 1 and 1, you have the simple formula

1 = 0 + number of observed heads

1 = 0 + number of observed tails

NOTE In practice, you don’t have to make these calculations yourself. A prob-
abilistic programming system’s algorithms will take care of everything for you.
You specify that you want to use a beta-binomial model, and it will make all
necessary calculations. But it’s important that you understand the principles
behind how the systems work, which is why you’re spending time on it here.

Figure 9.9 shows this beta(65, 42) distribution, superimposed on the original beta(2, 5).
You can see a couple of things. First, the peak of the distribution has moved to the
right, because the fraction of heads in the actual observations (63 out of 100) is more
than in the imaginary observations you started with (1 out of 5). Second, the peak has
become sharper. Because you have 100 additional observations, you’re much more
confident in your assessment of the bias. 
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Figure 9.9 Inferring the bias of the coin from a sequence of observations. Here, you've observed 63 heads and 
37 tails and added them to the alpha and beta parameters. The posterior PDF beta(65, 42) is superimposed over 
the prior PDF beta(2, 5).
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This simple formula of adding outcomes to create the new beta-binomial model you
got for the posterior distribution is the result of applying Bayes’ rule. In applying
Bayes’ rule to the coin-toss example, you deal with three quantities:

■ p(Bias = b): The prior probability density of the value b of Bias. (A lowercase p is
used in this notation and below to emphasize that the quantity is a probability
density, not a probability.)

■ P(NumberOfHeads = 63 | Bias = b): The probability of observing that Number-
OfHeads = 63, given that the value of Bias is b. This probability is known as the
likelihood of b given the data. 

■ p(Bias = b | NumberOfHeads = 63): The posterior probability density of the
value b of the Bias.

Because this example deals with a continuous variable (the bias), it’s slightly more
complicated than the example in section 9.3.2 about the painting. I’ll repeat the con-
clusion of that example here, so you can see how it also works for the biased coin
example. In section 9.3.2, you got the following expression for the probability distri-
bution over the subject of the painting, given evidence about the size:

Let’s focus on the denominator. It adds the values of the numerator for all possible
values of Subject. It’s a normalizing factor that ensures that (a) the left-hand side is
always proportional to the numerator on the right-hand side, and (b) the left-hand
side values sum to 1. You summarize this formula by using the following notation:

P(Subject | Size = Large)  P(Subject)P(Size = Large | Subject)

The symbol  means that the left-hand side is proportional to the right-hand side, where
the constant of proportionality is 1/s P(Subject = s) P(Size = Large | Subject = s). The
left-hand side is the posterior probability distribution over Subject. The first term on
the right-hand side is the prior distribution. The second term, the probability of
observing specific data about the Size for a given value of Subject, is the likelihood.
Therefore, the preceding formula can be summarized as follows:

Posterior  Prior x Likelihood

This formula is broken down in figure 9.10. If there’s one formula you should remem-
ber about Bayesian modeling, it’s this one. Although you saw it specifically for the
painting example, it’s a general principle that holds for applications of Bayes’ rule. To
get the actual posterior of the particular value b, you compute the right-hand side of
this equation for every possible value of b, and add all of the results to get the total B.

P Subject Size Large=  P Subject P Size Large= Subject 
sP Subject s= P Size Large= Subject s= 
-------------------------------------------------------------------------------------------------------------------=
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This total B is the normalizing factor. You then divide the Prior times the Likelihood
by B to get the Posterior.

 If you’re talking about a continuous variable, as in our example, this normalizing
process can be difficult, because it requires integrating over all possible values of b.
Returning to our coin-tossing example, Bayes’ rule says that

Using our “proportional to” notation, you can rewrite this as follows:

p(Bias = b | NumberOfHeads = 63)  P(Bias = b)P(NumberOfHeads = 63 | Bias = b)

Once again, the posterior is proportional to the prior times the likelihood. Although
this last equation is simple, it does hide an integral that can be difficult to estimate.
Fortunately, in the case of the beta-binomial model, a simple solution to this equation
exists, which you’ve already seen at the beginning of this section. You add the number
of observed successes and failures to the parameters of the beta distribution. This is
why the beta and binomial work well together. If you take any arbitrary continuous dis-
tribution and try to pair it with the binomial, you’ll end up with an integration prob-
lem that doesn’t have an easy solution. But when you pair a beta with the binomial,
you get an easy answer. 

 Working with probabilistic programming systems, you’ll never have to compute
these integrals yourself. Probabilistic programming systems can often use approxima-
tion algorithms to deal with these difficult integration problems, so you’re not
restricted to working with functional forms that fit together particularly well. Never-
theless, when you have such a form available to you, it’s best to use it.

Posterior ∝ Prior Likelihood⋅

“Is proportional to”
symbol

Prior
probability
of the value

Probability of
the evidence,
given that value

1. Compute the right-hand
side for every value of the
variable you are inferring

2. Normalize to get the
posterior distribution
over that variable

Figure 9.10 Structure of the Bayesian modeling formula

p(Bias b NumberOfHeads 63 ==  =

P Bias b P(NumberOfHeads 63 Bias b=== 

P
0
1 Bias x P(NumberOfHeads 63 Bias x=== dx

----------------------------------------------------------------------------------------------------------------------------------------
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276 CHAPTER 9 The three rules of probabilistic inference

NOTE In chapter 6, you first encountered the technical term conjugate prior
to describe a prior distribution that works well with a distribution that
depends on the parameter. Technically, this means that the posterior distri-
bution has the same form as the prior distribution. Using this term, the beta
distribution is the conjugate prior of the binomial, because the posterior dis-
tribution over the parameter is also a beta distribution. When you have a
conjugate prior distribution, the integration in Bayes’ rule has an easy solu-
tion. This is why conjugate distributions are used frequently in Bayesian
statistics. But when using probabilistic programming, you’re not limited to
conjugate distributions.

The generic Bayes’ rule
Now that you’ve learned more about Bayes’ rule, in particular the proportionality rela-
tionship, it’s time to explain the generic Bayes’ rule. As with the total probability rule,
Bayes’ rule can be generalized to any number of variables, and can include condition-
ing variables. Following the notation of section 9.2, you have three sets of variables:
X1,…,Xn (the “causes”), Y1,…,Ym (the “effects”), and Z1,…,Zl (the conditioning vari-
ables). You’re given P(X1,…,Xn | Z1,…,Zl), the prior probability of the causes, condi-
tioned on the conditioning variables, and P(Y1,…,Yn | X1,…,Xm, Z1,…,Zl), the
conditional probability of the effects given the causes, again conditioned on the con-
ditioning variables. You want the probability of the causes, given the effects, once
again conditioned on the conditioning variables. This is P(X1,…,Xn | Y1,…,Ym, Z1,…,Zl).
Bayes’ rule says that

P(X1,…,Xn | Y1,…,Ym, Z1,…,Zl) =

                    P(X1,…,Xn | Z1,…,Zl)P(Y1,…,Yn | X1,…,Xm, Z1,…,Zl)

x1…xn P(X1 = x1,…,Xn = xn | Z1,…,Zl)P(Y1,…,Yn | X1 = x1,…,Xn = xn, Z1,…,Zl)

I promised that in this section, I’d make the notation for this formula simpler.
Because the denominator is the normalizing factor, you can use our “is proportional
to” shorthand to make the equation much easier to understand:

P(X1,…,Xn | Y1,…,Ym, Z1,…,Zl)  P(X1,…,Xn | Z1,…,Zl)P(Y1,…,Yn | X1,…,Xm, Z1,…,Zl)

This is the same as our Posterior   Prior × Likelihood equation except that the pos-
terior is a joint distribution over multiple cause variables, the likelihood also consid-
ers multiple effect variables, and other variables (the Z variables) influence the
causes and effects.

Finally, recall that you can use boldface letters like X, Y, and Z for sets of variables.
Bayes’ rule can then be summarized in the succinct formula

P(X | Y,Z)  P(X | Z)P(Y | X,Z)

where X refers to all causes, Y refers to all effects, and Z refers to all conditioning
variables. This pithy formula is the best way to remember the generic Bayes’ rule.
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Now you’ve learned how to estimate Bias. The next step is to use it to predict Toss101.

9.4.2 Predicting the next coin toss

Okay, you’ve gotten a posterior distribution over Bias in the form of a beta distribu-
tion. How do you predict the next coin toss? There are three common ways to do this,
all of which turn out to be simple for the beta-binomial model. As mentioned earlier,
they are as follows:

■ The maximum a posteriori (MAP) method
■ The maximum likelihood estimation (MLE) method
■ The full Bayesian method

You'll look at each method in turn.

USING THE MAXIMUM A POSTERIORI METHOD

In the first method, called maximum a posteriori (MAP) estimation, you compute the
value of Bias that has the highest posterior probability density. This value, which maxi-
mizes the prior times the likelihood, is called the most likely value of the Bias. You then
use this value of the Bias to predict the next coin toss. 

 The MAP process is described in figure 9.11. The first step is to compute a poste-
rior distribution over the Bias by using the approach of the previous section. You
start with a prior of beta(2, 5), observe 63 heads and 37 tails, and obtain a posterior
of beta(65, 42). In the next step, you compute the value of the Bias that’s the peak of
beta(65, 42). Looking back at figure 9.9, this is the point on the x-axis for which the
value of beta(65, 42) is highest. In other words, you want the mode of beta(65, 42). It
turns out there’s a simple formula for this:

In our example, the mode is equal to (65 – 1)/(65 + 42 – 2), which is approximately
0.6095. Now you assume that Bias is equal to 0.6095, and compute the probability that
Toss101 is heads, given the data of 63 heads and 37 tails. The functional form for
Toss101 says that the probability that the toss comes out heads is equal to the value of
Bias, which you assumed is 0.6095. So your answer is 0.6095.

mode beta ,    1–
  2–+
----------------------=

Toss101NumberOfHeads

Bias

Prior

beta(2, 5)

63 heads, 37 tails

Posterior

beta(2 + 63, 5 + 37) = beta(65, 42)

Most likely value =

(65 – 1) / (65 + 42 – 2) = 0.6095

P(Toss101 = Heads | data) = 0.6095

Figure 9.11 Predicting the next coin flip using the MAP method
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USING THE MAXIMUM LIKELIHOOD ESTIMATION

The second method is a commonly used special case of the MAP estimation process
called maximum likelihood estimation (MLE). In MLE, you choose the parameter values
that “fit the data” the best, without regard to any prior. The MLE method is sometimes
considered non-Bayesian, but it also fits into the Bayesian framework if you assume
that every possible value of Bias has the same prior. So the formula 

Posterior  Prior × Likelihood

collapses to

Posterior  Likelihood

Therefore, the most likely value of the posterior is the value that maximizes the likeli-
hood, hence the name maximum likelihood estimation.

 The maximum likelihood method is illustrated in figure 9.12. This is similar to the
MAP method shown in figure 9.11, except that you start with a prior of beta(1, 1),
which assigns the same probability density to every value between 0 and 1. If you recall
that the parameters of the prior are the imaginary number of heads and tails you’ve
seen, plus one, you’ll see that this prior represents the case where you don’t imagine
having seen any heads or tails. You then go through the same sequence of calcula-
tions, resulting in a prediction of 0.63. This result is no coincidence. You observed 63
out of 100 tosses resulting in heads. The value of the Bias that’s most consistent with
these observations is that there’s exactly a 0.63 chance of any coin toss resulting in
heads. So you see that the maximum likelihood estimate chooses the parameter value
that best fits with the data, whereas the MAP estimate counterbalances the data with
the prior.

USING THE FULL BAYESIAN METHOD

The third approach to predicting the next coin toss is sometimes called the full Bayes-
ian method, because instead of estimating a single value of the Bias, it uses the full pos-
terior distribution over Bias. The process is illustrated in figure 9.13. It starts in the

Toss101NumberOfHeads

Bias

Prior

beta(1, 1)

Posterior

beta(1 + 63, 1 + 37) = beta(64, 38)

Most likely value =

(64 – 1) / (64 + 38 – 2) = 0.63

P(Toss101 = Heads | data) = 0.63

63 heads, 37 tails

Figure 9.12 Predicting the next coin toss using the maximum likelihood method
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same way as the MAP method, by computing the posterior distribution over Bias. To
use this distribution to predict Toss101, you use the formula for P(Toss101 = Heads |
Data) shown in the figure. This formula is derived by applying the total probability
rule and the chain rule. The main thing to notice is that it involves integration,
because Bias is a continuous variable. Just as for estimating the posterior parameter
value, this integration can be difficult to work with. But the beta-binomial model is
again easy. It turns out that if the posterior is beta(1, 1), then the probability that the
next toss is heads is

  

So in our example, the probability of heads is 65 / (65 + 42) = 0.6075. And, to close
the loop, this simple formula for the probability of heads is why you add 1 to the count
of heads and tails in the parameters of the beta distribution: so that you end up with a
simple formula for the probability of the next coin toss coming up heads.

COMPARING THE METHODS

Having seen these three methods, let’s compare them: 

■ The MLE method provides the best fit to the data, but is also liable to overfit the
data. Overfitting is a problem in machine learning whereby the learner fits
the pattern found in the data too closely, in a way that’s unable to be general-
ized. This can especially be a problem with only a few coin tosses. For example,
if there are only 10 coin tosses and 7 of them come out heads, should you
immediately conclude that the bias is 0.7? Even a fair coin will come out heads 7
times out of 10 a fair percentage of times, so the coin tosses don’t provide con-
clusive evidence that the coin isn’t fair.

The MLE method has two advantages that make it popular. First, it tends to
be relatively efficient, because it doesn’t require integrating over all parameter
values to predict the next instance. Second, it doesn’t require specifying a prior,
which can be difficult when you don’t have any basis for one. Nevertheless, the
susceptibility to overfitting can be a significant problem with this method.

1
1 1+
------------------

Toss101NumberOfHeads

Bias

Prior

beta(2, 5)

Posterior

beta(2 + 63, 5 + 37) = beta(65, 42)

P(Toss101 = Heads | data)

bp(Bias = | data) P(Toss101 = Heads | Bias = )b dp
1

0

P(Toss101 = Heads | data) =

65 / (65 + 42) = 0.6075

63 heads, 37 tails

Figure 9.13 Predicting the next coin toss using the full Bayesian method

www.itbook.store/books/9781617292330

https://itbook.store/books/9781617292330


280 CHAPTER 9 The three rules of probabilistic inference

■ The MAP method can be a good compromise. Including a prior can serve two pur-
poses. One is to encode prior beliefs that you have. The other is to counteract
overfitting. For example, if you start with a beta(11, 11) prior, you aren’t biasing
the results toward heads or tails in any way, but the effect of the data will be
dampened by adding 10 imaginary heads and tails to the result. To see this, sup-
pose you toss the coin 10 times and 7 of them come up heads. Remember that a
beta(11, 11) prior means that you’ve seen 10 imaginary heads and 10 imaginary
tails. Adding 7 more heads and 3 more tails gives you 17 heads and 13 tails in
total. So the MAP estimate for the bias is 17 / (17 + 13) = 17/30  0.5667. You
can also see this from the formula for the mode of a beta distribution given ear-
lier, which is 

With seven heads and three tails, the posterior is beta(18, 14), so the mode is
17/30. Even though 70% of your data is heads, your posterior belief in heads
is still only slightly more than 0.5, and a lot less than 0.7 for the MLE method. In
addition to being able to counter overfitting, the MAP method is also relatively
efficient, because it doesn’t require integrating over all parameter values. But it
does require specifying a prior, which can be difficult.

■ The full Bayesian approach, where feasible, can be superior to the other
approaches, because it uses the full distribution. In particular, when the mode
of the distribution isn’t representative of the full distribution, the other
approaches can be misleading. For a beta distribution, this isn’t a serious issue;
the MAP and full Bayesian predictions are close to each other in our example.
Specifically, with a beta(11, 11) prior and seven observed heads and three
observed tails, you get a beta(18, 14) posterior. The Bayesian estimate of the
probability that the next toss will be 18 / (18 + 14) = 18/32 = 0.5625, or just
slightly less than the MAP estimate. For other distributions, especially those with
multiple peaks, however, the full Bayesian approach can produce significantly
better estimates than the MAP approach. Even the MAP approach, which uses a
prior, will settle on one of the peaks, and completely ignore an important part
of the distribution. But the Bayesian approach is more difficult to execute com-
putationally.

Probabilistic programming systems vary in the range of approaches they support.
Most typically, they support full Bayesian reasoning. Because full Bayesian reasoning
often requires integration, these systems use approximation algorithms. Some proba-
bilistic programming systems also support maximum likelihood and MAP estimation
for specific models, which can be more computationally efficient. In particular, Figaro
provides both full Bayesian and MAP algorithms. Chapter 12 shows you how to use
these approaches practically in Figaro.

 1–
  2–+
----------------------
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 So now you know the basic rules of inference, and you understand how Bayesian
modeling uses Bayes’ rule to learn from data and use the learned knowledge for
future predictions. In the forthcoming chapters, you’ll learn specific algorithms for
inference. Two main families of inference algorithms are used in probabilistic pro-
gramming: factored algorithms and sampling algorithms. These two families are the
subjects of the next two chapters.

9.5 Summary
■ The chain rule lets you take the conditional probability distributions of individ-

ual variables and construct a joint probabilistic model over all variables.
■ The total probability rule lets you take a joint probabilistic model over a set of

variables and reduce it to get a probability distribution over individual variables.
■ The network arrows in a probabilistic model typically follow the process by

which the data is generated, but inference in the model can go in any direction.
Bayes’ rule lets you do this.

■ Bayesian modeling uses Bayes’ rule to infer causes from observations of their
effects, and uses those inferences to predict future outcomes.

■ In Bayesian inference, the posterior probability of a value of a variable is pro-
portional to the prior probability of the value times the likelihood of the value,
which is the probability of the evidence given the value.

■ In the MAP estimation approach, the most likely posterior value of a parameter
is used to predict future instances.

■ In the MLE approach, the prior is ignored, and the parameter value that maxi-
mizes the likelihood is used for prediction. This is the simplest approach but
can overfit the data.

■ In the full Bayesian approach, the full posterior probability distribution over
the parameter value is used to predict future instances. This is the most accu-
rate approach but can be computationally difficult.

9.6 Exercises
Solutions to selected exercises are available online at www.manning.com/books/
practical-probabilistic-programming.

1 Consider the detailed printer model from the printer diagnosis example, shown
in the Bayesian network in figure 5.11 (in chapter 5). Consider the following case:

■ Printer Power Button On = true
■ Toner Level = low
■ Toner Low Indicator On = false
■ Paper Flow = smooth
■ Paper Jam Indicator On = false
■ Printer State = poor
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a Write the probability of this case using the full chain rule, where each vari-
able is conditioned on all preceding variables.

b Simplify this expression by taking into account independence relationships
in the network.

c Write an expression for the joint probability distribution that applies in a
general way to all cases, without specifying specific values of variables.

2 For the network in exercise 1:

a Write an expression for the probability that Printer Power Button On = true.
b Write an expression for the probability that Printer Power Button On = true

and Printer State = poor.
3 Assume that 1 in 40 million US citizens become president of the United States. 

a Assume that 50% of presidents are left-handed, compared to 10% of the gen-
eral population. What is the probability someone became the president of
the United States, given that he or she is left-handed?

b Now assume that 15% of US presidents went to Harvard, compared to 1 in
2,000 for the general population. What is the probability that someone became
the president of the United States, given that he or she went to Harvard?

c Assuming left-handedness and going to Harvard are conditionally indepen-
dent, given whether someone became president, what’s the probability that
someone became the president of the United States, given that he or she is
left-handed and went to Harvard?
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