
M A N N I N G

Evan M. Hahn

Writing, building, and testing
Node.js applications

IN ACTION

S A M P L E C H A P T E R

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

Express in Action
Writing, building, and testing Node.js applications

by Evan M. Hahn

 Chapter 3

 Copyright 2016 Manning Publications

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

v

brief contents
PART 1 INTRO ..1

1 ■ What is Express? 3

2 ■ The basics of Node.js 18

3 ■ Foundations of Express 31

PART 2 CORE..51

4 ■ Middleware 53

5 ■ Routing 70

6 ■ Building APIs 87

7 ■ Views and templates: Pug and EJS 104

PART 3 EXPRESS IN CONTEXT..117

8 ■ Persisting your data with MongoDB 119

9 ■ Testing Express applications 146

10 ■ Security 172

11 ■ Deployment: assets and Heroku 193

12 ■ Best practices 218

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

31

Foundations of Express

As you saw in the previous chapter, Node.js comes with a number of built-in mod-
ules, one of which is called http. Node’s http module allows you to build an HTTP
server that responds to HTTP requests from browsers (and more). In short, the http
module lets you build websites with Node.

 Although you can build full web servers with nothing but Node’s built-in http
module, you might not want to. As we discussed in chapter 1 and as you saw in
chapter 2, the API exposed by the http module is pretty minimal and doesn’t do a
lot of heavy lifting for you.

 That’s where Express comes in: it’s a helpful third-party module (that is, not
bundled with Node). When you get right down to it, Express is an abstraction layer

This chapter covers
■ The four main features of Express:

– Middleware for letting a request flow
through multiple headers

– Routing for handling a request at a
specific spot

– Convenience methods and properties

– Views for dynamically rendering HTML

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

32 CHAPTER 3 Foundations of Express

on top of Node’s built-in HTTP server. You could, in theory, write everything with plain
vanilla Node and never touch Express. But as you’ll see, Express smooths out a lot of
the difficult parts and says “Don’t worry; you don’t need to deal with this ugly part. I’ll
handle this!” In other words, it’s magic!

 In this chapter, we’ll build on your Node knowledge and make an effort to really
understand Express. We’ll talk about its relationship to bare Node, discuss the con-
cepts of middleware and routing, and teach you about the other nice features Express
provides. In future chapters, we’ll go more in depth; this chapter will give a code-
heavy overview of the framework.

 At a high level, Express provides four major features, which you’ll be learning
about in this chapter:

■ Middleware—In contrast to vanilla Node, where your requests flow through only
one function, Express has a middleware stack, which is effectively an array of
functions.

■ Routing—Routing is a lot like middleware, but the functions are called only when
you visit a specific URL with a specific HTTP method. For example, you could only
run a request handler when the browser visits yourwebsite.com/about.

■ Extensions to request and response objects—Express extends the request and response
objects with extra methods and properties for developer convenience.

■ Views—Views allow you to dynamically render HTML. This both allows you to
change the HTML on the fly and to write the HTML in other languages.

You’ll build a simple guestbook in this chapter to get a feel for these four features.

3.1 Middleware
One of Express’s biggest features is called middleware. Middleware is very similar to
the request handlers you saw in vanilla Node (accepting a request and sending back a
response), but middleware has one important difference: rather than having just one
handler, middleware allows for many to happen in sequence.

 Middleware has a variety of applications, which we’ll explore in this section. For
example, one middleware could log all requests and then continue onto another mid-
dleware that sets special HTTP headers for every request, which could then continue
farther. Although you could do this with one large request handler, you’ll see that it’s
often preferable to decompose these disparate tasks into separate middleware func-
tions. If this is confusing now, don’t worry—we’ll have some helpful diagrams and get
into some concrete examples.

ANALOGS IN OTHER FRAMEWORKS Middleware isn’t unique to Express; it’s
present in a lot of other places in different forms. Middleware is present in
other web application frameworks like Python’s Django or PHP’s Laravel.
Ruby web applications also have this concept, often called Rack middleware.
This concept may not be radically new to you, though Express has its own fla-
vor of middleware.

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

33Middleware

Let’s start rewriting the Hello World application using Express’s middleware feature.
You’ll see that it has far fewer lines of code, which can help speed up development
time and reduce the number of potential bugs.

3.1.1 Hello World with Express

Let’s set up a new Express project. Make a new directory and put a file called
package.json inside. Recall that package.json is how you store information about a
Node project. It lists simple data like the project’s name and author, and it contains
information about its dependencies. Start with a skeleton package.json, as shown in
the following listing.

{
 "name": "hello-world",
 "author": "Your Name Here!",
 "private": true,
 "dependencies": {}
}

Install Express and save it to your package.json:

npm install express --save

Running this command will find Express in the directory of third-party Node pack-
ages and fetch the latest version. It will put it in a folder called node_modules. Adding
--save to the installation command will save it under the dependencies key of pack-
age.json. After running this command, your package.json will look something like the
next listing.

{
 "name": "hello-world",
 "author": "Your Name Here!",
 "private": true,
 "dependencies": {
 "express": "^5.0.0"
 }
}

All right, now you’re ready. Save this file into app.js, as in the following listing.

var express = require("express");
var http = require("http");

var app = express();

Listing 3.1 A bare-bones package.json

Listing 3.2 package.json after installing Express with the --save flag

Listing 3.3 Hello, World with Express

Requires the Express
module just as you
require other modulesCalls the express

function to start a new
Express application

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

34 CHAPTER 3 Foundations of Express

app.use(function(request, response) {
 console.log("In comes a request to: " + request.url);
 response.end("Hello, world!");
});

http.createServer(app).listen(3000);

Now let’s step through this. First, you require Express. You then require Node’s http
module just as you did before. You’re ready.

 Then you make a variable called app as you did before, but instead of creating the
server, you call express(), which returns a request handler function. This is impor-
tant: it means that you can pass the result into http.createServer just like before.

 Remember the request handler we had in the previous chapter, with vanilla Node?
It looked like this:

function requestHandler(request, response) {
 console.log("In comes a request to: " + request.url);
 response.end("Hello, world!");
}

We have a similar function in this example (in fact, I copy-pasted it). It’s also passed a
request and a response object, and you interact with them in the same way.

 Next, you create the server and start listening. Recall that http.createServer took
a function before, so guess what—app is just a function. It’s an Express-made request
handler that starts going through all the middleware until the end. At the end of the
day, it’s just a request handler function like before.

NOTE You’ll see people using app.listen(3000), which defers to http.create-
Server. app.listen is just shorthand, like how you’ll shorten request to req
and response to res in following chapters.

3.1.2 How middleware works at a high level

In Node’s HTTP server, every request goes through one big function. This looks like
the following listing.

function requestHandler(request, response) {
 console.log("In comes a request to: " + request.url);
 response.end("Hello, world!");
}

In a world without middleware, you’d find yourself having one master request func-
tion that handles everything. If you were to draw the flow of your application, it might
look like figure 3.1.

Listing 3.4 A Node request handler function

Middleware

Starts the server

Request Request handler function Response Figure 3.1 A request
without middleware

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

35Middleware

Every request goes through just one request handler function, which eventually gen-
erates the response. That’s not to say that the master handler function can’t call other
functions, but at the end of the day, the master function responds to every request.

 With middleware, rather than having your request pass through one function you
write, it passes through an array of functions you write called a middleware stack. It
might look like figure 3.2.

Okay, so Express lets you execute an array of functions instead of only one. What
might some of these functions be? And why might you want this?

 Let’s take another look at an example from chapter 1: an application that authen-
ticates users. If they’re authenticated, it shows them secret information. All the while,
your server is logging every request that comes into your server, authenticated or not.

 This app might have three middleware functions: one that does logging, one that
does authentication, and one that responds with secret information. The logging mid-
dleware will log every request and continue on to the next middleware; the authentica-
tion middleware will continue only if the user is authorized; the final middleware will
always respond, and it won’t continue on because nothing follows it.

 There are two possible ways a request could flow through this simple app, as shown
in figure 3.3.

Request
Array of

request handler functions
Response

Middleware #1

Middleware #2

Middleware #3

...

Figure 3.2 A request
with middleware

Request A

comes in

Logging done,

continue on

User is

authorized,

continue on.

Respond

with secret

info.Logging

middleware

Authorization

middleware

“Send the

secret info”

middleware

“Send the

secret info”

middleware

Request B

comes in

Logging done,

continue on

User is not

authorized,

respond with

error and do

not continue.

Logging

middleware

Authorization

middleware

Figure 3.3 Two requests flowing through middleware functions. Note that middleware
sometimes continues on but sometimes responds to requests.

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

36 CHAPTER 3 Foundations of Express

Each middleware function can modify the request or the response, but it doesn’t
always have to. Eventually, some middleware should respond to the request. It could be
the first one; it could be the last. If none of them respond, then the server will hang
and the browser will sit alone, without a response.

 This is powerful because you can split your application into many small parts,
rather than having one behemoth. These components become easier to compose and
reorder, and it’s also easy to pull in third-party middleware.

 You’ll see examples that will (hopefully!) make all of this clearer.

3.1.3 Middleware code that’s passive

Middleware can affect the response, but it doesn’t have to. For example, the logging
middleware from the previous section doesn’t need to send different data—it only
needs to log the request and move on.

 Let’s start by building a completely useless middleware function and then move on
from there. The next listing shows what an empty middleware function looks like.

function myFunMiddleware(request, response, next) {

 ...

 next();
}

When you start a server, you start at the topmost middleware and work your way to
the bottom. So if you wanted to add simple logging to our app, you could do it, as
shown next.

var express = require("express");
var http = require("http");
var app = express();

app.use(function(request, response, next) {
 console.log("In comes a " + request.method + " to " + request.url);
 next();
});

app.use(function(request, response) {
 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("Hello, world!");
});

http.createServer(app).listen(3000);

Listing 3.5 Empty middleware that does nothing

Listing 3.6 Logging middleware

Does stuff with the
request and/or
responseWhen finished, calls

next() to defer to the next
middleware in the chain

The logging
middleware

Sends the
actual response

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

37Middleware

Run this app and visit http://localhost:3000. In the console, you’ll see that your
server is logging your requests (refresh to see). You’ll also see your “Hello, world!”
in the browser.

 Note that anything that works in the vanilla Node server also works in middleware.
For example, you can inspect request.method in a vanilla Node web server, without
Express. Express doesn’t get rid of it—it’s right there as it was before. If you want to set
the statusCode of the response, you can do that too. Express adds some more things
to these objects, but it doesn’t remove anything.

 The previous example shows middleware that doesn’t change the request or the
response—it logs the request and always continues. Although this kind of middleware
can be useful, middleware can also change the request or response objects.

3.1.4 Middleware code that changes the request and response

Not all middleware should be passive, though—the rest of the middleware from our
example doesn’t work that way; they actually need to change the response.

 Let’s try writing the authentication middleware that we mentioned before. We’ll
choose a weird authentication scheme for simplicity: you’re only authenticated if you
visit on an even-numbered minute of the hour (which would be 12:00, 12:02, 12:04,
12:06, and so on). Recall that you can use the modulo operator (%) to help determine
whether a number is divisible by another. You add this middleware to your application
in the next listing.

app.use(function(request, response, next) {
 console.log("In comes a " + request.method + " to " + request.url);
 next();
});

app.use(function(request, response, next) {
 var minute = (new Date()).getMinutes();
 if ((minute % 2) === 0) {
 next();
 } else {
 response.statusCode = 403;
 response.end("Not authorized.");
 }
});

app.use(function(request, response) {
 response.end('Secret info: the password is "swordfish"!');
});

When a request comes in, it will always go through the middleware in the same order
in which you use them. First, it will start with the logging middleware. Then, if you’re
visiting in an even-numbered minute, you’ll continue on to the next middleware and

Listing 3.7 Adding fake authentication middleware

The logging middleware,
just as before

If visiting at the first
minute of the hour,
calls next() to
continue on

If not authorized, sends a 403
status code and responds

Sends the
secret
information

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

38 CHAPTER 3 Foundations of Express

see the secret information. But if you’re visiting at any of the other minutes of the
hour, you’ll stop and never continue on.

3.1.5 Third-party middleware libraries

Like many parts of programming, it’s often the case that someone else has done what
you’re trying to do. You can write your own middleware, but it’s common to find that
the functionality you want is already available in somebody else’s middleware. Let’s
look at a couple of examples of helpful third-party middleware.

MORGAN: LOGGING MIDDLEWARE

Let’s remove your logger and use Morgan, a nice logger for Express that has far more
features, as shown in listing 3.8. Loggers are pretty helpful for a number of reasons.
First, they’re one way to see what your users are doing. This isn’t the best way to do
things like marketing analytics, but it’s really useful when your app crashes for a user
and you’re not sure why. I also find it helpful when developing—you can see when a
request comes into your server. If something is wrong, you can use Morgan’s logging
as a sanity check. You can also see how long your server takes to respond to do perfor-
mance analysis.

 Run npm install morgan --save and give this a try (saving it into app.js again).

var express = require("express");
var logger = require("morgan");
var http = require("http");

var app = express();

app.use(logger("short"));

app.use(function(request, response) {
 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("Hello, world!");
});

http.createServer(app).listen(3000);

Visit http://localhost:3000 and you’ll see some logging! Thanks, Morgan.

EXPRESS’S STATIC MIDDLEWARE

There’s more middleware out there than Morgan. It’s common for web applications
to need to send static files over the wire. These include things like images or CSS or
HTML—content that isn’t dynamic.

 express.static ships with Express and helps you serve static files. The simple act of
sending files turns out to be a lot of work, because there are a lot of edge cases and
performance considerations to think about. Express to the rescue!

 Let’s say you want to serve files out of a directory called public. The next listing
shows how you might do that with Express’s static middleware.

Listing 3.8 Using Morgan for logging (in app.js)

Fun fact:
logger("short")
returns a function

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

39Middleware

var express = require("express");
var path = require("path");
var http = require("http");

var app = express();

var publicPath = path.resolve(__dirname, "public");
app.use(express.static(publicPath));

app.use(function(request, response) {
 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("Looks like you didn't find a static file.");
});

http.createServer(app).listen(3000);

Now, any file in the public directory will be shown. You can put anything in there that
you please and the server will send it. If no matching file exists in the public folder,
it’ll go on to the next middleware, and say “Looks like you didn’t find a static file.” If a
matching file is found, express.static will send it off and stop the middleware chain.

FINDING MORE MIDDLEWARE

I’ve shown Morgan and Express’s static middleware, but there are more. Here are a
few other helpful ones:

■ connect-ratelimit—Lets you throttle connections to a certain number of requests
per hour. If someone is sending numerous requests to your server, you can start
giving them errors to stop them from bringing your site down.

■ Helmet—Helps you add HTTP headers to make your app safer against certain
kinds of attacks. We’ll explore it in later chapters. (I’m a contributor to Helmet,
so I definitely recommend it!)

Listing 3.9 Using express.static (in app.js)

Why use path.resolve?
What’s all that business about path.resolve? Why can’t you just say /public? The
short answer is that you could, but it’s not cross-platform.

On Mac and Linux, you want this directory:

/public

But on Windows, you want this directory:

\public

Node’s built-in path module will make sure that things run smoothly on Windows,
Mac, and Linux.

Sets up the public
path, using Node’s
path module

Sends static files
from the publicPath
directory

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

40 CHAPTER 3 Foundations of Express

■ cookie-parser—Parses browser cookies.
■ response-time—Sends the X-Response-Time header so you can debug the perfor-

mance of your application.

We’ll explore many of these middleware options further in the next chapter.
 If you’re looking for more middleware, you’ll have luck searching for “Express

middleware,” but you should also search for “Connect middleware.” There’s another
framework called Connect that’s like Express but only does middleware. Connect mid-
dleware is compatible with Express, so if the “Express middleware” search isn’t fruit-
ful, try searching for “Connect middleware.”

3.2 Routing
Routing is a way to map requests to specific handlers depending on their URL and
HTTP verb. You could imagine having a homepage and an about page and a 404 page.
Routing can do all of this. I think this is better explained with code than with English,
so look at the following listing.

var express = require("express");
var path = require("path");
var http = require("http");

var app = express();

var publicPath = path.resolve(__dirname, "public");
app.use(express.static(publicPath));

app.get("/", function(request, response) {
 response.end("Welcome to my homepage!");
});

app.get("/about", function(request, response) {
 response.end("Welcome to the about page!");
});

app.get("/weather", function(request, response) {
 response.end("The current weather is NICE.");
});

app.use(function(request, response) {
 response.statusCode = 404;
 response.end("404!");
});

http.createServer(app).listen(3000);

After the basic requires, you add your static file middleware (as you’ve seen before).
This will serve any files in a folder called public.

 The three calls to app.get are Express’s magical routing system. They could also
be app.post, which respond to POST requests, or PUT, or any of the HTTP verbs.

Listing 3.10 Express routing example

Sets up static file
middleware like before.
Every request goes
through this middleware
and continues on if no
files are found.

Called when a request
to the root is made

Called when a request
to /about comes in

Called when a request
to /weather comes in

If you miss the others,
you’ll wind up here.

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

41Extending request and response

(We’ll talk more about these other HTTP verbs in later chapters.) The first argument
is a path, like /about or /weather or simply /, the site’s root. The second argument is
a request handler function similar to what you saw earlier in the middleware section.

 They’re the same request handler functions you’ve seen before. They work just
like middleware; it’s a matter of when they’re called.

 These routes can get smarter. In addition to matching fixed routes, they can match
more complex ones (imagine a regular expression or more complicated parsing), as
shown in the next listing.

app.get("/hello/:who", function(request, response) {
 response.end("Hello, " + request.params.who + ".");
 // Fun fact: this has some security issues, which we’ll get to!
});

It’s no coincidence that this who is the specified part in the first route. Express will pull
the value from the incoming URL and set it to the name you specify.

 Restart your server and visit localhost:3000/hello/earth for the following message:
Hello, earth. Note that this won’t work if you add something after the slash. For exam-
ple, localhost:3000/hello/entire/earth will give a 404 error.

 It’s likely that you’ve seen this sort of behavior all over the internet. You’ve likely
seen websites where you can visit a URL for a specific user. For example, if your user-
name were ExpressSuperHero, the URL for your user page might look something
like this:

https://mywebsite.com/users/ExpressSuperHero

Using Express, rather than defining a route for every single possible username (or article,
or photo, or whatever), you define one route that matches all of them.

 The docs also show an example that uses regular expressions to do even more
complex matching, and you can do lots of other stuff with this routing. For a concep-
tual understanding, I’ve said enough. We’ll explore this in far more detail in chapter 5.
But it gets more cool.

3.3 Extending request and response
Express augments the request and response objects that you’re passed in every
request handler. The old stuff is still there, but Express adds some new stuff too! The
API docs (http://expressjs.com/api.html) explain everything, but let’s look at a cou-
ple of examples.

 One nicety Express offers is the redirect method. The following listing shows how
it might work.

Listing 3.11 Grabbing data from routes

Specifies that the "hello"
part of the route is fixed

req.params has a
property called who.

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

42 CHAPTER 3 Foundations of Express

response.redirect("/hello/world");
response.redirect("http://expressjs.com");

If you were just using Node, response would have no method called redirect;
Express adds it to the response object for you. You can do this in vanilla Node, but it’s
a lot more code.

 Express adds methods like sendFile, which lets you send a whole file, as the fol-
lowing listing shows.

response.sendFile("/path/to/cool_song.mp3");

Once again, the sendFile method isn’t available in vanilla Node; Express adds it for
you. And just like the redirect example shown previously, you can do this in vanilla
Node, but it’s a lot more code.

 It’s not only the response object that gets conveniences—the request object gets a
number of other cool properties and methods, like request.ip to get the IP address
or the request.get method to get incoming HTTP headers.

 Let’s use some of these things to build middleware that blocks an evil IP address.
Express makes this pretty easy, as shown here.

var express = require("express");
var app = express();

var EVIL_IP = "123.45.67.89";

app.use(function(request, response, next) {
 if (request.ip === EVIL_IP) {
 response.status(401).send("Not allowed!");
 } else {
 next();
 }
});

// ... the rest of your app ...

Notice that you’re using req.ip, a function called res.status(), and res.send().
None of these are built into vanilla Node—they’re all extensions added by Express.
Conceptually, there’s not much to know here, other than the fact that Express extends
the request and response.

 We’ve looked at a few niceties in this chapter, but I don’t want to give you the full
laundry list here. For every nice feature that Express gives you, you can check out its
API documentation at http://expressjs.com/4x/api.html.

Listing 3.12 Using redirect

Listing 3.13 sendFile example

Listing 3.14 Blacklisting an IP

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

43Views

3.4 Views
Websites are built with HTML. They’ve been built that way for a long, long time.
Although single-page apps are en vogue (and totally possible with Express), it’s often
the case that you want the server to dynamically generate HTML. You might want to
serve HTML that greets the currently logged-in user, or maybe you want to dynamically
generate a data table.

 A number of different view engines are available. There’s EJS (which stands for
Embedded JavaScript), Handlebars, Pug, and more. There are even ports of templat-
ing languages from other programming worlds, like Swig and HAML. All of these have
one thing in common: at the end of the day, they spit out HTML.

 For the rest of these examples, we’ll use EJS. I chose EJS because it’s a popular
option made by the people who created Express. I hope you’ll like it, but if you don’t,
there are plenty of alternatives, which we’ll discuss in chapter 7.

 The next listing shows what it looks like to set up views.

var express = require("express");
var path = require("path");

var app = express();

app.set("views", path.resolve(__dirname, "views"));
app.set("view engine", "ejs");

We’ll add more to this file in a moment. The first block is the same as always: require
what you need to. Then you say, “My views are in a folder called views.” After that, you
say, “Use EJS.” EJS (documentation at https://github.com/tj/ejs) is a templating lan-
guage that compiles to HTML. Make sure to install it with npm install ejs --save.

 Now, you’ve set up these views on the Express side. How do you use them? What is
this EJS business? Let’s start by making a file called index.ejs and put it into a directory
called views. It might look like the next listing.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Hello, world!</title>
 </head>
<body>
 <%= message %>
</body>
</html>

Listing 3.15 Setting up views with Express

Listing 3.16 A simple EJS file

Tells Express that your
views will be in a folder
called views

Tells Express that you’re
going to use the EJS
templating engine

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

44 CHAPTER 3 Foundations of Express

This should look exactly like HTML to you, but for the one weird bit inside the body
tag. EJS is a superset of HTML, so everything that’s valid HTML is valid EJS. But EJS also
adds a few new features, like variable interpolation. <%= message %> will interpolate a
variable called message, which you’ll pass when you render the view from Express.
Here’s what that looks like.

app.get("/", function(request, response) {
 response.render("index", {
 message: "Hey everyone! This is my webpage."
 });
});

Express adds a method to response, called render. It basically looks at the view engine
and views directory (which you defined earlier) and renders index.ejs with the vari-
ables you pass in.

 The code in the next listing would render the HTML shown.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Hello, world!</title>
 </head>
<body>
 Hey everyone! This is my webpage.
</body>
</html>

EJS is a popular solution to views, but there are a number of other options, which we’ll
explore in later chapters. Now let’s work through an example.

3.5 Example: putting it all together in a guestbook
If you’re like me, you saw the internet in its early days; awkward animated GIFs, crufty
code, and Times New Roman on every page. In this chapter, we’ll resurrect one com-
ponent from that bygone era: the guestbook. A guestbook is pretty simple: users can
write new entries in the online guestbook, and they can browse others’ entries.

 Let’s use all that you’ve learned to build a more real application for this guestbook.
It turns out that all of these things will come in handy! Your site will have two pages:

■ A homepage that lists all of the previously posted guestbook entries
■ A page with an “add new entry” form

That’s it! Before you start, you have to get set up. Ready?

Listing 3.17 Rendering a view from Express

Listing 3.18 A simple EJS file, rendered

The variable you
specified in the
previous listing

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

45Example: putting it all together in a guestbook

3.5.1 Getting set up

Start a new project. Make a new folder, and inside, make a file called package.json. It
should look something like this next listing.

{
 "name": "express-guestbook",
 "private": true,
 "scripts": {
 "start": "node app"
 }
}

You can add other fields (like author or version), but for this example, you don’t
need much. Now, install your dependencies as you did before and save them into
package.json:

npm install express morgan body-parser ejs --save

These modules should look familiar to you, except for body-parser. Your app will need
to post new guestbook entries in HTTP POST requests, so you’ll need to parse the body
of the POST; that’s where body will come in.

 Check to make sure that Express, Morgan, body-parser, and EJS have been saved
into package.json. If they haven’t, make sure you’ve added the --save flag.

3.5.2 The main app code

Now that you’ve installed all of your dependencies, create app.js and put the following
app inside.

var http = require("http");
var path = require("path");
var express = require("express");
var logger = require("morgan");
var bodyParser = require("body-parser");

var app = express();

app.set("views", path.resolve(__dirname, "views"));
app.set("view engine", "ejs");

var entries = [];
app.locals.entries = entries;

app.use(logger("dev"));

app.use(bodyParser.urlencoded({ extended: false }));

Listing 3.19 package.json for the guestbook

Listing 3.20 The Express guestbook, in app.js

Starts
your app

Requires all of
the modules
you need

Makes an
Express

app
The first line tells Express
that the views are in the
views folder; the next line
says the views will use the
EJS engine.Creates a

global
array to
store all

your
entries

Makes this entries array
available in all views

Uses Morgan to log
every request

Populates a variable
called req.body if the
user is submitting a
form. (The extended
option is required.)

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

46 CHAPTER 3 Foundations of Express

app.get("/", function(request, response) {
 response.render("index");
});

app.get("/new-entry", function(request, response) {
 response.render("new-entry");
});

app.post("/new-entry", function(request, response) {
 if (!request.body.title || !request.body.body) {
 response.status(400).send("Entries must have a title and a body.");
 return;
 }
 entries.push({
 title: request.body.title,
 content: request.body.body,
 published: new Date()
 });
 response.redirect("/");
});

app.use(function(request, response) {
 response.status(404).render("404");
});

http.createServer(app).listen(3000, function() {
 console.log("Guestbook app started on port 3000.");
});

3.5.3 Creating the views

We’ve referenced a few views here, so let’s fill those in. Create a folder called views,
and then create the header in views/header.ejs, as shown in the next listing.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Express Guestbook</title>
<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/

bootstrap.min.css">
</head>
<body class="container">
 <h1>
 Express Guestbook

 Write in the guestbook

 </h1>

Listing 3.21 header.ejs

When visiting the site root,
renders the homepage (at
views/index.ejs)

Renders the “new entry”
page (at views/index.ejs)
when GETting the URL

Defines
a route
handler

when you
POST to

the “new-
entry” URL
in contrast

to a GET

If user submits
the form

with no title
or content,

responds with
a 400 error

Adds a new
entry to the
list of entries

Redirects
to the

homepage
to see your
new entry

Renders a 404 page
because you’re requesting
an unknown source

Starts the server
on port 3000!

Loads Twitter’s
Bootstrap CSS from
the Bootstrap CDN

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

47Example: putting it all together in a guestbook

Notice that you use Twitter Bootstrap for styling, but you could easily replace it with
your own CSS. The most important part is that this is the header; this HTML will appear
at the top of every page.

NOTE In short, Bootstrap is a bunch of CSS and JavaScript that provides a lot
of default styling. You can absolutely write navbars and buttons and header
CSS yourself, but Bootstrap helps you get up and running quickly. You can
find out more at http://getbootstrap.com/.

Next, create the simple footer in views/footer.ejs, which will appear at the bottom of
every page, as follows.

</body>
</html>

Now that you’ve defined the common header and footer, you can define the three
views: the homepage, the “add a new entry” page, and the 404 page. Save the code in
the following listing into views/index.ejs.

<% include header %>
<% if (entries.length) { %>
 <% entries.forEach(function(entry) { %>
 <div class="panel panel-default">
 <div class="panel-heading">
 <div class="text-muted pull-right">
 <%= entry.published %>
 </div>
 <%= entry.title %>
 </div>
 <div class="panel-body">
 <%= entry.body %>
 </div>
 </div>
 <% }) %>
<% } else { %>
 No entries! Add one!
<% } %>
<% include footer %>

Save the next listing into views/new-entry.ejs.

<% include header %>

<h2>Write a new entry</h2>

<form method="post" role="form">
 <div class="form-group">
 <label for="title">Title</label>

Listing 3.22 footer.ejs

Listing 3.23 index.ejs

Listing 3.24 new-entry.ejs

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

48 CHAPTER 3 Foundations of Express

 <input type="text" class="form-control" id="title"
 ➥ name="title" placeholder="Entry title" required>
 </div>
 <div class="form-group">
 <label for="content">Entry text</label>
 <textarea class="form-control" id="body" name="body"
 ➥ placeholder="Love Express! It’s a great tool for
 ➥ building websites." rows="3" required></textarea>
 </div>
 <div class="form-group">
 <input type="submit" value="Post entry" class="btn btn-primary">
 </div>
</form>

<% include footer %>

Save the following into views/404.ejs.

<% include header %>
<h2>404! Page not found.</h2>
<% include footer %>

And that’s all your views!

3.5.4 Start it up

Now, npm start your app, and visit http://localhost:3000 to see your guestbook, as
shown in figure 3.4. Figure 3.5 shows the page to write a new entry in the guestbook.

Listing 3.25 404.ejs

Figure 3.4 The guestbook homepage

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

49Summary

Look at that! What a beautiful little guestbook. It reminds me of the 1990s.
 Let’s review the parts of this little project:

■ You use a middleware function to log all requests, which helps you do debug-
ging. You also use a middleware at the end to serve the 404 page.

■ You use Express’s routing to direct users to the homepage, the “add a new
entry” view, and the POST for adding a new entry.

■ You use Express and EJS to render pages. EJS lets you dynamically create HTML;
you use this to dynamically display the content.

3.6 Summary
■ Express sits on top of Node’s HTTP functionality. It abstracts away a lot of its

rough edges.
■ Express has a middleware feature that allows you to pipeline a single request

through a series of decomposed functions.
■ Express’s routing feature lets you map certain HTTP requests to certain function-

ality. For example, when visiting the homepage, certain code should be run.
■ Express’s view-rendering features let you dynamically render HTML pages.
■ Many templating engines have been ported to work with Express. A popular

one is called EJS, which is the simplest for folks who know already HTML.

Figure 3.5 The page to write a new entry in the guestbook

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

Evan M. Hahn

E
xpress.js is a web application framework for Node.js.
Express organizes your server-side JavaScript into test-
able, maintainable modules. It provides a powerful set of

features to effi ciently manage routes, requests, and views along
with beautiful boilerplate for your web applications. Express
helps you concentrate on what your application does instead
of managing time-consuming technical details.

Express in Action teaches you how to build web applications
using Node and Express. It starts by introducing Node’s
powerful traits and shows you how they map to the features
of Express. You’ll explore key development techniques, meet
the rich ecosystem of companion tools and libraries, and get a
glimpse into its inner workings. By the end of the book, you’ll
be able to use Express to build a Node app and know how to
test it, hook it up to a database, and automate the dev process.

What’s Inside
● Simplify Node app setup with Express
● Testing Express applications
● Use Express for easy access to Node features
● Data storage with MongoDB
● Covers Express 4 and Express 5 alpha

To get the most out of this book you’ll need to know the basics
of web application design and be profi cient with JavaScript.

Evan Hahn is an active member of the Node and Express
community and contributes to many open source JavaScript
projects.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/express-in-action

$39.99 / Can $45.99 [INCLUDING eBOOK]

Express IN ACTION

WEB DEVELOPMENT

M A N N I N G

“Chock-full of helpful
examples for both the novice

and advanced user.”
—Jeff Smith

Single Source Systems

“Everything you need
 to know to develop robust

applications.”—Paul Shipley
DTS Food Laboratories

“Take the pain out of
Node.js with

 Express in Action!”—William E. Wheeler
author of Spring in Practice

“The fast track to
developing versatile

 HTTP applications.”
—Ruben Verborgh

Ghent University – iMinds

SEE INSERT

www.itbook.store/books/9781617292422

https://itbook.store/books/9781617292422

