
SAMPLE CHAPTER

www.itbook.store/books/9781617292460

https://itbook.store/books/9781617292460

Reactive Application Development
by Duncan DeVore, Sean Walsh and Brian Hanafee

Sample Chapter 2

Copyright 2018 Manning Publications

www.itbook.store/books/9781617292460

https://itbook.store/books/9781617292460

brief contents
PART 1 FUNDAMENTALS ... 1

1 ■ What is a reactive application? 3
2 ■ Getting started with Akka 29
3 ■ Understanding Akka 54

PART 2 BUILDING A REACTIVE APPLICATION 85
4 ■ Mapping from domain to toolkit 87
5 ■ Domain-driven design 116
6 ■ Using remote actors 138
7 ■ Reactive streaming 164
8 ■ CQRS and Event Sourcing 181
9 ■ A reactive interface 209

10 ■ Production readiness 227

www.itbook.store/books/9781617292460

https://itbook.store/books/9781617292460

www.itbook.store
Getting started with Akka
You understand from chapter 1 the tenets of reactive design, but haven’t yet seen
them in practice. This chapter changes that situation. In this chapter, you build a
simple reactive system by using the actor model that was introduced in chapter 1.
The actor model is one of the most common reactive patterns. Actors can send and
receive messages, make local decisions, create new actors, and do all that asynchro-
nously and without locks. You build the example in this chapter with the Akka tool-
kit, which you also saw previously. Akka is a powerful system for creating and
running actors. It’s written in the Scala language, and the examples in this chapter
are also written in Scala. Chapters 3 and 4 explain Akka in more depth.

 The system you build consists of two actors passing messages to each other; you
can use the same skills to create much larger applications. Next, you’ll learn to
scale the system horizontally by adding more copies of one of the actors. Finally,

This chapter covers
 Building an actor system

 Distributing and scaling horizontally

 Applying reactive principles
29

/books/9781617292460

http://www.scala-sbt.org
https://itbook.store/books/9781617292460

30 CHAPTER 2 Getting started with Akka

www.itbook
you’ll see how this approach produces a system that’s both message-driven and
elastic—two of the four reactive properties from the Reactive Manifesto.

2.1 Understanding messages and actors
Reactive systems are message-driven, so it comes as no surprise that messages play a
key role. Actors and messages are the building blocks of an actor system. An actor
receives a message and does something in response to it. That something might
include performing a computation, updating internal state, sending more messages,
or perhaps initiating some I/O.

 Much the same could be said of an ordinary function call. To understand what an
actor is, it’s useful first to consider some of the problems that can arise from an ordinary
function call. A function accepts some input parameters, performs some processing,
and returns a value. The processing may be quick or could take a long time. However
long the processing takes, the caller is blocked while waiting for the return value.

2.1.1 Moving from functions to actors

If a function includes an I/O operation, control of the processor core most likely is
handed off to another thread while the caller is waiting for a response. The caller
won’t be able to continue processing until the I/O operation is complete and the
scheduler hands control back to the original processing thread, as shown in figure
2.1. The scheduling maintains the illusion for the caller that it made a simple synchro-
nous call. What happened was that any number of other threads may have been run-
ning in the background, potentially even changing data structures referenced by the
original input parameters.

Figure 2.1 The illusion of a synchronous call can be the source of unexpected behavior.

Apparently
synchronous
call to read()

Another
thread takes
control.

Shared data
structure is
changed.

Handoff to
yet another
thread

Call returns,
unaware of
other activity

Thread 1

Thread 2

Thread 3

x = read(foo) mySet.add(x)

y = read(bar)

log.info("Hi")

mySet.remove(1)
.store/books/9781617292460

http://repo.typesafe.com/typesafe/releases/
https://itbook.store/books/9781617292460

31Understanding messages and actors

www.itbook.st
The developer may know that the function is liable to take a long time and may design
the system to accommodate thread safety and timing. Sometimes, however, the devel-
oper can’t predict the amount of time that the function requires. If the function has a
cache of recently used data in memory but must go to a database if the data isn’t in
the cache, for example, the amount of time that the function requires may vary by
many orders of magnitude from one call to the next. Ensuring that the caller and cal-
lee have the correct synchronization and thread safety without deadlocks can be
extremely difficult. If the application programming interface (API) is properly encap-
sulated, the entire implementation may be replaced by one that has different charac-
teristics. An excellent design around the original characteristics could become an
inappropriate design with respect to the replacement.

 The result is often complex code littered with exception handlers, callbacks, syn-
chronized blocks, thread pools, timeouts, mysterious tuning parameters, and bugs
that developers never seem to be able to replicate in the test environment. What all
these things have in common is that they have nothing to do with the business
domain. Rather, they’re aspects of the computing domain imposing themselves on the
application.

 The actor model pushes these concerns out of the business domain and into the
actor system.

ACTORS ARE ASYNCHRONOUS MESSAGE HANDLERS

The simplified view of an actor shown in figure 2.2 is a receive function that accepts a
message and produces no return value; it processes each message as each message is
received from the actor system. The actor system manages a mailbox of messages
addressed to the actor, ensuring that the actor has to process only one message at a
time. An important consequence of this design is that the sender never calls the actor
directly. Instead, the sender addresses a message to the actor and hands it to the actor
system for delivery.

Figure 2.2 The sender obtains a reference to address messages to the actor through the actor system.

Sender may be anything,
but usually another actor.

Messages are fully
self-contained and
immutable.

receive
Actor has a
 function.

Mailbox is a queue
of messages waiting
to be processed.

Sender Actor

Mailbox

Actor system
ore/books/9781617292460

https://itbook.store/books/9781617292460

32 CHAPTER 2 Getting started with Akka

www.itbook
Actors remove many of the problems of function calls by abandoning the illusion that
everything is synchronous. Instead, actors take the approach that everything is one-
way and asynchronous. The underlying system takes responsibility for delivering the
message to the receiving actor, immediately or some time later. An actor receives a
new message only when it’s ready to process that message. Until then, the actor system
holds on to the message. The sender may proceed immediately to other tasks rather
than wait for a response that may come some time later or perhaps not at all. If the
receiving actor has a response for the sender, that response is handled with another
asynchronous message.

TIP Senders never call actors directly. All interactions between senders and
actors are mediated by the actor system.

MESSAGES ARE SELF-CONTAINED AND IMMUTABLE

As messages are passed among actors, they may move to an actor system on a different
server. Messages must be designed so that they can be copied from one system to
another, which means that all the information has to be contained within the message
itself. Messages can’t include references to data outside the message. Sometimes, a
message doesn’t make it to the destination and must be sent again. In chapter 4, you
learn that the same message may be broadcast to more than one actor.

 For this process to work, a message must be immutable. When it’s sent, it’s read-only
and can’t be allowed to change. If the message did change after being sent, there’d be
no way to know whether the change happened before or after it was received, or per-
haps while it was being processed by another actor. If the message happened to have
been sent to an actor on another server, the change may have been made before or
after it was transmitted, and there’d be no way to know. Worse, if the message had to
be sent more than once, some copies of the message may include the change, and
some may not. Immutable messages make all those worries go away.

2.1.2 Modeling the domain with actors and messages

Actors should correspond to real things in the domain model. The example in this
chapter consists of a tourist who has an inquiry about a country and a guidebook that
provides guidance to the tourist.

 The example actor system is shown in figure 2.3. The system contains two actors: a
tourist and a guidebook. The tourist sends an inquiry message to the guidebook, and the
guidebook sends guidance messages back to the tourist. Messages are one-way affairs,
so the inquiry and the guidance are defined as separate messages. As in real life, the
tourist must be prepared to receive no guidance, a single guidance message, or even
multiple guidance messages in response to a single inquiry. (The tourist in the exam-
ple can receive multiple guidance messages, but deciding what to believe would be
the subject of a different book.)
.store/books/9781617292460

https://itbook.store/books/9781617292460

33Understanding messages and actors

www.itbook.st

Figure 2.3 The tourist actor sends inquiry messages to the guidebook. The
guidebook actor responds with guidance messages returned to the tourist actor.

2.1.3 Defining the messages

You know already that messages are self-contained and immutable, and now you’ve
identified some messages that are needed for the example. In Scala, case classes pro-
vide an easy way to implement messages. The example messages, shown in listing 2.1,
define a case class for each message. The definitions follow the convention that mes-
sages are defined in the companion object to the actor that receives the message. The
Guidebook actor receives Inquiry messages that include a String for the country
code that’s being inquired about. The Tourist actor receives Guidance messages,
which contain the original country code and a description of the country. The origi-
nal country code is included in the guidance so that the information in the message is
fully self-contained. Otherwise, there’d be no way to correlate which guidance goes
with which inquiry. Finally, the Start message is used later to tell the Tourist actor
to start sending inquiries.

Scala case classes
For readers who aren’t familiar with Scala, a case class is defined by a class name
and some parameters. By default, instances of a case class are immutable. Each
parameter corresponds to a read-only value that’s passed to the constructor. The
compiler takes care of generating the rest of the boilerplate for you. The concise
Scala definition

case class Inquiry(code: String)

produces a class equivalent in Java:

public class Inquiry {
 private final String code;

The tourist actor
sends inquiry
messages.

The guidebook actor
responds with
guidance messages.

Inquiry

Guidance

Tourist Guidebook
ore/books/9781617292460

https://itbook.store/books/9781617292460

34 CHAPTER 2 Getting started with Akka

www.itbook

object Guidebook {
 case class Inquiry(code: String)
}
object Tourist {
 case class Guidance(code: String, description: String)
 case class Start(codes: Seq[String])
}

Now that the messages are defined, it’s time to move on to the actors.

2.1.4 Defining the actors

The example requires a Tourist actor and a Guidebook actor. Most of the behavior
of an actor is provided by extending the akka.actor.Actor trait. One thing that
can’t be built into the actor trait is what to do when a message is received, because that
behavior is specific to the application. You provide that behavior by implementing the
abstract receive method.

THE TOURIST ACTOR

As shown in listing 2.2, the receive method on the Tourist defines cases to handle
the two types of message expected by the Tourist. In response to a Start message, it
extracts codes and sends an Inquiry message to the Guidebook actor for each one it
finds. It also receives Guidance messages, which it handles by printing the code and
description to the console.

 The Tourist needs to address messages to the Guidebook, but actors never keep
direct references to other actors. Notice that the Guidebook is passed to the construc-
tor as an ActorRef, not an Actor. An ActorRef is a reference to an actor. Because an
actor may be on a different server, having a direct reference isn’t always possible. In
addition, actor instances may come and go over the lifetime of the actor system. The

(continued)
 public Inquiry(String code) {
 this.code = code;
 }

 public String getCode() {
 return this.code;
 }

 // …more methods are generated automatically
}

Case classes generate more than the getters. They automatically include correct
equality, hash codes, a human-friendly toString, a copy method, a companion
object, support for pattern matching, and additional methods that are useful for more
advanced functional programming techniques.

Listing 2.1 Message definitions

The Inquiry and
Guidance messages are
simple case classes.

The Start message starts
the tourist sending inquiries.
.store/books/9781617292460

https://itbook.store/books/9781617292460

35Understanding messages and actors

www.itbook.st
reference provides a level of isolation that allows the actor system to manage those
events and prevents actors from directly changing the state of other actors. All com-
munication between actors must occur through messages.

import akka.actor.{Actor, ActorRef}

import Guidebook.Inquiry
import Tourist.{Guidance, Start}

class Tourist(guidebook: ActorRef) extends Actor {

 override def receive = {
 case Start(codes) =>
 codes.foreach(guidebook ! Inquiry(_))
 case Guidance(code, description) =>
 println(s"$code: $description")
 }
}

THE GUIDEBOOK ACTOR

The Guidebook in listing 2.3 is similar to the Tourist from listing 2.2. It processes one
message: an Inquiry. When it receives an inquiry, the Guidebook uses a few classes
built into the java.util package to generate a rudimentary description suitable for
the example. Then it produces a Guidance message to send back to the tourist.

 The Guidebook needs to address messages back to the tourist that sent the
inquiry. An important difference between the Guidebook and the Tourist is how
each actor acquires a reference to the other. In the Tourist, a fixed reference to the
Guidebook is provided as a parameter to the constructor. Because many Tourists
could be consulting the same Guidebook, that approach doesn’t work here. It
wouldn’t make sense to tell a Guidebook in advance about every Tourist who might

Listing 2.2 Tourist actor

The ! operator
The use of the ! operator to send messages from one actor to another may be con-
fusing the first few times you encounter it. The method is defined by the ActorRef
trait. Writing

ref ! Message(x)

is equivalent to writing

ref.!(Message(x))(self)

Both methods use the self value, which is an ActorRef provided by the Actor
trait as a reference to itself. The ! operator takes advantage of Scala infix notation
and the fact that self is declared as an implicit value.

Extracts the codes
from the message

For each code, send an inquiry
message to the guidebook by
using the ! operator.

Prints the guidance
to the console
ore/books/9781617292460

https://itbook.store/books/9781617292460

36 CHAPTER 2 Getting started with Akka

www.itbook
use it. Instead, the Guidebook sends the guidance message back to the same actor
that sent the inquiry. The sender inherited from the Actor trait provides a reference
back to the actor that sent the message. This reference can be used for simple request-
reply messaging.

NOTE Knowing that Akka is used for concurrent applications, you might
expect the sender reference to be synchronized to prevent the receive pro-
cessing for one message from inadvertently responding to the sender of
another message. As you’ll learn in chapters 3 and 4, the Akka design pre-
vents this situation from happening. For now, rest assured that you don’t
need to worry about it.

import akka.actor.Actor

import Guidebook.Inquiry
import Tourist.Guidance

import java.util.{Currency, Locale}

class Guidebook extends Actor {
 def describe(locale: Locale) =
 s"""In ${locale.getDisplayCountry},

 ➥ ${locale.getDisplayLanguage} is spoken and the currency
 ➥ is the ${Currency.getInstance(locale).getDisplayName}"""

 override def receive = {
 case Inquiry(code) =>
println(s"Actor ${self.path.name}

➥ responding to inquiry about $code")
 Locale.getAvailableLocales.
 filter(_.getCountry == code).
 foreach { locale =>
 sender ! Guidance(code, describe(locale))
 }
 }
}

Now that you have two complete actors and some messages to pass between them,
you’ll want to try it yourself. First set up your development environment to build and
run an actor system.

2.2 Setting up the example project
The examples in this book are built with sbt, which is a build tool commonly used for
Scala projects. The home page for the tool is www.scala-sbt.org; there, you can find
instructions to install the tool for your operating system. The example code is avail-
able online. You can retrieve a copy of the complete example by using the command

git clone https://github.com/ironfish/reactive-application-development-scala

Listing 2.3 Guidebook actor

Uses Java built-in
packages to produce a
rather basic description

Prints a log message
to the console

Finds every locale with a matching country
code. This implementation is rather inefficient.

Sends the guidance
back to the sender
.store/books/9781617292460

http://www.scala-sbt.org
https://itbook.store/books/9781617292460

37Setting up the example project

www.itbook.st
Figure 2.4 The layout of the sbt project follows the pattern used by other build
systems, such as Maven and Gradle.

The source code is in the chapter2_001_guidebook_demo directory. The layout of the
project is shown in figure 2.4 and is similar to that used by other build tools, such as
Maven and Gradle. The project includes source code and the following files:

 build.sbt—Contains the build instructions
 build.properties—Tells sbt which version of sbt to use

As with other modern tools, sbt prefers convention to configuration. The build.sbt file
shown in the following listing contains a project name and version, Scala version,
repository URL, and a dependency on akka-actor.

name := "Guidebook"

version := "1.0"

scalaVersion := "2.12.3"

val akkaVersion = "2.5.4"

resolvers += "Lightbend Repository" at

➥ http://repo.typesafe.com/typesafe/releases/

libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-actor" % akkaVersion
)

Listing 2.4 build.sbt

HelloRemoting build.sbt

project

src

build.properties

main.scala

Guidebook.scala

Tourist.scala

main scala

The example
was tested with
Scala 2.12.3.

Typesafe is now known as
Lightbend, but the repository at
typesafe.com is still supported.

The example was tested
with Akka 2.4.8. The %%
tells sbt to use a version
of the library that was
compiled for the version
of Scala defined above.
ore/books/9781617292460

https://itbook.store/books/9781617292460

38 CHAPTER 2 Getting started with Akka

www.itbook
The build.properties file allows sbt to use a different version of itself for each project.
The default version is available by typing

sbt about

at the console. The complete one-line file is shown in the following listing.

sbt.version=0.13.12

You’ve already seen the source code for the messages and the two actors, which
remain the same throughout this chapter. Whether the example actors are in one
actor system or spread across multiple actor systems across many servers is determined
entirely by configuration and the Main programs that drive the system. In the next
section, you run both actors in one actor system. Then you learn to scale the system by
using multiple actor systems.

2.3 Starting the actor system
Akka doesn’t require much to get started. You create the actor system and add some
actors; the Akka library does the rest. Sometimes, as shown in figure 2.5, it’s useful to

Listing 2.5 build.properties

The example was tested
with sbt 0.13.12.

The start message is sent
from outside the actor
system to begin processing.

The Tourist and Guidebook
actors belong to a single
actor system.

Inquiry

GuideSystem

Guidance

Tourist Guidebook

Start

Figure 2.5 Both the Tourist and Guidebook actors are deployed into the
same actor system. The start message is sent from outside the actor system.
.store/books/9781617292460

https://itbook.store/books/9781617292460

39Starting the actor system

www.itbook.st
get things moving by sending a first message to the system. In chapters 3 and 4, you
learn a bit more about what Akka is doing behind the scenes. To learn even more
about the internals, see Akka in Action, by Raymond Roestenburg, Rob Bakker, and
Rob Williams (Manning, 2016).

2.3.1 Creating the driver

The driver program shown in listing 2.6 does as expected: creates an actor system,
defines the actors, and sends the Start message. The definition of the actors is inter-
esting. Actor instances may come and go over the life of the actor system. The actor
system takes responsibility for creating new instances, so it needs enough information
to construct a new instance. That information is passed via Props. The steps are

1 Create a Props object that contains the class of the actor and the constructor
parameters, if any.

2 Pass the Props to the actorOf method to create a new actor and assign it a
name. This method is defined by the ActorRefFactory trait. That trait is
extended by several classes, including ActorSystem, which is used in the
example.

3 Record the ActorRef returned by actorOf. Callers don’t receive a direct ref-
erence to the new actor.

import java.util.Locale

import akka.actor.{ActorRef, ActorSystem, Props}

import Tourist.Start

object Main extends App {
 val system: ActorSystem = ActorSystem("GuideSystem")

 val guideProps: Props = Props[Guidebook]

 val guidebook: ActorRef =
 ➥ system.actorOf(guideProps, "guidebook")

 val tourProps: Props =
 ➥ Props(classOf[TouristActor], guidebook)

 val tourist: ActorRef = system.actorOf(tourProps)

 tourist ! messages.Start(Locale.getISOCountries)
}

There’s nothing special about the driver. Because it extends the App trait, it automati-
cally has a Main function, like any other Scala or Java application.

Listing 2.6 The Main driver application

Akka library

Start message
shown previously

Creates the actor
system that will
contain the actors

Props define a recipe for creating
instances of the Guidebook actor.

Creates an actor
based on the
Props, returning
a reference to
the actor

The Props for a Tourist
include a reference to
the Guidebook actor.Sends an initial message

to the tourist actor
ore/books/9781617292460

https://itbook.store/books/9781617292460

40 CHAPTER 2 Getting started with Akka

www.itbook
2.3.2 Running the driver

The output of the build is a Java Archive (JAR) file. You could use sbt to generate the
build and then use the java command to launch it, but during development, it’s eas-
ier to let sbt take care of that job too. Use

sbt run

to build and launch the application. As with nearly any framework, building the appli-
cation the first time may take a while, because the dependencies need to be down-
loaded. The sbt tool uses Apache Ivy (http://ant.apache.org/ivy) for dependency
management, and Ivy caches the dependencies locally.

 Here’s the part you’ve been waiting for: if you built everything successfully, you
should see the Guidebook printing a message for every inquiry it receives, and the
Tourist printing concise travel guidance for every country. Congratulations! You’ve
started your first actor system. A more sophisticated application would send another
message to tell the actors to shut themselves down gracefully. For now, press Ctrl-C to
stop the actor system.

2.4 Distributing the actors over multiple systems
Actors are lightweight objects. At about 300 bytes, the memory overhead required per
actor is a small fraction of the stack space consumed by a single thread. It’s possible to
hold a lot of actors in a single Java virtual machine (JVM). At some point, a single JVM
still isn’t enough. The actors have to scale across multiple machines.

 You’ve already put into practice the most important concepts that make distrib-
uted actors possible. Actors refer to one another only via actor references. The Tour-
ist actor refers to the Guidebook by using an ActorRef supplied to the constructor,
and the Guidebook actor refers to the Tourist only through the sender ActorRef.
An ActorRef may refer to a local actor or to a remote actor, so both actors are
already capable of working with distributed actor systems. Whether the references are
to local or remote actors makes no difference to the code.

 The first step you took toward making the messages work across multiple machines
was making them immutable. It wouldn’t be possible to change the content of a mes-
sage after it’s been sent from one machine to another. The remaining step toward
making the messages fully self-contained is making them serializable, so that they can
be transmitted and reconstructed by the actor system that receives the message. Once
again, Scala case classes come to the rescue. As long as the properties within the case
class can be serialized, the whole class can be serialized, too.

 Finally, the system needs some way to resolve references to actors in remote actor
systems. You learn how in the following sections.

2.4.1 Distributing to two JVMs

When the example moves from one to two JVMs, the actors and messages remain the
same. What changes? The new version is shown in figure 2.6. The primary difference
.store/books/9781617292460

http://ant.apache.org/ivy
https://itbook.store/books/9781617292460

41Distributing the actors over multiple systems

www.itbook.st
between figure 2.6 and the example shown in figure 2.5 is that figure 2.6 shows two
actor systems. Each JVM needs its own actor system to manage its own actors.

 If you cloned the original example from the Git repository, you can use the source
in the chapter2_002_two_jvm directory.

2.4.2 Configuring for remote actors

As you might expect, distributing actors requires a little more setup than when every-
thing is in one JVM. The process requires configuring an additional Akka library
called akka-remote. The affected files are

 build.sbt—Adds the dependency on akka-remote
 application.conf—Provides some configuration information for remote actors

The change from the previous build.sbt example is nothing more than the inclusion
of the additional library, as shown in the following listing.

name := "Guidebook"

version := "1.0"

scalaVersion := "2.12.3"

val akkaVersion = “2.5.4”

Listing 2.7 build.sbt for remote actors

Each distributed JVM
contains a separate
actor system.

Messages must be
serialized when sent
between JVMs.

Inquiry

Tourist JVM Guidebook JVM

BookSystem

Guidance

Tourist Guidebook

TouristSystem

Start

Figure 2.6 Actors communicating
across local JVMs
ore/books/9781617292460

https://itbook.store/books/9781617292460

42 CHAPTER 2 Getting started with Akka

www.itbook
resolvers += "Lightbend Repository" at "http://repo.typesafe.com/typesafe/
releases/"

libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-actor" % akkaVersion,
 "com.typesafe.akka" %% "akka-remote" % akkaVersion
)

The configuration file shown in listing 2.8 is read automatically by Akka during
startup. The tourist and guidebook JVMs in this example can use the same configura-
tion file. More complex applications would require separate configuration files for
each JVM, but the example is simple enough that one can be shared. The syntax is
Human-Optimized Config Object Notation (HOCON), which is a JavaScript Object
Notation (JSON) superset designed to be more convenient for humans to edit.

akka {
 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 }
 remote {
 enabled-transports = ["akka.remote.netty.tcp"]
 netty.tcp {
 hostname = "127.0.0.1"
 port = ${?PORT}
 }
 }
}

2.4.3 Setting up the drivers

Now that the configuration steps are complete, the next step is adding a program to
act as a driver for the Guidebook actor system.

THE GUIDEBOOK DRIVER

The driver for the Guidebook actor system is a reduced version of the original driver
for the entire system. Other than removing the Tourist actor, the only change is to
provide unique names for the actor system and for the Guidebook actor. The names
make it easier for the Tourist actor to obtain an ActorRef to the Guidebook. The
complete code is shown in the following listing.

import akka.actor.{ActorRef, ActorSystem, Props}

object GuidebookMain extends App {
 val system: ActorSystem = ActorSystem("BookSystem")

Listing 2.8 application.conf for remote actors

Listing 2.9 Driver for the Guidebook JVM

Adds dependency on remote
actors. The Akka version
numbers should match.

Replaces the default
LocalActorRefProvider with
the RemoteActorRefProvider

Enables remote
communication by using
the Transmission Control
Protocol (TCP). Check the
Akka documentation for
other choices, such as
Secure Sockets Layer
(SSL) encryption.

The remote
actors in the
example will
run on your
local machine.

Obtains a port number
from the PORT environment

variable. If none is specified, the
number defaults to 0, and Akka

chooses a port automatically.

Names the actor
system uniquely
.store/books/9781617292460

https://itbook.store/books/9781617292460

43Distributing the actors over multiple systems

www.itbook.st
 val guideProps: Props =Props[Guidebook]
 val guidebook: ActorRef =
 ➥ system.actorOf(guideProps, “guidebook”)
}

Now that the Guidebook driver is complete, you can move on to the Tourist driver.

THE TOURIST DRIVER

The constructor for the Tourist actor requires a reference to the Guidebook actor.
In the original example, this task was easy because the reference was returned when
the Guidebook actor was defined. Now that the Guidebook actor is in a remote
JVM, this technique won’t work. To obtain a reference to the remote Guidebook
actor, the driver

1 Obtains a URL-like path to the remote actor
2 Creates an ActorSelection from the path
3 Resolves the selection into an ActorRef

Resolving the selection causes the local actor system to attempt to talk to the remote
actor and verify its existence. Because this process takes time, resolving the actor selec-
tion into a reference requires a timeout value and returns a Future[ActorRef]. You
don’t need to worry about the details of how a future works. For now, it’s sufficient to
understand that if the path resolves successfully, the resulting ActorRef is used as it
was in the single JVM example. The complete driver is shown in listing 2.10.

NOTE The scala.concurrent.Future[T] used here isn’t the same as a
java.util.concurrent.Future<T>. It’s closer to—though not the same
as—the java.util.concurrent.CompletableFuture<T> in Java 8.

import java.util.Locale

import akka.actor.{ActorRef, ActorSystem, Props}
import akka.util.Timeout
import tourist.TouristActor

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.SECONDS
import scala.util.{Failure, Success}

object TouristMain extends App {
 val system: ActorSystem = ActorSystem("TouristSystem")

 val path =
 "akka.tcp://BookSystem@127.0.0.1:2553/user/guidebook"

Listing 2.10 Driver for the Tourist JVM

Produces an ActorRef the same
as in the single JVM example

Names the actor uniquely

Names the actor
system uniquely

Specifes the remote URL path
for the Guidebook actor
ore/books/9781617292460

https://itbook.store/books/9781617292460

44 CHAPTER 2 Getting started with Akka

www.itbook
 implicit val timeout: Timeout = Timeout(5, SECONDS)

 system.actorSelection(path).resolveOne().onComplete {
 case Success(guidebook) =>

 val tourProps: Props =

 ➥ Props(classOf[TouristActor], guidebook)
 val tourist: ActorRef = system.actorOf(tourProps)

 tourist ! messages.Start(Locale.getISOCountries)

 case Failure(e) => println(e)
 }
}

At this point, you have configuration and drivers to run the original Tourist and
Guidebook actors in separate actor systems on separate JVMs. Notice that the mes-
sages and actors are unchanged from the original example, which isn’t uncommon.
Actors are designed to be distributable by default.

 Now it’s time to try the distributed actors.

2.4.4 Running the distributed actors

To run two JVMs, you need two command prompts. Start by opening a terminal ses-
sion as you did for the single-actor system in section 2.3. This time, the sbt command
line has to specify which Main class to use, because you have two. Recall that the
application.conf file in listing 2.8 specifies that the listener port should be read from
the PORT environment variable, so you have to specify the port as well.

 Because the Guidebook waits forever for actors to contact it, but the Tourist
waits for only a few seconds to find a Guidebook, the Guidebook is started first. The
command line

sbt "-Dakka.remote.netty.tcp.port=2553" "runMain GuidebookMain"

should result in several messages to the console, ending with a log entry that tells you
that the book system is now listening on port 2553.

 Next open a second terminal window. The command line to run the tourist is
almost the same:

sbt "runMain TouristMain"

The differences are the port number and the choice of Main class to run.
 If everything has gone as expected, the Tourist should print the same Guide-

book information as in the original example. Congratulations! You’ve created a dis-
tributed actor system.

Waits up to 5 seconds for
the Guidebook to respond

Converts the path
to an ActorSelection
and resolves it

If the Guidebook is
resolved successfully,
continue as in the
single JVM example.

If the Guidebook fails to
resolve, fail with an error.

The double quotes around the –D
parameter are necessary in Windows

but optional on other platforms.
.store/books/9781617292460

https://itbook.store/books/9781617292460

45Scaling with multiple actors

www.itbook.st
 As an exercise, try opening a third terminal and running another Tourist on a
different port number. The code works because the Guidebook always responds to
the sender of a message; it doesn't care whether one Tourist is sending a message or
a thousand Tourists are sending messages. If you have thousands of Tourists, how-
ever, you may want to have more than one Guidebook actor too. In the next section,
you learn how.

2.5 Scaling with multiple actors
Shortly after Akka 2.0 was released in 2012, a benchmark (http://letitcrash.com/
post/20397701710/50-million-messages-per-second-on-a-single) demonstrated send-
ing 50 million messages per second on a single machine—far more than a single
Guidebook actor would be able to handle. Recall that the actor system guarantees
that no more than one thread has access to the actor at a time. Eventually, there’d be
too many incoming messages for a single actor, and it would be necessary to have mul-
tiple Guidebook actors to service all the requests.

 Actor systems make adding multiple actors easy. An actor-based system handles
scaling to multiple actors uniformly, whether the actors are local or remote. The addi-
tional Guidebook actors may run in the same JVM or in separate JVMs. In the rest of
this chapter, you learn to put additional instances of the same actor in the same JVM;
then you learn to scale horizontally to another JVM, which is a taste of things to come.
Chapter 4 revisits these concepts in greater depth.

 Before extending the actor system, take a look at how traditional systems that don’t
use actors approach the same problem.

2.5.1 Traditional alternatives

In a traditional system, scaling is handled quite differently, depending on the decision
to put additional instances in the same JVM or to deploy them remotely. If the
instances are in the same JVM, a system that doesn’t use actors might instead use an
explicit thread pool to balance requests, as shown in figure 2.7.

Figure 2.7 A thread pool can be used to manage access to multiple instances of a service.

Service JVMClient JVM

Client

5. Forward response

1. Request

2. Select thread

Thread
pool

Instance 1

Instance 2

4. Response

3. Forward request
ore/books/9781617292460

http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single
http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single
https://itbook.store/books/9781617292460

46 CHAPTER 2 Getting started with Akka

www.itbook
If the instances are in separate JVMs, the system could use a dedicated load balancer
that sits between the client and service, as shown in figure 2.8. In most cases, the com-
munication through the load balancer uses HTTP as the protocol.

 Many excellent load-balancer implementations are available. HAProxy (www
.haproxy.org) is a dedicated software solution, and NGINX (www.nginx.com) may be
configured as a reverse proxy. Some companies even produce hardware solutions,
such as the BIG-IP Local Traffic Manager from F5 Networks, Inc. Those solutions are
outside the scope of this book, however, because they’re not necessary. Instead, load
balancing is handled by the actor system.

2.5.2 Routing as an actor function

In an actor-based system, the load balancer can be treated as an actor specialized for
routing messages. The client treats the ActorRef to the router no differently than it
treats a reference to the service itself. You’ve already seen that local and remote actors
are treated uniformly, which continues to hold true here. The client doesn’t need to
concern itself with whether the router is local or remote. That decision can be made
as part of system configuration, independent of how the client or service is coded.

 Returning to the guidebook example, the Tourist actor sends an inquiry mes-
sage to the router, the router selects a Guidebook actor, and the Guidebook sends
the guidance directly back to the Tourist, all as shown in figure 2.9.

 Recall from section 2.1 that the Guidebook actor sends its response back to the
sender of a message. You may wonder how that process works when the message
comes from the router rather than the original client. The answer is that the router
doesn’t pass a reference to itself as the sender. It forwards the original sender, so the
routed message appears to have come directly from the client.

2.6 Creating a pool of actors
A single actor, such as the guidebook example, handles only one request at a time,
which greatly simplifies coding, because the actor doesn’t have to worry about synchro-
nization. It also means that the Guidebook can become a bottleneck, because there’s

Service JVMsClient JVM
Dedicated
process

Client

5. Proxy response

1. Request

2. Select server

Load
balancer Server 1

Server 2

4. Response

3. Proxy request

Figure 2.8 A traditional load balancer introduces a separate process between the client and server.
.store/books/9781617292460

www.haproxy.org
www.haproxy.org
www.nginx.com
https://itbook.store/books/9781617292460

47Creating a pool of actors

www.itbook.st
only one Guidebook and every request has to wait for it to become available. The sim-
plest way to scale is to add a pool of Guidebook actors within the single-actor system
and create a router to balance the inquiries. Figure 2.10 shows this approach.

Inquiry messages are sent via
the router actor rather than
directly to a guidebook.

The router selects
between two identical
guidebook actors.

Guidance messages are
sent directly to the tourist,
not through the router.

Inquiry

Tourist

Guidebook 2

Guidebook 1

Guidebook
router

Guidance

Inquiry

Start

Figure 2.9 Sending messages from the Tourist to the Guidebook through a router that
performs load balancing

The actors are distributed
to two different actor systems
on two different JVMs.

Inquiry

Tourist

Guidebook 2

Guidebook 1

Guidebook
router

Guidance

Inquiry

Tourist JVM Guidebook JVM

Tourist system Book system

Load balancing is
performed on the
remote actor system.

Start

Figure 2.10 One way to scale is to
create a pool of Guidebook actors
within the same actor system.
ore/books/9781617292460

https://itbook.store/books/9781617292460

48 CHAPTER 2 Getting started with Akka

www.itbook
The Tourist and Guidebook actors remain unchanged from the previous examples.
In fact, the entire tourist system remains the same. As you see in the next section, only
the guidebook system needs to be changed to incorporate the change.

 If you cloned the original example from the Git repository, you can use the source
in the chapter2_003_pool directory, which uses two JVMs and an actor pool.

2.6.1 Adding the pool router

The pool router is an actor that takes the place of the original Guidebook actor. As with
any other actor, you need a Props for the router actor. It’s possible to configure an
actor pool entirely within code, but it’s preferable to use a configuration file. Akka
routing includes a convenient FromConfig utility that tells Akka to configure a pool.
The driver in the following listing passes the original guidebook Props to From-
Config so that Akka knows how to create new pool members, and everything else
comes from the configuration file.

import akka.actor.{ActorRef, ActorSystem, Props}
import akka.routing.FromConfig

object GuidebookMain extends App {
 val system: ActorSystem = ActorSystem("BookSystem")

 val guideProps: Props = Props[Guidebook]

 val routerProps: Props =
 ➥ FromConfig.props(guideProps)

 val guidebook: ActorRef =
 ➥ system.actorOf(routerProps, "guidebook")
}

Akka includes several built-in pool routers. One of the most commonly used is the
round-robin pool. This implementation creates a set number of instances of the actor
and forwards requests to each actor in turn. Chapter 4 describes some of the other
pool implementations.

 The following listing shows how to configure a round-robin pool containing five
instances of the Guidebook actor. These instances are called routees.

akka {
 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 deployment {
 /guidebook {

Listing 2.11 Driver for the guidebook JVM with a pool of guidebooks

Listing 2.12 application.conf with a pool of Guidebook actors

Imports library to read
the pool configuration
from application.conf

Props for the Guidebook
actor are unchanged.

Wraps the pool configuration
around the original Props for
the Guidebook actor

The name of the actor must match
the name in the configuration file.

Configures a pool for
the Guidebook actor
.store/books/9781617292460

https://itbook.store/books/9781617292460

49Creating a pool of actors

www.itbook.st
 router = round-robin-pool
 nr-of-instances = 5
 }
 }
 }
 remote {
 enabled-transports = ["akka.remote.netty.tcp"]
 netty.tcp {
 hostname = "127.0.0.1"
 port = ${?PORT}
 }
 }
}

As you can see, Akka makes it easy to create many actors in a pool. You create a pool
actor, give it the Props needed to create new pool entries, and configure the pool as
needed through the configuration file.

2.6.2 Running the pooled actor system

Running the pool of actors is easy, too. The process is the same as running the two-
actor system example shown previously in this section. As before, the command line

sbt "-Dakka.remote.netty.tcp.port=2553" "runMain GuidebookMain"

starts the guidebook system, and the command line

sbt "runMain TouristMain"

starts the tourist system, which is unchanged. The output on the tourist console should
be the same as before. The difference is on the guidebook console. Before the pool was
added, each inquiry resulted in the Guidebook actor’s printing a line such as

Actor guidebook responding to inquiry about AD

Now that the actor named Guidebook is a router actor, each instance of the Guide-
book actor in the pool is assigned a different, random name. The inquiries now result
in each Guidebook actor’s printing a line such as

Actor $a responding to inquiry about AD

Because five actors are configured, the console output should show five different
names for the actor, such as $a, $b, $c, $d, and $e.

NOTE The round-robin pool is one of several pool implementations included
with Akka. You can try some of the other types by changing the configuration
file. Other choices to try include random-pool, balancing-pool, smallest-mail-
box-pool, scatter-gather-pool, and tail-chopping-pool.

In this section, you scaled an actor system by replacing a single actor with a router with
a pool of identical actors. In the next section, you apply the same concepts to distrib-
ute messages across multiple-actor systems on multiple JVMs.

Uses the built-in round-robin
pool implementation with five
instances in the pool
ore/books/9781617292460

https://itbook.store/books/9781617292460

50 CHAPTER 2 Getting started with Akka

www.itbook
2.7 Scaling with multiple-actor systems
The router actor is responsible for keeping track of the routees that handle the mes-
sages that it receives. The pool routers in the preceding section handled this task by
creating and managing the routees themselves. An alternative approach is to provide
a group of actors to the router but manage them separately. This approach is similar
to how a traditional load balancer works. The difference is that a traditional load bal-
ancer uses a dedicated process to manage the group membership and perform the
routing, whereas in the actor-based system, the routing may be performed by a router
actor within the client, as shown in figure 2.11.

 The two approaches aren’t mutually exclusive. It’s reasonable to have a router on
the client select a remote actor system to service the request and then have another tier
of routing in the service actor system select a specific actor instance from a pool. The
response message still flows from the service actor directly to the original client actor.

 If you cloned the original example from the Git repository, you can use the source
in the chapter2_004_group directory, which keeps the pool router on the guidebook
systems and adds a group router to the tourist system.

2.7.1 Adding the group router

The driver for the Tourist actor system is simpler with a group than in the initial sys-
tem with a single remote actor. In the original example (listing 2.10), the driver

Inquiry

Tourist

Guidebook 2

Guidebook 1

Guidebook
router

Guidance

Inquiry

Tourist JVM Guidebook JVM 1

Guidebook JVM 2

Tourist system Book system

Book system

Load balancing is
performed on the
local actor system.

Guidebook actors
are distributed
across multiple
JVMs.

Start

Figure 2.11 A local router can balance requests among actors on remote systems.
.store/books/9781617292460

https://itbook.store/books/9781617292460

51Scaling with multiple-actor systems

www.itbook.st
resolved the remote actor path by using a Future[ActorRef], and the system waited
for confirmation that the remote actor system had been verified before creating the
Tourist actor. With a group router, all that work is handled by the group router, as
shown in the following listing.

import java.util.Locale

import akka.actor.{ActorRef, ActorSystem, Props}
import akka.routing.FromConfig

import Tourist.Start

object TouristMain extends App {
 val system: ActorSystem = ActorSystem("TouristSystem")

 val guidebook: ActorRef =
 system.actorOf(FromConfig.props(), "balancer")

 val tourProps: Props =
 Props(classOf[Tourist], guidebook)

 val tourist: ActorRef = system.actorOf(tourProps)

 tourist ! Start(Locale.getISOCountries)
}

Configuration of the router group is handled by the configuration file.
 The group configuration for the balancer uses the round-robin-group rather than

the round-robin-pool, as shown in the following listing. Group routers expect the
routees to be provided, and they’re provided via routees.paths. Some of the other
group implementations are described in Chapter 4.

akka {
 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 deployment {
 /guidebook {
 router = round-robin-pool
 nr-of-instances = 5
 }
 /balancer {
 router = round-robin-group
 routees.paths = [
 "akka.tcp://BookSystem@127.0.0.1:2553/user/guidebook",
 "akka.tcp://BookSystem@127.0.0.1:2554/user/guidebook",
 "akka.tcp://BookSystem@127.0.0.1:2555/user/guidebook"]
 }
 }

Listing 2.13 Driver for the Tourist JVM with a group of Guidebook systems

Listing 2.14 application.conf with a group of guidebook systems

Imports library to read
the pool configuration
from application.conf

Uses a different name to
distinguish this router
from the router pool used
by the Guidebook driver

The remaining steps
are the same as the
single JVM driver
shown in listing 2.6.

Leave alone the pool for the
guidebook actor. It will continue
to be used by the guidebook.

Creates a round-
robin group
router named
balancer with
three group
members
ore/books/9781617292460

https://itbook.store/books/9781617292460

52 CHAPTER 2 Getting started with Akka

www.itbook
 }
 remote {
 enabled-transports = ["akka.remote.netty.tcp"]
 netty.tcp {
 hostname = "127.0.0.1"
 port = ${?PORT}
 }
 }
}

The rest of the configuration file remains the same.

2.7.2 Running the multiple actor systems

The configuration in the preceding section instructed the balancer to look for three
guidebooks by contacting the BookSystem actor systems listening on ports 2553,
2554, and 2555. Open three terminal windows, and start those three systems by using
the following commands:

sbt "-Dakka.remote.netty.tcp.port=2553" "runMain GuidebookMain"
sbt "-Dakka.remote.netty.tcp.port=2554" "runMain GuidebookMain"
sbt "-Dakka.remote.netty.tcp.port=2555" "runMain GuidebookMain"

Next run the tourist system on a fourth terminal:

sbt “runMain TouristMain"

You should see the usual guidance on the tourist console.
 Now switch to each of the terminal windows running the guidebook instances.

You should see that all three of them have responded to some messages, and you
should be able to verify that each received requests for different countries.

 The pools within each of these actor systems are still in place, too, so the distrib-
uted actor system you’re running now includes 16 actors: 1 Tourist actor plus 3
Guidebook systems that each have a pool of 5 Guidebook actors. That’s quite a bit
for such a small amount of code.

2.8 Applying reactive principles
The same Tourist and Guidebook actors remained unchanged throughout this
chapter. At this point, both of the driver programs take their configuration from
application.conf rather than having anything hardcoded. The complete system
requires surprisingly little code. The two actors and their drivers are less than 100
lines of Scala, yet this system exhibits reactive attributes.

 The four attributes that lay the foundation for reactive applications were intro-
duced through the Reactive Manifesto in chapter 1. Reactive applications are message-
driven, elastic, resilient, and responsive.

 The examples in this chapter are message-driven. Everything occurs in response to
the same three immutable messages. All communication among actors is accom-
plished asynchronously, and there’s never a direct function call from one actor to

Run each of these
commands in a
separate terminal.
.store/books/9781617292460

https://itbook.store/books/9781617292460

53Summary

www.itbook.st
another. Only the actor system calls the actor to pass it a message. The message pass-
ing exhibits location transparency. The sender doesn’t concern itself with whether the
recipient of a message is local or remote.

 Location transparency also allows routers to be injected into the message flow,
which helps achieve another reactive attribute. The application is elastic, too, capable
of applying more resources by expanding a pool of local actors and capable of
expanding remotely by adding remote actors.

 In other words, you now have an elastic, message-driven system that you can scale
horizontally without writing any new code, which is quite an accomplishment. Feel
free to experiment with the configuration.

 If you experiment, you’ll find that that the system has some attributes of resilience
and responsiveness, but it could be better. Chapters 3 and 4 show you the additional
pieces needed to create a fully reactive application. You’ll learn more about the design
of Akka and how the components work together to deliver the underpinnings of the
system you created in this chapter.

Summary
 Actors have a receive function that accepts a message and doesn’t have a return

value.
 Actors are called by the actor system, not directly by other actors. The actor sys-

tem guarantees that there’s never more than one thread at a time calling an
actor’s receive function, which simplifies the receive function because it
doesn’t have to be thread-safe.

 Actors are distributable by default. The same actors and the same messages
were used throughout this chapter. Only the drivers and configuration changed
as the example evolved from a pair of actors exchanging messages within a sin-
gle JVM all the way to 16 actors distributed across 3 JVMs.

 Immutable messages flow among actors. Immutable messages are thread-safe
and safe to copy, which is necessary when a message is serialized and sent to
another actor system. Scala case classes offer a safe, easy way to define immuta-
ble messages.

 Senders address messages by using an ActorRef, which is obtained from the
actor system. An ActorRef may refer to a local or a remote actor.

 Actor systems can be scaled via a router to balance requests among multiple
actors. A router may be configured as a pool that creates and manages the actor
instances for you. A group router requires the actors to be created and man-
aged separately.
ore/books/9781617292460

https://itbook.store/books/9781617292460

www.itbook.store/books/9781617292460

https://itbook.store/books/9781617292460

	SC-DeVore-front
	SampleChapterPages-2
	SC-Ch-02
	DeVore-back

