
M A N N I N G

Emmit A. Scott, Jr.
FOREWORD BY Burke Holland

Understanding single-page web applications

SAMPLE CHAPTER

www.itbook.store/books/9781617292439

https://itbook.store/books/9781617292439

SPA Design and Architecture
by Emmit A. Scott, Jr

Sample Chapter 1

Copyright 2016 Manning Publications

www.itbook.store/books/9781617292439

https://itbook.store/books/9781617292439

brief contents
PART 1 THE BASICS ... 1

1 ■ What is a single-page application? 3
2 ■ The role of MV* frameworks 22
3 ■ Modular JavaScript 52

PART 2 CORE CONCEPTS ..83

4 ■ Navigating the single page 85
5 ■ View composition and layout 106
6 ■ Inter-module interaction 129
7 ■ Communicating with the server 156
8 ■ Unit testing 186
9 ■ Client-side task automation 209

appendix A Employee directory example walk-through 229
appendix B Review of the XMLHttpRequest API 259
appendix C Chapter 7 server-side setup and summary 266
appendix D Installing Node.js and Gulp.js 277

www.itbook.store/books/9781617292439

https://itbook.store/books/9781617292439

www.itbook.store
Part 1

The basics

This part of the book will get you acquainted with some basic concepts
you’ll need to know before developing your first single-page web application.

 In chapter 1, we’ll talk about what an SPA is in very clear terms. It’s important
to know what this type of architecture involves and why you might choose it over
that of a traditional web application.

 Keeping your application’s code base clean and maintainable becomes criti-
cal when working within the context of a single page. Chapter 2 compares differ-
ent styles of JavaScript framework that help you achieve that goal. The chapter
frames the discussion with an introduction to the three architectural patterns
that heavily influenced these frameworks: MVC, MVP, and MVVM. The chapter
then progresses into how the same application must change based on the style of
framework that’s implemented.

 In chapter 3, you’ll get a crash course on the module pattern and how it will
change the way you think about organizing your JavaScript code. Using this pat-
tern, you’ll be able to create functions and variables as you normally would but
within the cozy confines of a structure that mimics classic encapsulation in other
languages. As you’ll find out in this chapter, modular programming is crucial for
a successful SPA.

/books/9781617292439

https://itbook.store/books/9781617292439

2 CHAPTER

www.itboo

k.store/books/9781617292439

https://itbook.store/books/9781617292439

www.itbook.sto
What is a single-page
application?
Developers have been chasing the dream of delivering web applications with the
look and feel of native desktop applications for about as long as they’ve been writ-
ing them. Various solutions for a more native-like experience, such as IFrames, Java
applets, Adobe Flash, and Microsoft Silverlight, have been tried with varying
degrees of success. Though different technologies, they all have at least one goal in
common: bringing the power of a desktop app to the thin, cross-platform environ-
ment of a web browser. The single-page (web) application, or SPA, shares in this
objective, but without a browser plugin or a new language to learn. The idea that a
native-like experience can be realized using only JavaScript, HTML, and Cascading
Style Sheets (CSS) is a tantalizing thought, but what is an SPA under the covers, and
where did this idea begin?

This chapter covers
■ The definition of a single-page application (SPA)
■ An overview of the basic elements of an SPA
■ The benefits of SPAs over traditional web

applications
3

re/books/9781617292439

https://itbook.store/books/9781617292439

4 CHAPTER 1 What is a single-page application?

www.itboo
 The stage was set in the early 2000s. A brand-new way of thinking about web-page
design came about when the AJAX movement started to gain steam. It began with an
interesting, yet obscure, ActiveX control in Microsoft’s Internet Explorer browser,
used to send and receive data asynchronously. These humble beginnings eventually
led to a revolution, when the control’s functionality was officially adopted by the
major browser vendors as the XMLHttpRequest (XHR) API.

 Developers who began to merge this API with JavaScript, HTML, and CSS obtained
remarkable results. The blending of these techniques became known as AJAX, or Asyn-
chronous JavaScript and XML. AJAX’s unobtrusive data requests, combined with the
power of JavaScript to dynamically update the Document Object Model (DOM), and
the use of CSS to change the page’s style on the fly, brought AJAX to the forefront of
modern web development.

 Piggybacking off this successful movement, the SPA concept takes web develop-
ment to a whole new level by expanding the page-level manipulation techniques of
AJAX to the entire application. Additionally, the patterns and practices commonly
used in the creation of an SPA can lead to overall efficiencies in application design,
code maintenance, and development time. Having a successful implementation of a
single-page application, though, will be greatly impacted by your understanding of
SPA architecture.

 As with most emerging solutions, single-page application design comprises a vari-
ety of approaches. Varying opinions by today’s experts, plus a multitude of competing
libraries and frameworks, can make finding the right solution for your SPA project
challenging. The more you know going into it, the more successful you’ll be in find-
ing the implementation that’s right for you and your development goals. That’s why
I’ll start by providing a clear understanding of an SPA and its benefits. Over the course
of the book, you’ll examine each facet of SPA development by using a style of Java-
Script frameworks commonly called MV* frameworks.

1.1 SPA in a nutshell
In an SPA, the entire application runs as a single web page. In this approach, the pre-
sentation layer for the entire application has been factored out of the server and is
managed from within the browser. To get a better idea of what this looks like, you’ll
review a couple of illustrations.

Not everything is MV*

Our discussion of SPAs in this book is limited to MV* frameworks (and you’ll learn
more about them in chapter 2). It’s important to make this distinction up front, how-
ever, because other approaches can be used to create an SPA, including using React
(https://facebook.github.io/react) or Web Components (a W3C specification for a set
of standards for component-based web development), for example.
k.store/books/9781617292439

https://facebook.github.io/react
https://itbook.store/books/9781617292439

5SPA in a nutshell

www.itbook.
First, let’s take a look at a web application that’s not an SPA. Figure 1.1 shows a large
web application that uses a traditional server-side design.

 With this design, each request for a new view (HTML page) results in a round-trip
to the server. When fresh data is needed on the client side, the request is sent to the
server side. On the server side, the request is intercepted by a controller object inside
the presentation layer. The controller then interacts with the model layer via the ser-
vice layer, which determines the components required to complete the model layer’s
task. After the data is fetched, either by a data access object (DAO) or by a service

HTML views returned,
causing full-page refresh

Client side

Server side

Request Response

HTML

Model (layer)

Controller Views

Presentation layer

Service layer

Service
interfaces

Service
implementations

Business layer

Business logic
and workflows

Business
objects/entities

Data layer

Data sources Web services

Data access
objects Service agents

Views created and
managed on the server

Figure 1.1 In a traditional web
application, each new view (HTML page)
is constructed on the server.
store/books/9781617292439

https://itbook.store/books/9781617292439

6 CHAPTER 1 What is a single-page application?

www.itboo
agent, any necessary changes to the data are then made by the business logic in the
business layer.

 Control is passed back to the presentation layer, where the appropriate view is cho-
sen. Presentation logic dictates how the freshly obtained data is represented in the
selected view. Often the resulting view starts off as a source file with placeholders, where
data is to be inserted (and possibly other rendering instructions). This file acts as a kind
of template for how the view gets stamped whenever the controller routes a request to it.

 After the data and view are merged, the view is returned to the browser. The
browser then receives the new HTML page and, via a UI refresh, the user sees the new
view containing the requested data.

Presentation layer
Views created and managed
by MV* in the browser

Client side

Server side
JSON

Model (layer)

Controller

Views

AJAX

JSON to native
object conversion

MV*
framework

Service layer

Service
interfaces

Service
implementations

Business layer

Business logic
and workflows

Business
objects/entities

Data layer

Data sources Web services

Data access
objects Service agents

Transactions via AJAX
(XHR + DOM manipulation)
never require refresh

Figure 1.2 In an SPA, the presentation
layer moves to the client-side code, and
transactions never require a browser refresh.
k.store/books/9781617292439

https://itbook.store/books/9781617292439

7SPA in a nutshell

www.itbook.
Figure 1.2 demonstrates how this design could look as an SPA. Notice what has hap-
pened with the presentation layer and our transactions.

 Moving the process for creating and managing views into the UI decouples it from
the server. From an architectural standpoint, this gives the SPA an interesting advan-
tage. Unless you’re doing partial rendering on the server, the server is no longer
required to be involved in how the data is presented.

 The overall SPA design is nearly the same as the traditional design. The key
changes are as follows: no full browser refreshes, the presentation logic resides in the
client, and server transactions can be data-only, depending on your preference for
data rendering.

1.1.1 No browser refreshes

In an SPA, views aren’t complete HTML pages. They’re merely portions of the DOM
that make up the viewable areas of the screen. After the initial page load, all the tools
required for creating and displaying views are downloaded and ready to use. If a new
view is needed, it’s generated locally in the browser and dynamically attached to the
DOM via JavaScript. No browser refreshes are ever needed.

1.1.2 Presentation logic in the client

Because our presentation logic is mostly client side in an SPA, the task of combining
HTML and data is moved from the server to the browser. As on the server side, source
HTML contains placeholders where data is to be inserted (and possibly other render-
ing instructions). This client-side template is used as a basis for stamping out new
views in the client. It’s not template HTML for a complete page, though. It’s for only
the portion of the page the view represents.

 The heavy lifting of routing to the correct view, combining data with the HTML
template, and managing a view’s lifecycle is typically delegated to a third-party Java-
Script file commonly referred to as an MV* framework (sometimes called an SPA frame-
work). Chapter 2 covers templates and MV* frameworks in detail.

1.1.3 Server transactions

In an SPA, several approaches can be used to render data from the server. These
include server-side partial rendering, in which snippets of HTML are combined with
data in the server’s response. This book focuses on an alternative approach, in which
rendering is done on the client and only data is sent and received during business
transactions. This is always done asynchronously via the XHR API. The data-exchange
format is typically JavaScript Object Notation (JSON), though it doesn’t have to be.
Even using client-side rendering, though, the server still plays a vital role in the SPA.
Chapter 7 reviews the role of the server in more detail.

 Even if you’re already using a server-side design pattern such as Model-View-Con-
troller (MVC) to separate views, data, and logic, reconfiguring your MVC framework
for use with SPAs is relatively easy. Therefore, frameworks such as ASP.NET MVC or
Spring MVC can still be used with an SPA.
store/books/9781617292439

https://itbook.store/books/9781617292439

8 CHAPTER 1 What is a single-page application?

www.itboo
1.2 A closer look
Now that you have a bird’s-eye view of the SPA, let’s break it down a little further. Let’s
talk about what’s going on in the presentation layer now that it’s moved to the
browser. Because upcoming chapters provide more detail, I’ll keep this discussion at a
high level.

1.2.1 An SPA starts with a shell

The single-page part of the SPA refers to the initial HTML file, or shell. This single HTML
file is loaded once and only once, and it serves as the starting point for the rest of the
application. This is the only full browser load that happens in an SPA. Subsequent por-
tions of the application are loaded dynamically and independently of the shell, with-
out a full-page reload, giving the user the perception that the page has changed.

 Typically, the shell is minimal in structure and often contains a single, empty DIV tag
that will house the rest of the application’s content (see figure 1.3). You can think of this
shell HTML file as the mother ship and the initial container DIV as the docking bay.

 The code for the shell has some of the basic starting elements of a traditional web
page, such as a HEAD and BODY. The following listing illustrates a basic shell file.

<!DOCTYPE html>
<html>
<head>
 <title>Shell Example</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <div id="container"></div>
</body>
</html>

Listing 1.1 Example SPA shell

Shell starts empty

Title

Figure 1.3 The HTML shell is the beginning structure. It has no content yet, only an
empty DIV tag.

Load the application’s style sheets

Initial container DIV
k.store/books/9781617292439

https://itbook.store/books/9781617292439

9A closer look

www.itbook.
The initial container DIV can have
child containers beneath it if the
application’s viewable area is divided
into subsections. The child contain-
ers are often referred to as regions,
because they’re used to visually
divide the screen into logical zones
(see figure 1.4).

 Regions help you divide the view-
able area into manageable chunks of
content. The region container DIV is
where you tell the MV* framework to
insert dynamic content. It’s worth
noting, though, that other paradigms are used by frameworks not covered in this
book. React, for example, uses DOM patching rather than the replacement of particu-
lar regions.

1.2.2 From traditional pages to views

The “pages” of the application aren’t pages at all, at least not in the traditional sense.
As the user navigates, the parts of the screen that appear to be pages are actually inde-
pendent sections of the application’s content, called views. Chapter 2 covers views in
detail. For now, it’s enough to know that the view is a portion of the application that
the end user sees and interacts with.

 Imagining the difference between the average web page and the view of an SPA can
be difficult. To help you visualize the difference, take a look at the following figures.
Figure 1.5 shows a simple website composed of two web pages. As you can see, both
web pages of the traditional site contain the complete HTML structure, including the
HEAD and BODY tags.

Title

Header region Header view

Sidebar region

Sidebar view View 1

Content region

Figure 1.4 Subsections of the shell are called
regions. A region’s content is provided by a view.

page1.html

<!DOCTYPE html>
<html>
<head>
 <title>Page 1</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <h1>page 1</h1>
</body>
</html>

page2.html

<!DOCTYPE html>
<html>
<head>
 <title>Page 2</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <h1>page 2</h1>
</body>
</html>

Figure 1.5 In traditional
site design, each HTML
file is a complete HTML
page.
store/books/9781617292439

https://itbook.store/books/9781617292439

10 CHAPTER 1 What is a single-page application?

www.itboo
Figure 1.6 shows the same website as an SPA. The SPA “pages” are only HTML frag-
ments. If the content of the viewable area of the screen changes, that’s the equivalent
of changing pages in a traditional website.

 When the application starts, the MV* framework inserts view 1. When the user nav-
igates to what appears to be a new page, the framework is swapping view 1 for view 2.
Chapter 4 covers SPA navigation in detail.

1.2.3 The birth of a view

If sections (or views) of the application aren’t part of the initial shell, how do they
become part of the application? As mentioned previously, the various sections of the
SPA are presented on demand, usually as a result of user navigation. The skeletal
HTML structure of each section, called a template, contains placeholders for data.
JavaScript-based libraries and frameworks, commonly referred to as MV*, are used to
marry data and at least one template. This marriage ultimately results in the final view
(see figure 1.7). All the screen’s content beyond the shell gets placed into separate
views.

shell.html

<!DOCTYPE html>
<html>
<head>
 <title>Shell</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <div id="container"></div>
</body>
</html>

View 1

<div id=”p1">
 <h1> page 1</h1>
</div>

View 2

<div id=”p2">
 <h1> page 2</h1>
</div>

Figure 1.6 In an SPA design, one complete HTML file contains placeholders for the HTML
fragments stored in view files.

Server Data Template View

{"firstName":"Karen",
"lastName":"Tate"}

+

<div>
 First Name: {{firstName}}

 Last Name: {{lastName}}
</div>

First Name: Karen
Last Name: Tate=

Figure 1.7 A view is the marriage of data and one or more templates.
k.store/books/9781617292439

https://itbook.store/books/9781617292439

11A closer look

www.itbook.
The completed view is attached to the DOM, as needed, either directly under the ini-
tial container DIV, as illustrated in figure 1.8, or in one of the regions if there are any.

1.2.4 View swapping for zero reload navigation

All of this happens without having to refresh the shell. So instead of getting served a
new static page for every navigation request, the SPA can display new content without
a disruption for the user. For a particular part of the screen, content of one view is
merely replaced by the content of another view. This gives the illusion that the page
itself is changing as the user navigates (see figure 1.9). Navigation without a reload is a
key feature of the single-page application that gives it the feel of a native application.

shell.html

<body>
 <div id="container">

 </div

</body>

View

<div>
 First Name: Karen
 Last Name: Tate

</div>

Figure 1.8 Views are
attached to the DOM
dynamically, usually as a
result of user navigation,
beneath the initial container
DIV or one of its regions.

shell.html
View 1

<div id=”p1">
 <h1> page 1</h1>
</div>

View 2

<div id=”p2">
 <h1> page 2</h1>
</div>

MV* library/framework

<!DOCTYPE html>
<html>
<head>
 <title>Shell</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <div id="container"></div>
</body>
</html>

Figure 1.9 Views in an SPA are seamlessly swapped (through DOM manipulation) for a given area of
the screen, giving the user a more desktop-like feel.
store/books/9781617292439

https://itbook.store/books/9781617292439

12 CHAPTER 1 What is a single-page application?

www.itboo
The interesting thing about navigation in an SPA is that, to the user, it looks like the
page is changing. The URL will look different, and even the Back button can be used
to take the user to the previous “page.”

 Keep in mind that the heavy lifting of creating and managing the views in the cli-
ent is handled by MV* frameworks. In chapter 2, you’ll dissect their various parts to get
an even clearer picture.

1.2.5 Fluidity through dynamic updates

Another defining aspect of the SPA is how data from the server can be retrieved asyn-
chronously and inserted dynamically into the application. So not only does the page
not reload during navigation, it also doesn’t reload while requesting and receiving
server data. This, too, gives the appearance and feel of a native application. The tech-
niques of AJAX make this all possible. I began this chapter by talking about the natural
evolution of web development and how AJAX played a pivotal role in the development
of the SPA concept. So I’d be remiss if I didn’t include AJAX as part of the SPA definition.

 Previously, I explained in great detail how the page, or view, is swapped dynamically
during navigation. Domain data from the server, or from cache, can also be added and
removed in the same fashion. The retrieval of the data, which happens silently in the
background, can happen in parallel with other data requests. After the data is fetched,
it’s combined with the HTML template, and the view is updated in real time. The ability
to update the page right in front of the user’s eyes without even as much as a flicker
gives the application a certain fluidity and sleekness that can’t be attained with a tradi-
tional web application. Chapter 7 covers accessing data in greater detail.

1.3 Benefits of SPAs over traditional web applications
The web browser is still a great way to distribute software because of its “thinness,”
ubiquity, and standardized environment. End users will already have a web browser.
It’s also great for software updates, because the updates happen on the server instead
of users having to worry about the installation process. Unfortunately, jarring, full-
page reloads, content being duplicated with every request, and heavy transaction pay-
loads have all diminished the benefits of browser-delivered content.

 Web-based customer interactions are far from over, though. Just the opposite is
true, and SPAs are at the forefront of this user-experience revolution. The idea of the
single-page application was born out of our desire to give end users the best experi-
ence possible. Here are some reasons you should consider single-page application
architecture:

■ Renders like a desktop application, but runs in a browser—The SPA has the ability to
redraw portions of the screen dynamically, and the user sees the update
instantly. Because the SPA downloads the web-page structure in advance, there’s
no need for the disruptive request to get a new page from the server. This is
similar to the experience a user would get from a native desktop application;
k.store/books/9781617292439

https://itbook.store/books/9781617292439

13Benefits of SPAs over traditional web applications

www.itbook.
therefore, it “feels” more natural. An advantage over even the desktop applica-
tion, the SPA runs in the browser, making its native-like, browser-based environ-
ment the best of both worlds.

■ Decoupled presentation layer—As mentioned previously, the code that governs how
the UI appears and how it behaves is kept on the client side instead of the
server. This leaves both server and client as decoupled as possible. The benefit
here is that each can be maintained and updated separately.

■ Faster, lightweight transaction payloads—Transactions with the server are lighter
and faster, because after initial delivery, only data is sent and received from the
server. Traditional applications have the overhead of having to respond with the
next page’s content. Because the entire page is re-rendered, the content
returned in traditional applications also includes HTML markup. Asynchro-
nous, data-only transactions make the operational aspect of this architecture
extremely fast.

■ Less user wait time—In today’s web-centric world, the less time a user has to wait
for the page to load, the more likely the person is to stay on the site and return
in the future. Because the SPA loads with a shell and a small number of support-
ing files and then builds as the user navigates, application startup is perceived
as being quick. As the previous points state, screens render quickly and
smoothly, and transactions are lightweight and fast. These characteristics all
lead to less user wait time. Performance isn’t just a nice-to-have. It equates to
real dollars when online commerce is involved. A study by Walmart that was
published in Web Performance Today1 indicated that for every 100 ms of perfor-
mance improvement, incremental revenue grew by up to 1%. In Walmart
terms, that’s huge.

■ Easier code maintenance—Software developers are always looking for better ways
to develop and maintain their code base. Traditionally, web applications are a
bit of a Wild West kind of environment, where HTML, JavaScript, and CSS can
be intertwined into a maintenance nightmare. Add in the ability to combine
server-side code with the HTML source (think Active Server Pages or JavaServer
Pages scriptlets) and you’ve got a giant, steaming pile of goo. As you’ll see in
upcoming chapters, MV* frameworks like the ones covered in this book help us
separate our code into different areas of concern. JavaScript code is kept where
it needs to be—out of the HTML and in distinct units. With the help of third-
party libraries and frameworks (for example, Knockout, Backbone.js, and
AngularJS), the HTML structure for an area of the screen and its data can be
maintained separately. The amount of coupling between the client and the
server is dramatically reduced as well.

1 www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-
business-metrics-at-walmart-com
store/books/9781617292439

www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com
www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com
https://itbook.store/books/9781617292439

14 CHAPTER 1 What is a single-page application?

www.itboo
1.4 Rethinking what you already know
In a single-page web application, you use the
same languages that you normally use when
creating a web application: HTML, CSS, and
JavaScript. There’s no browser plugin
required and no magic SPA language to learn.
HTML and CSS continue to be the primary
building blocks for the UI’s structure and lay-
out, whereas JavaScript is still the cornerstone
for interactivity and UI logic (see figure 1.10).

 The difference to the user is in how the
application will feel using SPA architecture.
The navigation feels more like a native desk-
top application, delivering a smoother, more
enjoyable experience. This difference for you,
the developer, is that to create an application
that functions within a single HTML page, you’ll need to rethink your normal
approach to web development.

 As mentioned in the previous section, in an SPA, the application is broken into
independent sections, or views. So you’ll no longer create entire pages in which com-
mon elements, such as a header or a main menu, are repeated. Even the common sec-
tions are views in an SPA. You’ll also have to stop thinking about the layout of
individual pages and start thinking in terms of view placement in the available real
estate of the screen. As it turns out, this is easy after you get the hang of it. Global lay-
out areas, such as a main menu, remain fixed throughout the user experience. Shared
areas of the screen, such as the center content well, are reused by the application to
swap the various views (as well as entire regions) during user navigation.

 To the end user, though, the application can look exactly like a traditional web
application. As figure 1.11 illustrates, it can have a header, a sidebar, or any other typi-
cal web-page element.

SPA client

CSS:
styles and layout

JavaScript:
behavior

HTML:
structure

Figure 1.10 CSS, HTML, and JavaScript
are the building blocks for the single-page
application. There’s no special language to
learn and no browser plugins required.

Header region

Header view

Content region

Content view 1

Sidebar
region

Menu
view

Figure 1.11 Using
regions, an SPA’s
views can be placed
so that it looks
exactly like a
traditional web page.
k.store/books/9781617292439

https://itbook.store/books/9781617292439

15Ingredients of a well-designed SPA

www.itbook.
On the JavaScript side, you’ll continue to code as you normally would, with one major
exception. Because you’re dealing with a single page that doesn’t refresh, simple
global scope for variables and functions won’t suffice. You’ll divide your code into
workable units and house it in special functions called modules that have their own
scope. This frees you from having to create all your variables and functions in the
global namespace.

 Communication with the server in an SPA is via AJAX. Though the name implies
XML, most modern SPAs use AJAX techniques but use JSON as the preferred data-
exchange format. It’s an ideal format for the SPA because it’s lightweight and com-
pact, and its syntax is well-suited for describing object structure. But AJAX should be
nothing new to most developers. Even traditional web applications typically use at
least some AJAX.

 Your overall design will revolve around keeping all the SPA code easily manageable
and decoupled from other areas of concern. But don’t worry about any extra complex-
ity. Once you get the hang of the unusual syntax of the module pattern, your life as a
developer will get easier. I present modular programming in detail later in the book
and use variants of the module design pattern in all the examples. So no worries—
you’ll see it so much that by the end of the book it’ll be second nature to you!

1.5 Ingredients of a well-designed SPA
If you researched the topic of single-page applications before picking up this book,
you may have felt a little overwhelmed at your choices. As you’ve seen so far, the SPA
isn’t a single technology. It’s a federation of technologies that work together to create
the finished product. There are almost as many libraries and frameworks as there are
opinions about the correct approach to take. So admittedly, trying to find the pieces
of the puzzle that not only fit together but also fit the needs of your project and the
preferences of your team can be rather daunting.

 The good news is that there’s a method to the madness. If you look at the single-
page application concept as a whole, it can be broken into a list of categories that can
fit any style of solution you adopt as your own.

1.5.1 Organizing your project

Having a well-organized project isn’t complicated, but it does require some thought
and shouldn’t be taken for granted. Fortunately, no hard-and-fast rules apply to direc-
tory structures. The general rule of thumb is that you should use whatever style works
for the development team. A couple of common ways to organize your files are by fea-
ture and by functionality.

 Grouping similar files by feature is somewhat akin to organizing code in a com-
piled language, such as Java, into packages. It’s clean, discourages the cross-referenc-
ing of features, and visually segments files related to a particular feature within the
project’s file structure. The following listing illustrates how the client code for an
application might be arranged using this style.
store/books/9781617292439

https://itbook.store/books/9781617292439

Featur
the applica

beco
second

fo

Imag

Top-l
folde
HTML
JS con

www.itboo
16 CHAPTER 1 What is a single-page application?

|-- app
| |-- foo
| | |-- modules
| | | |-- someModule.js
| | |-- views
| | | |-- someView.html
| |-- bar
| | |-- modules
| | | |-- someModule.js
| | |-- views
| | | |-- someView.html
|-- common
|-- css
|-- images
|-- thirdParty
|-- app.js
|-- index.html
|-- main.js

A modified version of the by feature directory structure was proposed in the AngularJS
style guide.2 It favors a simplified version of listing 1.2, which eliminates the named
functionality folders under each feature. The blog entry is a good read and has several
variations based on the size and complexity of the application; the gist of the structure
is specified in the following listing. In this version, boundaries are removed from the
various file types within a feature. The style guide argues that this simpler version still
groups things by feature but is more readable and creates a more standardized struc-
ture for AngularJS tools.

|-- app
| |-- components
| | |-- foo
| | | |-- someModule.js
| | | |-- someDirective.js
| | | |-- someView.html

Alternatively, you and your development team might elect to organize the project by
functionality (see listing 1.4). This is perfectly acceptable as well. Most SPA libraries
and frameworks aren’t that opinionated when it comes to directory structure. The
choices come down to preference. If you do choose to organize your directory by
functionality, it’s still a good idea to include the name of the feature as a subfolder
under the functionality. Otherwise, under each functionality folder, you’ll end up

Listing 1.2 Sample directory structure (by feature)

2 http://blog.angularjs.org/2014/02/an-angularjs-style-guide-and-best.html or http://angularjs.blogspot.co
.uk/2014/02/an-angularjs-style-guide-and-best.html

Listing 1.3 Simplified “by feature” directory structure

Top-level folder for
HTML and JS contentes of

tion
me a
-tier
lder

Modules for each
feature contain JS code

Views for each feature
contain HTML fragments

Can be used for
application-wide JS
modules, such as utilities

Typical folder for style sheets
e files

JS files not created in-house, such
as the jQuery library and the MV*
framework you decide to use

evel
r for
 and
tent

Second-tier “components”
directory to group features

Feature-related
files grouped under
feature folder
k.store/books/9781617292439

http://blog.angularjs.org/2014/02/an-angularjs-style-guide-and-best.html
http://angularjs.blogspot.co.uk/2014/02/an-angularjs-style-guide-and-best.html
http://angularjs.blogspot.co.uk/2014/02/an-angularjs-style-guide-and-best.html
https://itbook.store/books/9781617292439

17Ingredients of a well-designed SPA

Module
each fea

con
JS c

www.itbook.
having many unrelated files together. That might be all right for smaller applications,
but for large applications, this leads to a sort of “junk drawer” effect.

|-- app
| |-- modules
| | | -- foo
| | | |-- someModule.js
| | | -- bar
| | | |-- someModule.js
| |-- views
| | | -- foo
| | | |-- someView.html
| | | -- bar
| | | |-- someView.html

The preceding two listings are pretty basic, to give you the idea. The size of the appli-
cation, architecture choices, and personal preferences also influence the types of fold-
ers used and their names. The term modules might be labeled js or scripts. Instead of
views, you might choose templates. Even the type of framework you incorporate might
influence the way you choose to create your directory structure. If you’re creating an
AngularJS project, for example, you might also have other folders such as controllers,
directives, and services.

 However you choose to stack it, having an agreed-upon file structure and sticking to
that organizational model will greatly enhance your chances for a successful project.

1.5.2 Creating a maintainable, loosely coupled UI

Having clean, organized JavaScript code is a step in the right direction for building
scalable, maintainable single-page applications. Layering the code so that the Java-
Script and HTML can be as loosely coupled as possible is another tremendous step.
This approach still allows HTML and JavaScript to interact but removes the need for
direct references in the code.

 How are these separate layers achieved? Enter MV* patterns. Patterns to separate
data, logic, and the UI’s view have been around for years. Some of the most notable
ones are Model-View-Controller (MVC), Model-View-Presenter (MVP), and Model-
View-ViewModel (MVVM). In recent years, these patterns have begun appearing in the
form of JavaScript libraries and frameworks to help apply these same concepts to the
front end of web applications. The basic idea is that a framework or library, outside
your own logic, manages the relationship between the JavaScript and the HTML. The
MV* libraries and frameworks allow you to design the UI such that domain data (the
model) and the resulting HTML “page” the user interacts with (the view) can commu-
nicate but are maintained separately in code. The last component of the MV* pattern,
the controller or ViewModel or presenter, acts as the orchestrator of all this.

Listing 1.4 Sample directory structure (by functionality)

Top-level folder for
HTML and JS contents for

ture
tain
ode

All modules together,
categorized by feature

All views together,
categorized by feature
store/books/9781617292439

https://itbook.store/books/9781617292439

18 CHAPTER 1 What is a single-page application?

www.itboo
Keeping the view, logic, and data separated, as in figure 1.12, is an effective tool in the
design of a single-page application.

 Achieving this level of separation in your SPA has the following advantages:

■ Designers and developers can more effectively collaborate. When the view is
void of logic, each resource can work in parallel toward the same goal without
stepping on each other’s toes.

■ Separate view and logic layers can also help developers create cleaner unit tests,
because they have to worry about only the nonvisual aspect of a feature.

■ Separate layers help with maintenance and deployments. Isolated code can
more easily be changed without affecting other parts of the application.

It’s OK if this facet of SPA development still seems a little murky at this point. This is
one of the harder concepts to grasp. Don’t worry, though. Chapter 2 covers the MV*
patterns thoroughly.

1.5.3 Using JavaScript modules

Having an elegant way of allowing all your JavaScript code to coexist harmoniously in
the same browser page is a necessity in an SPA. You can achieve this by placing the func-
tionality of your application into modules. Modules are a way to group together distinct
pieces of functionality, hiding some parts while exposing others. In the ECMAScript 6
version of JavaScript, modules will be supported natively. Meanwhile, various patterns,
such as the module pattern, have emerged that you can use as a fallback.

 In a traditional web application, whenever the page is reloaded, it’s like getting a
clean slate. All the previous JavaScript objects that were created get wiped away, and
objects for the new page are created. This not only frees memory for the new page but
also ensures that the names of a page’s functions and variables don’t have any chance
of conflicting with those of another page. This isn’t the case with a single-page applica-
tion. Having a single page means that you don’t wipe the slate clean every time the
user requests a new view. Modules help you remedy this dilemma.

 The module limits the scope of your code. Variables and functions defined within
each module have a scope that’s local to its containing structure (see figure 1.13).

MV* library/framework

Views DataPresentation logic
Figure 1.12 Keeping the
presentation layers
segregated based on their
purpose allows designers
and developers to work in
parallel. It also allows
developers to test,
maintain, and deploy code
more effectively.
k.store/books/9781617292439

https://itbook.store/books/9781617292439

19Ingredients of a well-designed SPA

www.itbook.
The module pattern, combined with other techniques to manage modules and their
dependencies, gives programmers a practical way to design large, robust web applica-
tions with single-page architecture.

 This book covers the topic of modular programming with JavaScript quite exten-
sively. Chapter 3 provides an introduction. You’ll also explore the topic of script load-
ers, which help manage the modules and their dependencies. Throughout the entire
book, you’ll rely on the module pattern to help build your examples.

1.5.4 Performing SPA navigation

Chapter 4 provides an in-depth look at client-side routing. To give users the feeling
that they’re navigating somewhere, single-page applications normally incorporate the
idea of routing in their design: JavaScript code, either in the MV* framework or via a
third-party library, associates a URL-style path with functionality. The paths usually
look like relative URLs and serve as catalysts for arriving at a particular view as the user
navigates through the application. Routers can dynamically update the browser’s URL,
as well as allow users to use the Forward and Back buttons. This further promotes the
idea that a new destination is reached when part of the screen changes.

1.5.5 Creating view composition and layout

In a single-page application, the UI is constructed with views instead of new pages.
The creation of content regions and the placement of views within those regions
determine your application’s layout. Client-side routing is used to connect the dots.
All of these elements come together to impact both the application’s usability and its
aesthetic appeal.

 In chapter 5, you’ll look at how to approach view composition and layout in an
SPA, tackling both simple and complex designs.

Without modules With modules

All variables
and functions

Variables
and

functions Variables
and

functions

Variables
and

functions

Variables
and

functions

Variables
and

functions

Global
scope

Confined
scope

Figure 1.13 Using the module pattern limits the scope of variables and functions to the module itself.
This helps avoid many of the pitfalls associated with global scope in a single-page application.
store/books/9781617292439

https://itbook.store/books/9781617292439

20 CHAPTER 1 What is a single-page application?

www.itboo
1.5.6 Enabling module communication

Modules encapsulate our logic and provide individual units of work. Although this
helps decouple and privatize our code, we still need a way for modules to communi-
cate with each other. In chapter 6, you’ll learn the basic ways in which modules com-
municate. In doing so, you’ll also learn about a design pattern called pub/sub, which
allows one module to broadcast messages to other modules.

1.5.7 Communicating with the server

I began our definition of a single-page application by discussing the metamorphosis
that web pages have undergone since the introduction of the XMLHttpRequest API.
The collection of techniques, called AJAX, that revolve around this API is at the heart
of the SPA. The ability to asynchronously fetch data and repaint portions of the screen
is a staple of single-page architecture. After all, in an SPA we create the illusion for
users that, as they navigate, the screen is somehow changing smoothly and effortlessly.
So what would this feat of showmanship by the application be without the ability to
acquire data for our users?

 Chapter 7 focuses on using our MV* frameworks to make calls to our server. You’ll
see how these frameworks abstract away a lot of the boilerplate code used in making
requests and processing results. In doing so, you’ll learn about something called a
promise and a style of web service called a RESTful service.

1.5.8 Performing unit testing

An important but overlooked part of designing a successful single-page application is
testing your JavaScript code. We test our back-end code to smithereens. Unfortu-
nately, JavaScript unit tests aren’t always performed so religiously. Today, many good
unit-testing libraries are available. In chapter 8, you’ll get an introduction to basic
JavaScript unit testing with a framework called QUnit.

1.5.9 Using client-side automation

In chapter 9, you’ll learn about using client-side automation not only to create a build
process for your SPA but also to automate common development tasks.

1.6 Summary
Here’s a quick recap of what you’ve learned about SPAs so far:

■ SPAs are an approach to web development in which the entire application is
housed in a single page.

■ In an SPA, no full-page refreshes occur after the application loads. Instead, pre-
sentation logic is loaded up front and presented in terms of view swapping
within content regions.

■ SPAs communicate with the server asynchronously. Often the data format used
in this communication is JSON-formatted text.
k.store/books/9781617292439

https://itbook.store/books/9781617292439

21Summary

www.itbook.
■ MV* frameworks provide the mechanism used by SPAs to marry data from our
server requests with the views the user sees and interacts with. There are alter-
natives to MV* not covered in the book, particularly when using technologies
such as React or Web Components.

■ Instead of relying on global variables and functions, the JavaScript code in an
SPA is organized using modules. Modules provide state and/or data encapsula-
tion. They also help code stay decoupled and more easily maintained.

■ Some of the benefits of an SPA include a desktop-like feel, a decoupled presen-
tation layer, faster and lighter payloads, less user wait time, and easier code
maintenance.
store/books/9781617292439

https://itbook.store/books/9781617292439

Emmit A. Scott, Jr.

T
he next step in the development of web-based software,
single-page web applications deliver the sleekness and
fl uidity of a native desktop application in a browser. If

you’re ready to make the leap from traditional web applica-
tions to SPAs, but don’t know where to begin, this book will
get you going.

SPA Design and Architecture teaches you the design and devel-
opment skills you need to create SPAs. You’ll start with an
introduction to the SPA model and see how it builds on the
standard approach using linked pages. The author guides you
through the practical issues of building an SPA, including an
overview of MV* frameworks, unit testing, routing, layout
management, data access, pub/sub, and client-side task auto-
mation. This book is full of easy-to-follow examples you can
apply to the library or framework of your choice.

What’s Inside
● Working with modular JavaScript
● Understanding MV* frameworks
● Layout management
● Client-side task automation
● Testing SPAs

This book assumes you are a web developer and know
JavaScript basics.

Emmit Scott is a senior software engineer and architect with
experience building large-scale, web-based applications.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/spa-design-and-architecture

$49.99 / Can $57.99 [INCLUDING eBOOK]

SPA Design and Architecture

WEB DEVELOPMENT

M A N N I N G

“Takes a very complex
topic and breaks it down
into easily understandable
 and digestible pieces.”

—From the Foreword by
Burke Holland, Telerik

“A great resource for this
 hot development topic.”—Bruno Sonnino

Revolution Software

“Gives a crystal-clear,
multi-faceted, and well-

structured presentation of
what state-of-the-art SPAs are.

I highly recommend it!”
—Alain Couniot, STIB-MIVB

“The code examples are
detailed, informative,

and practical. They provide
a real-world context

 to the topic.”—John Shea, Endicott College

SEE INSERT

www.itbook.store/books/9781617292439

https://itbook.store/books/9781617292439

	Scott-SPA-frontSC
	SampleChapterPages
	SCCh-01
	Scott-SPA-ebook-back

