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Solutions to
selected exercises

Chapter 1

Exercise 1

a General knowledge of poker could include the rules of poker, facts about a
poker deck, probabilities of each kind of hand, and standard tendencies for
human players (e.g., what types of bets people tend to make with certain
kinds of hands).

b One kind of prediction is what bet another player will make in the next
round. For this prediction, the query is the player’s next bet and the evi-
dence consists of the cards in your hand, any open cards on the table, and
any bets that have been made so far.

c In poker, you would really like to figure out what cards other players have.
These cards can be thought of as causes of the bets the other players have
made. In this case, the query is another player’s cards, and the evidence is
the same as for part (b): your cards, the open cards on the table, and any
bets that have been made so far.

d Once you have figured out what cards another player has, you can use that
information to predict any future bets they will make.

Chapter 2

Exercise 3 

These programs produce different answers. In program (a), z is defined to be x, so
x === z is always true. Therefore, this program produces 1.0. In program (b), z is
defined to be y, so x === z is the same as asking whether x and y have the same
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2 Solutions to selected exercises

value. There are two ways for x and y to have the same value. Either they are both true,
which happens with probability 0.4 × 0.4 = 0.16, or they are both false, which happens
with probability 0.6 × 0.6 = 0.36. Therefore, program (b) produces 0.16 + 0.36 = 0.52.

Exercise 4
    val die1 = FromRange(1, 7)
    val die2 = FromRange(1, 7)
    val total = Apply(die1, die2, (i1: Int, i2: Int) => i1 + i2)
    println(VariableElimination.probability(total, 11))

Exercise 5
    val die1 = FromRange(1, 7)
    val die2 = FromRange(1, 7)
    val total = Apply(die1, die2, (i1: Int, i2: Int) => i1 + i2)
    total.addCondition((i: Int) => i > 8)
    println(VariableElimination.probability(die1, 6))

Exercise 6
    def doubles = {
      val die1 = FromRange(1, 7)
      val die2 = FromRange(1, 7)
      die1 === die2      
    }
    val jail = doubles && doubles && doubles
    println(VariableElimination.probability(jail, true))

Exercise 7

Here’s a Figaro representation for this game:

    val numberOfSides = 
        Select(0.2 -> 4, 0.2 -> 6, 0.2 -> 8, 0.2 -> 12, 0.2 -> 20)
    val roll = Chain(numberOfSides, ((i: Int) => FromRange(1, i + 1)))

Exercise 8
    val numberOfSides1 = 
      Select(0.2 -> 4, 0.2 -> 6, 0.2 -> 8, 0.2 -> 12, 0.2 -> 20)
    val roll1 = Chain(numberOfSides1, ((i: Int) => FromRange(1, i + 1)))
    val numberOfSides2 = 
      Select(0.2 -> 4, 0.2 -> 6, 0.2 -> 8, 0.2 -> 12, 0.2 -> 20)
    val roll2 = Chain(numberOfSides2, ((i: Int) => FromRange(1, i + 1)))
    def stickinessConstraint(sidesPair: (Int, Int)) = 
      if (sidesPair._1 == sidesPair._2) 1.0 else 0.5
    val pairOfSides = ^^(numberOfSides1, numberOfSides2)
    pairOfSides.addConstraint(stickinessConstraint)
    println(VariableElimination.probability(roll2, 7)) 
// prints 0.05166666666666667
    roll1.observe(7)
    println(VariableElimination.probability(roll2, 7))
// prints 0.09704301075268815
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Chapter 3

Exercise 2

Many answers are possible to this question. Here is one possible answer:

a The security guard application has a set of sensors, such as cameras and touch
sensors, that communicates the sensor readings to a central processor using a
message bus. This central processor continually monitors inputs from the sen-
sors and uses a probabilistic reasoning component to determine whether an
anomalous situation is occurring. The central processor also contains a deci-
sion-making component that decides whether to raise an alert based on the
findings of the probabilistic reasoning component. Finally, a user interface
presents alerts, as well as current sensor readings, to an operator. In the context
of this design, the inputs to the probabilistic anomaly detector at each point in
time are the sensor readings, while the output is the probability of evidence,
where a low probability of evidence indicates an anomaly.

b Besides the sensor inputs, the variables in this application could include the
locations and movements of people in the department store. You might also
include variables to model the status of valuable items in the department store.
Finally, you might include variables to capture the status of your sensors, for
example, whether a camera is broken.

c In this application, training data is plentiful because your security cameras can
collect data continuously. The training data consists of sensor inputs taken over
a long period of presumably normal activity. From this data, you can learn
knowledge of typical normal activity, such as patterns of movement of people,
locations of items, and common disruptions to sensor input. You probably
wouldn’t learn precisely what an anomaly looks like, because you won’t have
data of actual anomalies.

Exercise 3

Again, there are many possible answers to this question. Here is one possibility:

a One set of variables is the cards held by each player. The probabilities of these
variables are derived mathematically from the possible ways to deal cards. You
don’t have to learn these probabilities from data. Another set of variables is the
bets made by each player. This includes both past bets that you observe, and
from which you try to infer the cards, and future bets that you try to predict.
Since these variables result from unpredictable human behavior, you will want
to learn their probabilities from experience.

b In this application, you might have two levels of knowledge. The first level
includes knowledge about how people play poker in general. The second
level is specific to a particular player and includes knowledge about how that
particular player plays. Accordingly, there will be two learning components in
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4 Solutions to selected exercises

the architecture. One component will be player-specific, and will learn how that
player tends to play. From the point of view of this component, the system’s
knowledge of how people play in general constitutes general knowledge that
informs its beliefs about this particular player. In particular, the prior model for
this component comes from your general knowledge of how people play. The
second learning component is for learning this general knowledge. The data to
learn the model for this component comes from the first component. After
observing how a particular player plays, the system can update its beliefs about
how people play in general. This kind of model, with learning happening on
more general and more specific levels, is knows as a hierarchical model.

Chapter 4

Exercise 1

Each possible world specifies the card held by each player. There are twenty possible
worlds; the first player can have any of the five cards and the other player can have any
of the four remaining cards. Assuming the deck is fairly shuffled, each possible world
has probability 1/20.

Exercise 2

When we observe evidence that the first player has a picture card, this rules out the
possible worlds where the first player has the ace of spades. This leaves sixteen possi-
ble worlds. In ten of them, the second player has a spade, so the probability the sec-
ond player has a spade given that the first player has a picture card is 10/16.

Exercise 3

a The variables are the card of each player, player 1’s first action, player 2’s
action, and player 1’s second action, which only matters if player 1’s first action
is to bet and player 2’s action is to bet.

b The card held by player 1 does not depend on any other variables. Player 2’s
card depends on player 1’s card, because they can’t have the same card. Player
1’s first action depends on her card. Player 2’s action depends on his card and
player 1’s first action. Player 1’s second action depends on her card, her first
action, and player 2’s action. Note that the player’s actions don’t depend
directly on the opponent’s cards because they are unknown to the player.

c Player 1’s card is chosen uniformly from the set of five cards. Player 2’s card is
chosen uniformly from the four cards remaining after player 1’s card is removed
from the deck. Each action of a player has a conditional probability distribution
that specifies a dependency on the card held by the player and the previous
actions. Given the values of those variables, the functional form for the action will
be a Flip or Select, because only two choices are available for each action.
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5Chapter 4

d The parameters of the variables representing the cards of the two players are
known. The parameters of the variables representing the actions of the players
need to be estimated or learned from experience.

Exercise 4
There are many ways to solve this problem. Here is my answer. Since this problem is
more advanced, I’m showing the entire code. First the model:

import com.cra.figaro.library.atomic.discrete
import com.cra.figaro.language.Chain
import com.cra.figaro.library.compound.{RichCPD, OneOf, ×}
import com.cra.figaro.language.{Flip, Constant, Apply}
import com.cra.figaro.algorithm.factored.VariableElimination

object ex44 {
  def main(args: Array[String]) {
    // To keep the code simple, I just make the cards an integer
    val cards = List(5, 4, 3, 2, 1)
    // The discrete uniform distribution chooses uniformly from a fixed
    // set of possibilities
    val player1Card = discrete.Uniform(cards:_×)
    val player2Card = 
      Chain(player1Card, (card: Int) => 
          // Player 2 can get any card except the first player’s card   
          discrete.Uniform(cards.filter(_ != card):_×))
    val player1Bet1 =
      RichCPD(player1Card,
          // Player 1 is more likely to bet with a higher card,
          // but will sometimes bet with a lower card to bluff
          OneOf(5, 4, 3) -> Flip(0.9),
          × -> Flip(0.4) // ×××Change this for part (c)×××
      )
    val player2Bet =
      RichCPD(player2Card, player1Bet1,
          (OneOf(5, 4), ×) -> Flip(0.9),
          (×, OneOf(false)) -> Flip(0.5), 
          (×, ×) -> Flip(0.1))
    val player1Bet2 =
      Apply(player1Card, player1Bet1, player2Bet, 
            (card: Int, bet11: Boolean, bet2: Boolean) =>
              // Player 1’s second bet is only relevant if she passed the
              // first time and player 2 bet
                    !bet11 && bet2 && (card == 5 || card == 4))

    // This element represents the gain to player 1 from the game. I have
    // made it an Element[Double] so I can query its mean.
    val player1Gain =
      Apply(player1Card, player2Card, player1Bet1, player2Bet, player1Bet2,
          (card1: Int, card2: Int, bet11: Boolean, 
           bet2: Boolean, bet12: Boolean) =>
            if (!bet11 && !bet2) 0.0
            else if (bet11 && !bet2) 1.0
            else if (!bet11 && bet2 && !bet12) -1.0
            else if (card1 > card2) 2.0
            else -2.0)
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6 Solutions to selected exercises

a To make a decision, player 1 needs to consider her expected gain if she passes
and expected gain if she bets. Here is code to make the necessary computa-
tions. It turns out that with the parameters I’ve used, both cases produce an
expected gain of 0.25, so her decision doesn’t matter in this case.

    player1Card.observe(4)
    player1Bet1.observe(true)
    val alg1 = VariableElimination(player1Gain)
    alg1.start()
    alg1.stop()
    println("Expected gain for betting:" + alg1.mean(player1Gain))
    player1Bet1.observe(false)
    val alg2 = VariableElimination(player1Gain)
    alg2.start()
    alg2.stop()
    println("Expected gain for passing:" + alg2.mean(player1Gain))
    player1Card.unobserve()
    player1Bet1.unobserve()

b Here is the code for player 2’s decision. The expected gain for player 1 if player 2
passes is 1.0 (since player 2 folds), while the expected gain if player 2 bets is
about 0.77. Since player 1’s expected gain is lower, player 2 should bet.

    player2Card.observe(3)
    player1Bet1.observe(true)
    player2Bet.observe(true)
    val alg3 = VariableElimination(player1Gain)
    alg3.start()
    alg3.stop()
    println("Expected gain for betting:" + alg3.mean(player1Gain))
    player2Bet.observe(false)
    val alg4 = VariableElimination(player1Gain)
    alg4.start()
    alg4.stop()
    println("Expected gain for passing:" + alg4.mean(player1Gain))

  }
}

c If you change the parameter in the line marked “Change this for part (c)” to
0.01, you will virtually eliminate the possibility that player 1 bluffs. In this case,
the expected gain to player 1 if player 2 bets is very high, because player 1 has a
higher card, so player 2 should fold.

Chapter 5

Exercise 1

a Directed from player’s cards to player’s bet
b This could be modeled in different ways. You could select player 1’s card and

then select player 2’s card from the remaining cards. In this case, the dependency
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7Chapter 5

would be from player 1’s card to player 2’s card. You could also reverse the
order of the two players. Finally, you could model each of the players’ cards as
being drawn from the complete deck and add an undirected dependency
between them to represent the fact that they can’t be the same.

c Today’s weather might influence my mood, but not the other way round.
d Different answers are possible. Your mood might determine whether you eat

breakfast. Eating breakfast might also improve your mood. A correct model
might have two separate mood variables, one for before breakfast time and one
for after breakfast time. Your mood before breakfast time might influence
whether or not you eat breakfast, and both these variables will influence your
mood after breakfast.

e Ordinarily, the temperature in your living room depends on the thermostat set-
ting. The higher the thermostat setting, the warmer your living room will be.
This model is adequate. However, you could make an argument that if your liv-
ing room is cold, you will turn the thermostat up. This creates a feedback loop
between the thermostat setting, the temperature in your living room, and your
action. Feedback loops are best represented as dynamic models (see chapter 8).

f The thermometer reading is a sensor of the temperature, so it depends proba-
bilistically on the temperature.

g The temperatures in the living room and in the kitchen are related by an undi-
rected relationship.

h The topic of a news article determines its content, so the content depends on
the topic.

i Typically, a writer will generate the summary of an article after reading the arti-
cle. If this is the case, the summary depends on the content.

Exercise 2

The following Bayesian networks are one possible answer to each question. Arguments
could be made for other networks. The important thing is to make a considered
design choice.

a

Player 1’s cards

Player 2’s bet

Player 2’s cardsPlayer 1’s bet
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8 Solutions to selected exercises

b

c This one’s tricky since the relationship between the temperature in the kitchen
and in the living room is best modeled by an undirected dependency, which
can’t be done in a Bayesian network. Therefore, if you want to use a Bayesian
network, you’ll need to use a directed dependency, which could go either way.

d

Today’s weather

Mood on waking up

Had breakfast

Mood at 10 a.m.

House thermostat

setting

Temperature

living room

Temperature

kitchen

Living room

thermostat setting

Kitchen

thermostat setting

Topic Contents

Comments

Summary
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Exercise 6

The solution to this exercise also includes solutions to exercises 4 and 5.

  def tennis(
      probP1ServeWin: Double, probP1Winner: Double, probP1Error: Double, 
      probP2ServeWin: Double, probP2Winner: Double, probP2Error: Double):
    Element[Boolean] = {
    def rally(firstShot: Boolean, player1: Boolean): Element[Boolean] = {
      val pWinner = 
        if (firstShot && player1) probP1ServeWin
        else if (firstShot && !player1) probP2ServeWin
        else if (player1) probP1Winner
        else probP2Winner
      val pError = if (player1) probP1Error else probP2Error
      val winner = Flip(pWinner)
      val error = Flip(pError)
      If(winner, Constant(player1), 
         If(error, Constant(!player1),
            rally(false, !player1)))
    }

    def game(
        p1Serves: Boolean, p1Points: Element[Int], 
        p2Points: Element[Int]): Element[Boolean] = {
      val p1WinsPoint = rally(true, p1Serves)
      val newP1Points = 
        Apply(p1WinsPoint, p1Points, (wins: Boolean, points: Int) =>
          if (wins) points + 1 else points)
      val newP2Points =
        Apply(p1WinsPoint, p2Points, (wins: Boolean, points: Int) =>
          if (wins) points else points + 1)
      val p1WinsGame =
        Apply(newP1Points, newP2Points, (p1: Int, p2: Int) =>
          p1 >= 4 && p1 - p2 >= 2)
      val p2WinsGame =
        Apply(newP2Points, newP1Points, (p2: Int, p1: Int) =>
          p2 >= 4 && p2 - p1 >= 2)
      val gameOver = p1WinsGame || p2WinsGame
      If(gameOver, p1WinsGame, game(p1Serves, newP1Points, newP2Points))
    }

    def play(
        p1Serves: Boolean, p1Sets: Element[Int], p2Sets: Element[Int], 
        p1Games: Element[Int], p2Games: Element[Int]): Element[Boolean] = {
      val p1WinsGame = game(p1Serves, Constant(0), Constant(0))
      val newP1Games = 
        Apply(p1WinsGame, p1Games, p2Games, 
              (wins: Boolean, p1: Int, p2: Int) =>
                  if (wins) {
                    if (p1 >= 5) 0 else p1 + 1
                  } else {
                    if (p2 >= 5) 0 else p1
                  })
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10 Solutions to selected exercises

      val newP2Games = 
        Apply(p1WinsGame, p1Games, p2Games, 
              (wins: Boolean, p1: Int, p2: Int) =>
                  if (wins) {
                    if (p1 >= 5) 0 else p2
                  } else {
                    if (p2 >= 5) 0 else p2 + 1
                  })
      val newP1Sets = 
        Apply(p1WinsGame, p1Games, p1Sets, 
              (wins: Boolean, games: Int, sets: Int) =>
                if (wins && games == 5) sets + 1 else sets)
      val newP2Sets = 
        Apply(p1WinsGame, p2Games, p2Sets, 
              (wins: Boolean, games: Int, sets: Int) =>
                if (!wins && games == 5) sets + 1 else sets)
      val matchOver = 
        Apply(newP1Sets, newP2Sets, (p1: Int, p2: Int) => 
          p1 >= 2 || p2 >= 2)
      If(matchOver,
         Apply(newP1Sets, (sets: Int) => sets >= 2),
         play(!p1Serves, newP1Sets, newP2Sets, newP1Games, newP2Games))
    }
    play(true, Constant(0), Constant(0), Constant(0), Constant(0))
  }

Chapter 6

Exercise 1
    val teacherSkill = Array.fill(6)(Flip(0.6))
    val studentAbility = Array.fill(6, 30)(Flip(0.7))
    val pass = Array.tabulate(6, 30)((cls: Int, stdnt: Int) => 
      CPD(teacherSkill(cls), studentAbility(cls)(stdnt),
          (true, true) -> Flip(0.9),
          (true, false) -> Flip(0.6),
          (false, true) -> Flip(0.7),
          (false, false) -> Flip(0.3)))
          
    for { 
      cls <- 0 until 6
      stdnt <- 0 until 30
    } {
      pass(cls)(stdnt).observe(data(cls)(stdnt) == 'P')
    }

    val ve = 
      VariableElimination(teacherSkill(0), teacherSkill(1), teacherSkill(2), 
                          teacherSkill(3), teacherSkill(4), teacherSkill(5))
    ve.start()
    for { cls <- 0 until 6 } {
      println("Teacher " + cls + ": " + ve.probability(teacherSkill(cls), 

true))
    }
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Exercise 4
    val numRows = 10
    val numColumns = 10
    val mine = Array.fill(numRows, numColumns)(Select(0.4 -> 1, 0.6 -> 0))
    val count = Array.tabulate(numRows, numColumns)((i: Int, j: Int) => {
      val neighbors = 
        for {
          k <- i - 1 to i + 1
          l <- j - 1 to j + 1
          if k >= 0 && k < numRows
          if l >= 0 && l < numColumns
          if k != i || l != j
        } yield mine(k)(l)
      Container(neighbors:_×).reduce(_ + _)  
    })

    val data = 
      Array("?2M???????", "1?????????", "?1????????", "??????????", 
            "??????????", "??????????", "??????????", "??????????", 
            "??????????", "??????????")
    for {
      i <- 0 until numRows
      j <- 0 until numColumns
    } {
      data(i)(j) match {
        case 'M' => mine(i)(j).observe(1)
        case d if d.isDigit => 
          mine(i)(j).observe(0)
          count(i)(j).observe(d - '0')
        case '?' => ()
      }
    }

    println(VariableElimination.probability(mine(1)(1), 1))

Exercise 5
    val purchases = 
      VariableSizeArray(Binomial(100, 0.1), (i: Int) =>
        If(Flip(0.5), FromRange(1, 11), Constant(0)))
    val total = purchases.foldLeft(0)(_ + _).map(_.toDouble)
    val alg = Importance(10000, total)
    alg.start()
    println(alg.mean(total))

Exercise 6

The following solution combines Scala collections with Figaro collections. A subtlety
that arises is that the groups must not be created inside a chain; otherwise, the con-
straints won’t be applied properly. Therefore, in this solution, the groups are “top-
level” objects.

  class Group extends Container[Int, Int] {
    val indices = 0 until 5
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    val numChildren = FromRange(1, 6)

    def generate(i :Int) = 
      Chain(numChildren, (n: Int) => 
        if (n > i) If(Flip(0.5), FromRange(1, 11), Constant(0))
        else Constant(0))

    def generate(indices: List[Int]): Map[Int, Element[Int]] = {
      val result = indices.map(i => (i, apply(i))).toMap
      for { 
        i <- indices
        j <- indices
        if j > i
      } {
        val pairElem = ^^(result(i), result(j))
        pairElem.addConstraint((pair: (Int, Int)) =>
          if ((pair._1 > 0) && (pair._2 > 0)) 1.0 else 0.8)
      }
      result
    }

    // ensure that the constraints are created as soon as the group is 
created

    generate(indices.toList)
  }

  def main(args: Array[String]) {
    val groups = Array.fill(40)(new Group)
    val groupExists = Array.fill(40)(Flip(0.1))
    val groupTotals = 
      for { i <- 0 until 40 } yield {
        If(groupExists(i),
           groups(i).foldLeft(0)(_ + _),
           Constant(0))
      }
    val grandTotal: Element[Double] =
      Container(groupTotals:_×).foldLeft(0)(_ + _).map(_.toDouble)
    val alg = Importance(10000, grandTotal)
    alg.start()
    println(alg.mean(grandTotal))

  }

Chapter 7

Exercise 1

  class Actor {
    val liked = Uniform(0, 1)
  }

  class Movie(actors: List[Actor]) {
    private val likedContainer = Container(actors.map(_.liked):_×) 
    private val popularityMean = likedContainer.foldLeft(0.0)(_ max _)
    val popularity = Normal(popularityMean, 0.01)
  }
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    val actors = Array.fill(10)(new Actor)
    val movie1 = new Movie(List(actors(0), actors(1)))
    val movie2 = new Movie(List(actors(0), actors(2), actors(3)))
    val movie3 = new Movie(List(actors(1), actors(4), actors(5)))
    val movie4 = new Movie(List(actors(2), actors(4), actors(6)))
    val movie5 = 
      new Movie(List(actors(5), actors(7), actors(8), actors(9)))
    val movie6 = new Movie(List(actors(6), actors(7), actors(8)))
    val movie7 = new Movie(List(actors(1), actors(4), actors(9)))

    // The evidence is provided as soft constraints. Hard conditions would
    // be extremely unlikely to be satisfied during sampling
    def constrain(movie: Movie, pop: Double) {
      movie.popularity.addConstraint(d => 
        math.exp(-(pop-d)×(pop-d)/0.01))
    }
    constrain(movie1, 0.4)
    constrain(movie2, 0.2)
    constrain(movie3, 0.7)
    constrain(movie4, 0.5)
    constrain(movie5, 0.8)
    constrain(movie6, 0.4)

    val alg = 
      MetropolisHastings(100000, ProposalScheme.default, movie7.popularity)
    alg.start()
    println(alg.mean(movie7.popularity))

Exercise 3

  class Student {
    val ability = Uniform(0, 1)
  }

  class Subject {
    val difficulty = Uniform(0, 1)
  }

  class Instructor {
    val quality = Uniform(0, 1)
  }

  case class Course(subject: Subject, instructor: Instructor)

  case class Enrollment(student: Student, course: Course) {
    val gradeMax = 
      Apply(student.ability, course.instructor.quality, 
            course.subject.difficulty,
            (ability: Double, quality: Double, difficulty: Double) =>
              (ability + quality - difficulty).max(0.0).min(1.0))
    val grade = Uniform(Constant(0.0), gradeMax)          
  }

  val students = Array.fill(5)(new Student)
  val subjects = Array.fill(3)(new Subject)
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  val instructors = Array.fill(2)(new Instructor)
  val course1 = Course(subjects(0), instructors(0))
  val course2 = Course(subjects(1), instructors(0))
  val course3 = Course(subjects(1), instructors(1))
  val course4 = Course(subjects(2), instructors(1))
  val enrollment1 = Enrollment(students(0), course1)
  val enrollment2 = Enrollment(students(0), course2)
  val enrollment3 = Enrollment(students(0), course3)
  val enrollment4 = Enrollment(students(1), course1)
  val enrollment5 = Enrollment(students(1), course2)
  val enrollment6 = Enrollment(students(2), course2)
  val enrollment7 = Enrollment(students(2), course3)
  val enrollment8 = Enrollment(students(2), course4)
  val enrollment9 = Enrollment(students(3), course1)
  val enrollment10 = Enrollment(students(3), course3)
  val enrollment11 = Enrollment(students(3), course4)
  val enrollment12 = Enrollment(students(4), course4)

  def constrain(enrollment: Enrollment, grd: Double) {
    enrollment.grade.addConstraint(d => math.exp(-(grd-d)×(grd-d)/0.01))
  }
  constrain(enrollment1, 0.3)
  constrain(enrollment2, 0.6)
  constrain(enrollment3, 0.4)
  constrain(enrollment4, 0.5)
  constrain(enrollment5, 0.8)
  constrain(enrollment6, 0.3)
  constrain(enrollment7, 0.2)
  constrain(enrollment8, 0.2)
  constrain(enrollment9, 0.7)
  constrain(enrollment10, 0.1)
  constrain(enrollment11, 0.2)
  constrain(enrollment12, 0.1)

  val alg = 
    MetropolisHastings(100000, ProposalScheme.default, 
      students(1).ability, subjects(2).difficulty, instructors(1).quality)
  alg.start()    
  println("students(1).ability: " + alg.mean(students(1).ability))    
  println("subjects(2).difficulty: " + alg.mean(subjects(2).difficulty))    
  println("instructors(1).quality: " + alg.mean(instructors(1).quality))    

Exercise 4

Add the following lines to the code for the previous exercise. 

  val newCourse1 = Course(subjects(2), instructors(0))
  val newCourse2 = Course(subjects(2), instructors(1))
  val newEnrollment1 = Enrollment(students(0), newCourse1)
  val newEnrollment2 = Enrollment(students(0), newCourse2)
  val newEnrollment = Select(0.5 -> newEnrollment1, 0.5 -> newEnrollment2)
  val predictedGrade = Chain(newEnrollment, (enrollment: Enrollment) =>
    enrollment.grade)
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Chapter 8

Exercise 1

  abstract class State {
    val alicePoints: Element[Int]
    val bobPoints: Element[Int]
    // Note: terminal and bobWinning are defs to avoid null pointer
    // exceptions on initialization. It's a Scala quirk that when you 
    // initialize a variable that uses abstract variables in it's 
    // definition, it will throw a null pointer exception.
    def terminal: Element[Boolean] =
      Apply(alicePoints, bobPoints, (a: Int, b: Int) => a >= 21 || b >= 21)
    def bobWinning: Element[Boolean] =
      Apply(alicePoints, bobPoints, (a: Int, b: Int) => b > a)
  }

  case class InitialState() extends State {
    val alicePoints = Constant(0)
    val bobPoints = Constant(0)
  }

  case class NextState(current: State) extends State {
    val aliceWinsPoint = Flip(0.52)
    val alicePoints = 
      Apply(current.alicePoints, aliceWinsPoint, 
            (curr: Int, wins: Boolean) => if (wins) curr + 1 else curr)
    val bobPoints = 
      Apply(current.bobPoints, aliceWinsPoint, 
            (curr: Int, wins: Boolean) => if (!wins) curr + 1 else curr)
  }

  def playFrom(current: State): Element[Boolean] = {
    If(current.terminal, current.bobWinning, playFrom(NextState(current)))
  }

  val bobWins = playFrom(InitialState())  

  println(Importance.probability(bobWins, true))

Exercise 2

Add the following line at the beginning of the program:

val probAliceWinsPoint = Beta(2, 2)

Change the definition of aliceWinsPoint to

val aliceWinsPoint = Flip(probAliceWinsPoint)
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Add the following lines to observe that the score after 19 points is 11-8 in favor of
Alice and to continue play from that point on:

  def nthState(n: Int): State = {
    if (n <= 0) InitialState() else NextState(nthState(n-1))
  }

  val nineteenthState = nthState(19)
  nineteenthState.alicePoints.observe(11)
  nineteenthState.bobPoints.observe(8)
  val bobWins = playFrom(nineteenthState)  

Exercise 5

  abstract class Network {
    val nodes: Element[List[Int]]
    // We use an immutable map to represent the state of edges in a
    // network. If an edge is added or deleted, a new map is created that 
    // is changed in one place.
    val edges: Element[Map[(Int, Int), Boolean]]
  }

  case class InitialNetwork() extends Network {
    // start with two nodes so we can add an edge on the first iteration
    val nodes = Constant(List(1, 0))
    val edges = Constant(Map[(Int, Int), Boolean]())
  }

  case class NextNetwork(current: Network) extends Network {
    val newNodeAdded = Flip(0.1)
    val nodes = 
      Apply(current.nodes, newNodeAdded, (ns: List[Int], b: Boolean) =>
        if (b) ns.length :: ns else ns)
    val edges = 
      If(newNodeAdded, 
         current.edges,
         Chain(nodes, (ns: List[Int]) => {
           val first = discrete.Uniform(ns:_×)
           val second = discrete.Uniform(ns.filterNot(_ == first):_×)
           Apply(current.edges, first, second, 
                 (es: Map[(Int, Int), Boolean], f: Int, s: Int) =>
                    es + ((f, s) -> !es.getOrElse((f, s), false)))
         }))
  }

  def nthNetwork(n: Int): Network = 
    if (n <= 0) InitialNetwork() else NextNetwork(nthNetwork(n - 1))

  val count = 
    Apply(nthNetwork(100).edges, (m: Map[(Int, Int), Boolean]) =>
      m.values.filter(_ == true).size.toDouble)
  val alg = Importance(10000, count)
  alg.start()
  println(alg.mean(count))
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Chapter 9

Exercise 1

In the following solutions, I use the abbreviation PPBO for Printer Power Button On,
TL for Toner Level, TLLI for Toner Level Low Indicator, PF for Paper Flow, PJIO for
Paper Jam Indicator On, and PS for Printer State.

a P(PPBO = true) × P(TL = low | PPBO = true) × P(TLLI = false | PPBO = true, TL
= low) ×
P(PF = smooth | PPBO = true, TL = low, TLLI = false) ×
P(PJIO = false | PPBO = true, TL = low, TLLI = false, PF = smooth) ×
P(PS = poor | PPBO = true, TL = low, TLLI = false, PF = smooth, PJIO = false)

b P(PPBO = true) × P(TL = low) × P(TLLI = false | TL = low) × P(PF = smooth) ×
P(PJIO = false | PF = smooth) × P(PS = poor | PPBO = true, TL = low, PS = poor)

c P(PPBO) × P(TL) × P(TLLI | TL) × P(PF) × P(PJIO | PF) × P(PS | PPBO, TL, PS)

Exercise 2

a P(PPBO = true) = 
tl tlli pf pjio ps P(PPBO = true) × P(TL = tl) × P(TLLI = tlli) × P(PF = pf) ×
                             P(PJIO = pjio | PF = pf) × 
                             P(PS = ps | PPBO = true, TL = tl, PF = pf)

b P(PPBO = true) = 
tl tlli pf pjio P(PPBO = true) × P(TL = tl) × P(TLLI = tlli) × P(PF = pf) ×
                        P(PJIO = pjio | PF = pf) × 
                        P(PS = poor | PPBO = true, TL = tl, PF = pf)

 Exercise 3

a

 

By Bayes’ rule
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Becoming president is five times more likely than before but still extremely rare.

b  

  

Note that although a much higher fraction of US presidents went to Harvard
than the general population, it’s still extremely unlikely that a random Harvard
student will become president.

c Since left-handedness and going to Harvard are conditionally independent
given whether someone became president,

As you add independent pieces of evidence, the rare event starts to become
less rare.
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Chapter 10

Exercise 1

P(Hungry)

P(Eat | Hungry)

P(Tired | Eat)

P(Cry | Hungry, Tired)

Hungry

False 3/4

True 1/4

Hungry Eat

False None 2/3

False A little 1/3

False A lot 0

True None 1/6

True A little 1/3

True A lot 1/2

Eat Tired

None False 3/4

None True 1/4

A little False 1/2

A little True 1/2

A lot False 1/4

A lot True 3/4

Hungry Tired Cry

False False False 5/6

False False True 1/6

False True False 1/6
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Exercise 2

P(Hungry, Eat, Tired, Cry) = P(Hungry) P(Eat | Hungry) P(Tired | Eat) P(Cry |
Hungry, Tired) = Product of the four factors =

(continued)

Hungry Tired Cry

False True True 5/6

True False False 1/6

True False True 5/6

True True False 0

True True True 1

Hungry Eat Tired Cry

False None False False 3/4×2/3×3/4×5/6 = 15/48

False None False True 3/4×2/3×3/4×1/6 = 3/48

False None True False 3/4×2/3×1/4×1/6 = 1/48

False None True True 3/4×2/3×1/4×5/6 = 5/48

False A little False False 3/4×1/3×1/2×5/6 = 5/48

False A little False True 3/4×1/3×1/2×1/6 = 1/48

False A little True False 3/4×1/3×1/2×1/6 = 1/48

False A little True True 3/4×1/3×1/2×5/6 = 5/48

False A lot False False 3/4×0×1/4×5/6 = 0

False A lot False True 3/4×0×1/4×1/6 = 0

False A lot True False 3/4×0×3/4×1/6 = 0

False A lot True True 3/4×0×3/4×5/6 = 0

True None False False 1/4×1/6×3/4×1/6 = 1/192

True None False True 1/4×1/6×3/4×5/6 = 5/192

True None True False 1/4×1/6×1/4×0 = 0

True None True True 1/4×1/6×1/4×1 = 1/96

True A little False False 1/4×1/3×1/2×1/6 = 1/144

True A little False True 1/4×1/3×1/2×5/6 = 5/144

True A little True False 1/4×1/3×1/2×0 = 0

True A little True True 1/4×1/3×1/2×1 = 1/24
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Exercise 3

P(Cry) = Hungry, Eat, Tired P(Hungry) P(Eat | Hungry) P(Tired | Eat) P(Cry | Hungry,
Tired) =

Exercise 4

Step 1: Zero out rows where Cry = False

(continued)

Hungry Eat Tired Cry

True A lot False False 1/4×1/2×1/4×1/6 = 1/192

True A lot False True 1/4×1/2×1/4×5/6 = 5/192

True A lot True False 1/4×1/2×3/4×0 = 0

True A lot True True 1/4×1/2×3/4×1 = 3/32

Cry

False 15/48+1/48+5/48+1/48+0+0+1/192+0+1/144+0+1/192+0 = 137/288

True 3/48+5/48+1/48+5/48+0+0+5/192+1/96+5/144+1/24+5/192+3/32 = 151/288

Hungry Eat Tired Cry

False None False False 0

False None False True 3/48

False None True False 0

False None True True 5/48

False A little False False 0

False A little False True 1/48

False A little True False 0

False A little True True 5/48

False A lot False False 0

False A lot False True 0

False A lot True False 0

False A lot True True 0

True None False False 0

True None False True 5/192

True None True False 0
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Step 2: Sum out Hungry and Tired

Step 3: Normalize

 Exercise 5

a  

(continued)

Hungry Eat Tired Cry

True None True True 1/96

True A little False False 0

True A little False True 5/144

True A little True False 0

True A little True True 1/24

True A lot False False 0

True A lot False True 5/192

True A lot True False 0

True A lot True True 3/32

Eat

None 3/48+5/48+5/192+1/96 = 117/576

A little 1/48+5/48+5/144+1/24 = 116/576

A lot 0+0+5/192+3/32 = 69/576

Eat

None 117/302

A little 116/302

A lot 69/302

Hungry

Eat

TiredCry
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b There are two cliques of size 3: Hungry-Eat-Tired and Hungry-Tired-Cry. The
induced graph looks like this.

c There is a clique of size 4 containing all the variables. The induced graph looks
like this.

Exercise 7

Here is a program that can be used to measure the performance of variable elimina-
tion on this HMM:

  abstract class State {
    val confident: Element[Boolean]
    def possession: Element[Boolean] =
      If(confident, Flip(0.7), Flip(0.3))
  }

  class InitialState() extends State {
    val confident = Flip(0.4)
  }

  class NextState(current: State) extends State {
    val confident =
      If(current.confident, Flip(0.6), Flip(0.3))
  }

  // produce a state sequence in reverse order of the given length
  def stateSequence(n: Int): List[State] = {
    if (n == 0) List(new InitialState())

Hungry

Eat

TiredCry

Hungry

Eat

TiredCry
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    else {
      val last :: rest = stateSequence(n - 1)
      new NextState(last) :: last :: rest
    }
  }

  // unroll the hmm and measure the amount of time to infer the last hidden 
state

  def timing(obsSeq: List[Boolean]): Double = {
    Universe.createNew() // ensures that each experiment is separate
    val stateSeq = stateSequence(obsSeq.length)
    for { i <- 0 until obsSeq.length } {
      stateSeq(i).possession.observe(obsSeq(obsSeq.length - 1 - i))
    }
    val alg = VariableElimination(stateSeq(0).confident)
    val time0 = System.currentTimeMillis()
    alg.start()
    val time1 = System.currentTimeMillis()
    (time1 - time0) / 1000.0 // inference time in seconds
  }

  val steps = 1000
  val obsSeq = List.fill(steps)(scala.util.Random.nextBoolean())
  println(steps + ": " + timing(obsSeq))

When I run this program on my computer with steps varying from 50 to 1000 and plot
the results, I get the following graph.

We know from the theory that variable elimination is supposed to be linear for an
HMM, and indeed we see an approximately linear trend most of the way. However,
there’s an uptick at around 950 time steps. Why is this? I suspect it has to do with
memory issues. My conjecture is that at around 950 time steps, the JVM starts garbage
collecting more frequently, and this adds some overhead to the inference.

 By the way, at first I tried to run all the experiments for different numbers of time
steps in the same program. However, I found that the garbage collection penalty was

0
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much more severe as it needed to garbage collect the previous experiment every time
it started a new experiment. If possible, when you’re running timing experiments, you
should run each one separately because you don’t know what spillover effect one will
have on the next.

Exercise 9

Here’s some code that creates a network with a given number of diseases and symp-
toms and a given probability of each edge, and then runs variable elimination and
belief propagation, measuring their runtime and the error of belief propagation. A
couple of notes:

■ The symptoms can have any number of disease parents. To represent the
dependence of a symptom on its disease parents, I’ve used the noisy-or model.
This is a useful model for Boolean variables with many Boolean parents. In
the noisy-or model, each disease creates a variable (called diseaseCauses in the
code), whose effect is to make the symptom definitely true if this node is true.
The symptom is then the disjunction of these diseaseCauses nodes, imple-
mented using a Figaro container.

■ The number of iterations of belief propagation required for good performance
depends on the diameter of the network, which is the maximum distance
between connected nodes. In this disease-symptom network, the diameter
grows as the number of diseases and symptoms grows, so I set the number of
iterations of belief propagation to five times the number of diseases plus the
number of symptoms, which seemed to work well.

  val diseases = Array.fill(numDiseases)(Flip(0.1))
  def makeSymptom() = {
    val diseaseCauses =
      for {
        i <- 0 until numDiseases
        if scala.util.Random.nextDouble() < pEdge
      } yield {
        diseases(i) && Flip(0.2) 
      }
    Container(diseaseCauses:_×).foldLeft(false)(_ || _)
  }
  val symptoms = Array.fill(numSymptoms)(makeSymptom())

  for { i <- 0 until numSymptoms } {
    symptoms(i).observe(true)
  }
  println(numDiseases + " diseases")
  println(numSymptoms + " symptoms")
  println(pEdge + " probability of each edge")
  val ve = VariableElimination(diseases(0))
  val time0 = System.currentTimeMillis()
  ve.start()
  val time1 = System.currentTimeMillis()
  println("Variable elimination time: " + ((time1 - time0) / 1000.0))
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  val veAnswer = ve.probability(diseases(0), true)
  val bp = BeliefPropagation(5 × (numDiseases + numSymptoms), diseases(0))
  val time2 = System.currentTimeMillis()
  bp.start()
  val time3 = System.currentTimeMillis()
  println("Belief propagation time: " + ((time3 - time2) / 1000.0))
  val bpAnswer = bp.probability(diseases(0), true)
  println("Belief propagation error: " + (math.abs(veAnswer - bpAnswer)))

I plotted the runtimes and error as a function of the number of diseases and symp-
toms (using the same number for each) with edge probability varying from 25% to
100%. Here are the runtimes and error when the edge probability is 25%.

We see that up until about 18 diseases and symptoms, the cost of variable elimination
is approximately flat, but then the exponential cost kicks in and rises dramatically.
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Belief propagation, in theory, should be quadratic in the number of diseases and
symptoms, since the number of iterations and cost of each iteration are proportional
to the number of diseases and symptoms. We see that the cost of belief propagation is
comparable to variable elimination at first but doesn’t increase rapidly after 18 dis-
eases and symptoms. From the second chart, we see that the error of belief propaga-
tion is very low throughout, which makes sense because with an edge probability of
25%, there aren’t likely to be a lot of loops in the network.

 Here are the plots for edge probability 50%.

The runtime story is similar, except that the exponential curve kicks in a little earlier,
which makes sense since the network is denser. The error plot shows that the error of
belief propagation is generally still low but occasionally rises to 10%.

 Here are the plots for 75% edge probability.
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These results are similar to those for 50% edge probability. Finally, here are the plots
for 100% edge probability.

75% edge probability
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While the runtime results are similar, the error plot is striking as the number of dis-
eases and parents rises to 14 and 16, reaching 50%! This indicates that belief propaga-
tion is essentially useless for these networks. The explanation is probably that a fully
connected network of diseases and symptoms has an enormous number of loops, ren-
dering belief propagation an inappropriate algorithm.

 The bottom line from these experiments is that with an edge probability up to
75%, variable elimination works for small-to-medium-size networks and belief propa-
gation is a viable approximation algorithm for larger networks. For extremely dense
networks, variable elimination can handle small networks, but for larger networks, an
alternative approximation algorithm should be used.

Chapter 11

Exercise 1

Here’s a program to run this experiment:

  val x = Flip(0.8)
  val y = Flip(0.6)
  val z = If(x === y, Flip(0.9), Flip(0.1))
  z.observe(false)

  val veAnswer = VariableElimination.probability(y, true)
  for { i <- 1000 to 10000 by 1000 } {
    var totalSquaredError = 0.0
    for { j <- 1 to 100 } {
      val imp = Importance(i, y)
      imp.start()
      val impAnswer = imp.probability(y, true)
      val diff = veAnswer - impAnswer
      totalSquaredError += diff × diff
    }
    val rmse = math.sqrt(totalSquaredError / 100)
    println(i + " samples: RMSE = " + rmse)
  }

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100% edge probability

BP error

www.itbook.store/books/9781617292330

https://itbook.store/books/9781617292330


30 Solutions to selected exercises

When I run this program and plot the RMSE, I get the following graph.

There are some bumps in the graph, showing that even 100 runs is not enough to get
a really good estimate of the error. However, there’s a clear trend in the graph: the
error decreases with more samples, but the rate at which the error decreases slows
down. In fact, theory tells us that the error should decrease with the square root of the
number of samples, and this graph is consistent with that.

Exercise 2

Here’s a program to run this experiment. One note: Metropolis-Hastings makes state
so that if you run a new Metropolis-Hastings algorithm in the same universe, it starts
with the state of the old one. That means that if you want to run independent experi-
ments, you should run each one in its own universe. This is not something you will
ordinarily have to worry about. You’ll only be running multiple Metropolis-Hastings
algorithms in the same universe if you’re running experiments like this.

  val x = Flip(0.8)
  val y = Flip(0.6)
  val z = If(x === y, Flip(0.9), Flip(0.1))
  z.observe(false)
  val veAnswer = VariableElimination.probability(y, true)

  for { i <- 10000 to 100000 by 10000 } {
    var totalSquaredError = 0.0
    for { j <- 1 to 100 } {
      Universe.createNew()
      val x = Flip(0.8)
      val y = Flip(0.6)
      val z = If(x === y, Flip(0.9), Flip(0.1))
      z.observe(false)
      val mh = MetropolisHastings(i, ProposalScheme.default, y)
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      mh.start()
      val mhAnswer = mh.probability(y, true)
      val diff = veAnswer - mhAnswer
      totalSquaredError += diff × diff
    }
    val rmse = math.sqrt(totalSquaredError / 100)
    println(i + " samples: RMSE = " + rmse)
  }

Here’s a plot of the results.

Despite some bumps, we see the same trend as for importance sampling: the error
decreases with the square root of the number of samples.

Exercise 3

When I run this experiment, I get an error of about 4×10-4 for importance sampling.
The reason importance sampling is so accurate despite the low probability of evidence
is because it’s able to “push the evidence backward” through the program to make
sure it samples values consistent with the evidence. In this case, it’s able to generate
the value false for z when x is equal to y (which is very likely), even though false is a
very unlikely value of z. Importance sampling then correctly weights the sample with
the weight 0.0001.

Exercise 4

In five runs of Metropolis-Hastings on this model, the error ranged from about 0.02 to
0.07. Given that the correct answer is only around 0.09, that’s not good at all. The
problem is that with the extreme probabilities, it’s very hard for Metropolis-Hastings
to switch between states. In particular, the state in which x is true, y is false, the first
consequent of the If of z is true, and the second consequent is false, is the most likely
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given the evidence. However, from this state, any proposal that proposes to change x
or y will be rejected, since that will make x equal to y, in which case the first conse-
quent will apply, which is inconsistent with the evidence. Similarly, changing the value
of the second consequent will result in state inconsistent with the evidence. The only
possible change that will be accepted from this state is to change the first consequent
to false. This will happen only rarely, and what’s more, even when it does happen it
might be reversed quickly. As a result, Metropolis-Hastings will converge very slowly to
the correct distribution.

Exercise 5

Here’s the Figaro code to express this proposal scheme:

  val scheme = DisjointScheme(
      0.1 -> (() => ProposalScheme(z1)),
      0.1 -> (() => ProposalScheme(z2)),
      0.8 -> (() => ProposalScheme(x, y))
  )

When I run Metropolis-Hastings using this proposal scheme, I get an error around
4×10-4, just like for importance sampling. The reason this works is that now Metropolis-
Hastings can switch the values of x and y simultaneously. This means that it can go
from the x = true, y = false configuration to the x = false, y = true configuration,
which it had a very hard time doing under the previous proposal scheme.

Chapter 12

Exercise 1

To query the joint distribution of the printer state and network state given a poor
print result and print the joint distribution, you can use the following code:

  val pair = ^^(printerState, networkState)
  printResultSummary.observe('poor)
  val ve = VariableElimination(pair)
  ve.start()
  val dist = ve.distribution(pair).toList
  for { (prob, (printerState, networkState)) <- dist } {
    println("Printer " + printerState + ", network " + 
             networkState + ": " + prob)
  }

This prints the following:

Printer 'poor, network 'down: 0.0
Printer 'out, network 'intermittent: 0.0
Printer 'good, network 'up: 0.2218637908492195
Printer 'poor, network 'up: 0.5151855275542285
Printer 'out, network 'up: 0.0
Printer 'good, network 'down: 0.0
Printer 'good, network 'intermittent: 0.10186792277702467
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Printer 'poor, network 'intermittent: 0.1610827588195274
Printer 'out, network 'down: 0.0

First, notice that any state where either the printer is out or the network is down is pos-
sible, because in those states, the print result would have been none, not poor. Now,
when the printer state is good, the network state is about 2.2 times more likely to be
up than intermittent, but when the printer state is poor, the network state is about 3.2
times more likely to be up. Why is this? Well, a poor printer state and an intermittent
network state are alternative explanations of the print result summary not being good,
so they “explain each other away”—when one explanation holds, the other becomes
less likely to hold.

Exercise 2

In the first step, we observe that the printer result is none, run an MPE variable elimi-
nation algorithm, and print the most likely states of the possible faults. Here’s the
code to do this:

  printResultSummary.observe('none)
  val alg = MPEVariableElimination()
  alg.start()
  println("Step 1: After observing no print result")
  println("Printer power button on: " +
    alg.mostLikelyValue(printerPowerButtonOn))
  println("Toner level: " + alg.mostLikelyValue(tonerLevel))
  println("Paper flow: " + alg.mostLikelyValue(paperFlow))
  println("Software state: " + alg.mostLikelyValue(softwareState))
  println("Network state: " + alg.mostLikelyValue(networkState))
  println("User command correct: " +
    alg.mostLikelyValue(userCommandCorrect))

And here’s the result of this code:

Step 1: After observing no print result
Printer power button on: true
Toner level: 'high
Paper flow: 'smooth
Software state: 'correct
Network state: 'up
User command correct: false

The only fault that is likely to be present is that the user’s command is incorrect. Sup-
pose we check the user’s command and find that it is indeed correct. We assert the evi-
dence that the user’s command is correct, run another MPE variable elimination
algorithm, and print the results. Here’s what we get:

Printer power button on: true
Toner level: 'out
Paper flow: 'smooth
Software state: 'correct
Network state: 'up
User command correct: true
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Having eliminated the user command, the most likely fault becomes that the toner is out.

Exercise 3

To compute the probability of evidence, we use named evidence. We first need to give
the print result summary element a name. This is achieved as follows:

    val printResultSummary =
      Apply(numPrintedPages, printsQuickly, goodPrintQuality,
            (pages: Symbol, quickly: Boolean, quality: Boolean) =>
            if (pages == 'zero) 'none
            else if (pages == 'some || !quickly || !quality) 'poor
            else 'excellent)("result", Universe.universe)

Now we can query for the probability of the evidence that the print result summary is
poor as follows:

   println(ProbEvidenceSampler.computeProbEvidence(10000, 
       List(NamedEvidence("result", Observation('poor)))))   

Chapter 13

Exercise 1

a Since Faulty doesn’t change over time, it can be modeled as a single static variable
that influences Efficiency at every time point. However, we’ll want to query this
variable after 100 time steps, so we make it a dynamic variable that can be queried
over time. To capture the fact that it doesn’t change, we make its conditional
probability distribution implement the identity function, i.e., the function that
always returns the same value as its input. Here’s a DBN to express this model.

b   val initial = Universe.createNew()
  val faulty = Flip(0.001)("faulty", initial)
  val efficiency = Constant('high)("efficiency", initial)
  val gauge = 
    CPD(efficiency, 
      'high -> Select(0.95 -> 'high, 0.05 -> 'low),
      'low -> Select(0.05 -> 'high, 0.95 -> 'low))("gauge", initial)
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…
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  def trans(current: Universe): Universe = {
    val next = Universe.createNew()
    val faulty = 
      Apply(current.get[Boolean]("faulty"), 
            (f: Boolean) => f)("faulty", next)
    val efficiency = 
      CPD(current.get[Symbol]("efficiency"), faulty,
          ('low, false) -> Select(0.9 -> 'low, 0.1 -> 'high),
          ('low, true) -> Select(0.9 -> 'low, 0.1 -> 'high),
          ('high, false) -> Select(0.05 -> 'low, 0.95 -> 'high),
          ('high, true) -> Select(0.9 -> 'low, 0.1 -> 'high))(
             "efficiency", next)
    val gauge = CPD(efficiency, 
      'high -> Select(0.95 -> 'high, 0.05 -> 'low),
      'low -> Select(0.05 -> 'high, 0.95 -> 'low))("gauge", next)
    next          
  }

c Here’s code to generate the observation sequences. I’ve used importance sam-
pling to generate the sequences with only one sample. This creates a single
value at each point in time. To get that value, we can use the first item in the dis-
tribution of the gauge reading, which we know has only one positive value. 

  def createObsSeq(carType: Boolean): Array[Symbol] = {
    val obs = Array.fill(100)('low)
    faulty.observe(carType)
    var current = initial
    for { i <- 0 until 100 } {
      current = trans(current)
      val gaugeVar = current.get[Symbol]("gauge")
      val imp = Importance(1, gaugeVar)(current)
      imp.start()
      val obsVal = imp.distribution(gaugeVar)(0)._2
      obs(i) = obsVal
    }
    faulty.unobserve()
    obs
  }

  val normalObs = createObsSeq(false)
  val faultyObs = createObsSeq(true)

d Here is code to run the particle filter:

  val pf1 = ParticleFilter(initial, trans, 100)
  pf1.start()
  for { i <- 0 until  100 } {
    pf1.advanceTime(List(NamedEvidence("gauge",
                           Observation(normalObs(i))))) 
  }
  println(pf1.currentProbability("faulty", true))

  val pf2 = ParticleFilter(initial, trans, 100)
  pf2.start()
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  for { i <- 0 until  100 } {
    pf2.advanceTime(List(NamedEvidence("gauge", 
                           Observation(faultyObs(i))))) 
  }
  println(pf2.currentProbability("faulty", true))

When I ran this code ten times, it correctly detected a normal car every time.
However, it only detected a faulty car twice in ten attempts. The problem is that
with only 100 samples, and with the initial probability of a faulty car being only
1 in 1,000, it’s highly likely that the initial set of samples won’t contain a single
sample where faulty is true. The particle filter will never be able to recover
from this, no matter how much the evidence points to a faulty car.

e When I ran the particle filter with 10,000 samples, it gets an answer above 0.9
eight times out of ten. This is not perfect but a lot better than before. The rea-
son is that with 10,000 samples, there will be on average ten samples in the ini-
tial sample set where faulty is true. There’s a good chance that some of these
will survive and come to dominate the set of samples over time as the evidence
points to a faulty car.

Exercise 2

In this case, with 100 samples, the particle filter returns a non-zero probability seven
times out of ten. This means that it is usually avoiding particle starvation, where there
are no particles where faulty is true. However, the returned value is often a long way
from 1.0. The reason for this is that in the new model, even if the car was faulty for
awhile, it may become normal. So the correct probability of faulty being true at the
last time step is lower than it was before.

Exercise 3

a Here’s a representation of the model using the ModelParameters pattern:

  val params = ModelParameters()

  val xParam = Beta(1, 1)("x", params)
  val yGivenXParam = Beta(2, 1)("yGivenX", params)
  val yGivenNotXParam = Beta(1, 2)("yGivenNotX", params)
  val zGivenYParam = Beta(1, 1)("zGivenY", params)
  val zGivenNotYParam = Beta(1, 1)("zGivenNotY", params)

  class Model(pc: ParameterCollection) {
    val x = Flip(pc.get("x"))
    val y = If(x, Flip(pc.get("yGivenX")), Flip(pc.get("yGivenNotX")))
    val z = If(y, Flip(pc.get("zGivenY")), Flip(pc.get("zGivenNotY")))
  }

b    for { i <- 1 to 10 } {
    val xz = scala.util.Random.nextBoolean()
    val model = new Model(params.priorParameters)

www.itbook.store/books/9781617292330

https://itbook.store/books/9781617292330


37Chapter 13

    model.x.observe(xz)
    model.z.observe(xz)
  }

c Here’s the code to run EM with variable elimination:

  val learningAlg = EMWithVE(10, params)
  learningAlg.start()

d With variable elimination, I get that the probability of Z being true given that X
is true is exactly 0.5. This means that the observation of X has no effect at all on
Z, despite the fact that in ten out of ten training examples, the two variables are
equal. The explanation for this is that our prior distribution was perfectly sym-
metric. To account for the correct relationship between X and Z, we would
need one value of Y to be much more likely when X is true, and for Z to be
much more likely to be true when Y takes that value, and vice versa for the other
value of Y. But with a symmetric prior, EM can’t learn to associate one value of Y
with X being true more than the other. Both values of Y have equal posterior
probability in each training example, so the sufficient statistics they generate
are equal. As a result, the parameters after each iteration will also be symmetric
and no learning will take place.

e Using asymmetric prior distributions solves the problem. In this case, when X is
true, Y is more likely to be true, and when X is false, Y is more likely to be false.
The training data will reinforce this distinction and also make Z’s value corre-
spond to Y. Using EM with variable elimination, I get an answer of about 0.995
for the probability that Z is true given that X is true.

Exercise 4

a Here’s a program to perform Bayesian learning on this example using impor-
tance sampling. In addition to importance sampling, Metropolis-Hastings also
works well on this problem. However, variable elimination and belief propagation
don’t work well, probably because they don’t handle continuous variables well.

  val xParam = Beta(1, 1)
  val yGivenXParam = Beta(1, 1)
  val yGivenNotXParam = Beta(1, 1)
  val zGivenYParam = Beta(1, 1)
  val zGivenNotYParam = Beta(1, 1)

  class Model {
    val x = Flip(xParam)
    val y = If(x, Flip(yGivenXParam), Flip(yGivenNotXParam))
    val z = If(y, Flip(zGivenYParam), Flip(zGivenNotYParam))
  }

  for { i <- 1 to 10 } {
    val xz = scala.util.Random.nextBoolean()
    val model = new Model
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    model.x.observe(xz)
    model.z.observe(xz)
  }

  val futureModel = new Model
  futureModel.x.observe(true)
  println(Importance.probability(futureModel.z, true))

b Bayesian learning is able to learn, even with symmetric Beta(1, 1) priors. The
reason for this is that the posterior distribution over the parameters assigns
high probability to parameter values that make Z and X likely to be equal.
Because the Bayesian learning approach considers the entire distribution and
not just a single point, it’s able to correctly take into account these high proba-
bility regions of the posterior distribution. EM, on the other hand, because it
only considers a single point, is unable to find these regions.

Another point of comparison between Bayesian learning and EM is that according to
Bayesian learning, the posterior probability of Z being true given that X is true is
around 0.75, in contrast to EM where it was close to 1. This is an example of Bayesian
learning avoiding overfitting. Just because ten training examples had Z equal to X
doesn’t mean that’s always going to be the case. It would take more training examples
like that to fully convince the learner that Z will almost always be equal to X.
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