
SAMPLE CHAPTER

www.itbook.store/books/9781617292460

https://itbook.store/books/9781617292460

Reactive Application Development
by Duncan DeVore, Sean Walsh and Brian Hanafee

Sample Chapter 7

Copyright 2018 Manning Publications

www.itbook.store/books/9781617292460

https://itbook.store/books/9781617292460

brief contents
PART 1 FUNDAMENTALS ... 1

1 ■ What is a reactive application? 3
2 ■ Getting started with Akka 29
3 ■ Understanding Akka 54

PART 2 BUILDING A REACTIVE APPLICATION 85
4 ■ Mapping from domain to toolkit 87
5 ■ Domain-driven design 116
6 ■ Using remote actors 138
7 ■ Reactive streaming 164
8 ■ CQRS and Event Sourcing 181
9 ■ A reactive interface 209

10 ■ Production readiness 227

www.itbook.store/books/9781617292460

https://itbook.store/books/9781617292460

www.itbook.st
Reactive streaming
In chapter 6, you learned how to cross actor system boundaries and send messages
to remote actors. In this chapter, you learn how to prevent an application from
being overwhelmed by too many messages. The reactive approach to regulating
streams of messages so that they don’t become floods is called backpressure.

 Akka applies backpressure for you through Akka Streams. On the surface, Akka
Streams is similar to other libraries you may have encountered, such as the
java.util.stream package introduced in Java 8. You can take advantage of it
directly by assembling stream sources, sinks, flows, and graphs without having to
worry much about what’s happening below the surface, as shown in section 7.3.
Alternatively, you can use toolkits that are built on top of it, such as Akka HTTP
(which we cover in chapter 9).

This chapter covers
 Seeing the dangers of unbounded buffers

 Safeguarding your application with backpressure

 Using Akka Streams in your application

 Integrating Akka Streams with other toolkits
164

ore/books/9781617292460

https://itbook.store/books/9781617292460

165Buffering too many messages

www.itbook.st
 After learning about the Akka Streams library, you take it to the next level with the
Reactive Streams application programming interface (API), which provides a stan-
dard interface to asynchronous streams and, as part of the specification, requires non-
blocking backpressure. Reactive Streams is supported by many toolkits, including
Akka, Java 9, and .NET. You can use it to integrate with other systems and apply back-
pressure across the connection.

 We start by examining what happens when no backpressure exists.

7.1 Buffering too many messages
If you wanted to, you could configure millions of actors distributed across thousands
of servers to send messages to a single actor running on your laptop. That single actor
would expect to continue receiving messages one at a time, in keeping with the single-
threaded contract it has with Akka. The result would be a huge backlog of unpro-
cessed messages. Where would those messages be?

 Ideally, the backlog of messages would be safe in the actor’s mailbox. The default
mailbox types are unbounded, so they can grow to accommodate a considerable num-
ber of unprocessed messages. Eventually, the application will run out of available
memory to hold more messages, and the server may buffer additional data in system
buffers. Usually, those buffers hold a small fraction of what an actor’s mailbox can
hold. When those buffers overflow too, the server is forced to start rejecting incoming
messages, as shown in figure 7.1.

Figure 7.1 System buffers may attempt to handle messages that your application isn’t ready to accept.

Actor

Application

Server

System buffers

Conceptual

Actual

Actor mailbox

Eventually the
system will start
to lose messages.

Once the mailbox is full,
messages can accumulate
in system buffers.

An unbounded mailbox
can consume all available
memory.

External
source
ore/books/9781617292460

https://itbook.store/books/9781617292460

166 CHAPTER 7 Reactive streaming

www.itbook
It may seem far-fetched to expect enough incoming data to overwhelm your system
under normal load, especially if the system was designed with reactive principles and
is capable of elastic growth. But consider some of the conditions that could lead to
sudden increases in the numbers of messages that need to be processed:

 Your site appears in the news, and people all over the world start using it at the
same time. This situation is sometimes called the “Reddit hug of death,”
because a link appearing on the front page of that site has been known to send
surges of traffic to smaller sites that are ill-prepared to handle it.

 A system that your actor needs to complete processing is down for an extended
period, so messages accumulate while recovery takes place.

 Other nodes in your application may fail or be unreachable, causing traffic to
concentrate on a single node.

 Your application could be subject to a distributed denial-of-service attack. These
attacks can exceed 1 terabit per second—enough to overwhelm any server they
reach.

Your application may have to defend itself against unexpected increases in workload.

7.2 Defending with backpressure
At its root, the problem is that work is arriving faster than it’s being processed. Eventu-
ally, no matter what you do, the application will be overwhelmed. The reactive solu-
tion is to slow the arrival rate of new work through backpressure.

 Conceptually, the idea behind backpressure is simple. The data consumer tells the
source how much data it’s prepared to accept, and the source sends no more than
that amount. You might object that backpressure moves the problem from one system
to another, and you’d be correct. The beauty of backpressure, however, is it can keep
going: each component can push back on the one before it, going all the way back to
the original source if necessary, which turns out to be highly effective in real systems.

7.2.1 Stopping and waiting

Requiring the publisher to wait for a signal before sending each message provides a
primitive form of backpressure. Figure 7.2 illustrates this approach in a publish/sub-
scribe system with a single subscriber. The subscriber provides the backpressure by
requiring the publisher to wait for an OK message before sending a message contain-
ing work for the subscriber to process, preventing a queue of messages between pub-
lisher and subscriber from accumulating. Instead, the publisher has to hold each
message until it knows that the subscriber is ready to process it. Although holding
each message may appear at first glance to be equivalent to the publisher’s making
synchronous calls to the subscriber, it is different. Publisher and subscriber are send-
ing asynchronous messages to each other, so the message exchange is nonblocking.
.store/books/9781617292460

https://itbook.store/books/9781617292460

167Defending with backpressure

www.itbook.st
Figure 7.2 Positive acknowledgement per message idles available resources.

A minimal implementation of backpressure with positive acknowledgement could
consist of a Publisher actor and a Subscriber actor. The Publisher waits for an
OK message before sending a Work message to the Subscriber, as follows.

import akka.actor.{Actor, ActorRef}
import Subscriber.{Register, Work}

object Publisher {
 case object Ok
}

class Publisher(subscriber: ActorRef) extends Actor {
 override def preStart =
 subscriber ! Register
 override def receive = {
 case Publisher.Ok =>
 subscriber ! Work("Do something!")
 }
}

Listing 7.1 Publisher actor with OK processing

Register

OK2. Publisher sends
 first piece of work.

1. Publisher registers
 to send work.

3. Publisher sends more
 work when it receives
 signal from subscriber.

Publisher Subscriber

Work

Working

OK

OK

Work

Working

Subscriber is idle
while OK message is
being processed and
new work is received.

Message to tell the publisher
it’s OK to send work

Sends an initial message
to start the process

Publisher sends work when
it receives an OK message.
ore/books/9781617292460

https://itbook.store/books/9781617292460

168 CHAPTER 7 Reactive streaming

www.itbook
When the subscriber completes a piece of work, it replies with an OK message signal-
ing that it’s ready to accept another, as shown in the following listing. After respond-
ing with the OK message, the subscriber waits idly for another piece of work.

import akka.actor.Actor

object Subscriber {
 case object Register
 case class Work(m: String)
}

import Subscriber.{Register, Work}
class Subscriber extends Actor {
 override def receive = {
 case Register =>
 sender() ! Publisher.Ok
 case Work(m) =>
 System.out.println(s"Working on $m")
 sender() ! Publisher.Ok
 }
}

The driver, shown in the following listing, sets up the actor system and the two actors
as you’d expect: it configures the actor system, waits a few seconds for it to do some
work, and shuts down. You can download the example from http://mng.bz/71O3 and
run it by using the command sbt run.

import akka.actor.{ActorRef, ActorSystem, Props}

object Main extends App {
 val system: ActorSystem = ActorSystem("StopWait")

 val subscriberProps = Props[Subscriber]
 val subscriber: ActorRef = system.actorOf(subscriberProps)

 val publisherProps =
 ➥ Props(classOf[Publisher], subscriber)
 val publisher: ActorRef = system.actorOf(publisherProps)

 Thread.sleep(10000)
 system.terminate()
}

Congratulations—you’ve implemented a stream protocol with backpressure. At this
stage, the example is rudimentary. You see a lot of messages scrolling when you run it,
but it’s quite inefficient. After completing each piece of work, the subscriber has to
wait for an OK message to get back to the requestor and then wait for the message

Listing 7.2 Subscriber with OK response

Listing 7.3 Driver to start and stop the example

OK request to send
initial work

Performs the
requested work

Tells the publisher it’s
OK to send more work

The publisher gets a
reference to the subscriber.

Waits a few seconds and then shuts
down the whole actor system
.store/books/9781617292460

http://mng.bz/71O3
https://itbook.store/books/9781617292460

169Defending with backpressure

www.itbook.st
containing the next piece of work to arrive before it starts working again. Another
problem evident in the driver program is that it lacks a clean shutdown, which can
lead to the loss of an unfulfilled work request. You may encounter a few warnings
about dead letters.

 In the next two sections, we explore how to make the stream implementation
slightly less rudimentary. First, we consider how to keep the subscriber busy.

7.2.2 Signaling for more than one message

You can reduce the subscriber’s idle time by telling the publisher that it’s OK to send
multiple requests rather than one. The number of requests allowed can be fixed or
passed as a parameter in the message. The publisher keeps a running count of the
number of messages that it’s allowed by the subscriber to send. The subscriber is
responsible for deciding when it can allocate more messages to a publisher. In figure
7.3, each message from the subscriber back to the publisher says that it’s OK to send
three more work requests.

 The subscriber doesn’t have to wait until it receives three work requests to tell the
publisher that it can send more. Requesting additional work before the subscriber
fully completes processing the current requests is one way to ensure that the sub-

Register

OK(3)2. Publisher immediately
 sends three work
 requests.

1. Subscriber allows
 three messages
 from the publisher.

3. Subscriber does not
 have to wait for all three
 messages to be processed
 before allowing more from
 the publisher.

Publisher

OK(3)

Subscriber

Work

Work

Work

Work

Subscriber is never
idle when there is
work to do.

Figure 7.3 The subscriber tells the publisher how many messages it’s prepared to accept.
ore/books/9781617292460

https://itbook.store/books/9781617292460

170 CHAPTER 7 Reactive streaming

www.itbook
scriber has a continuous supply of work. The additional messages sit in an inbox
queue until the subscriber processes them, and the subscriber is responsible for ensur-
ing that it doesn’t request more messages than it can handle.

 Similarly, when the subscriber sends a message to the publisher to inform it that
three messages have been allocated for it to send, the publisher is not obligated to
send that many messages. The number allowed is a maximum. If the publisher doesn’t
have that many messages left, it can end the stream.

 At this point, your stream implementation can apply enough backpressure to keep
the subscriber busy without being overwhelmed, but it still expects to run forever.

7.2.3 Controlling the stream

Either the publisher or the subscriber may end the stream. Because the publisher and
subscriber are asynchronous, the details of ending the stream are a little bit different,
depending on which actor ends it. If the publisher is ending the stream, it has to stop
sending messages. If the subscriber wants to end the stream, it sends a message back
to the publisher. That message may take time to arrive and be processed by the pub-
lisher. In the meantime, messages that were sent before the cancellation was pro-
cessed continue to arrive at the subscriber, as shown in figure 7.4. It’s up to the
subscriber to decide what to do with messages that arrive after it sent a cancellation
message: ignore them or process them. The publisher has no way to know whether the
messages arrived at the subscriber.

 Whether the publisher or subscriber ends the stream, a completion message usu-
ally is sent at the end of the steam. This message informs the subscriber so that it can
release resources and perform any final processing. The completion message may
take the form of a success message (if the stream is terminating normally) or a failure
message. When the completion message arrives, no further messages should follow.

 When you use Akka Streams, you don’t need to write code for all the intricacies
of managing the request count and flow control, so we won’t extend the example in
this section. We return to it in section 7.4, however, when we discuss the Reactive
Streams API.

Signaling for multiple messages isn’t microbatching
A signal that a stream is ready to receive multiple messages means that the sender
is allowed to send a set number of individual messages. The messages are still
received one at a time. This process is different from a technique called microbatch-
ing, which is commonly used to optimize big data systems. With microbatching, the
system accumulates messages that are ready for processing until some limit is
reached. Usually, the limit is a fixed number of messages or some maximum time
between batches. When it reaches the limit, the system passes all the accumulated
messages at the same time. Then the processor has to handle the microbatch as a
unit, mixing infrastructure considerations with business logic.
.store/books/9781617292460

https://itbook.store/books/9781617292460

171Streaming with Akka

www.itbook.st
7.3 Streaming with Akka
Akka Streams are graphs assembled from processing stages. Each stage can exert back-
pressure on earlier stages. A basic stream consists of a source and a sink, which are com-
bined to create a flow that you can execute. A complete stream could be as simple as

source.to(sink).run()

To see how to use Akka Streams, give the RareBooks librarians from chapter 6 a new
job: loading entries to the catalog. The stream consists of a source, some intermediate
flows, and a sink. The source is a stream of bytes read from a comma-separated file.
Then the flows convert the stream of bytes (a continuous ByteString) into a stream
of BookCard entries:

1 A framing flow uses the line separators that it encounters in the stream to pro-
duce a stream consisting of a separate ByteString for each line.

2 A mapping flow parses each comma-separated ByteString to produce a stream
of arrays of Strings.

3 Another mapping flow converts each array of Strings to a BookCard, produc-
ing a stream of BookCard entries.

The stream of BookCard entries terminates with a sink. The sink sends the BookCard
as a message to a librarian actor, which adds the card to the catalog. You may recall
from chapter 6 that the librarian actor takes time to perform each task. You don’t
have to worry about flow control. Behind the scenes, Akka Streams applies backpres-
sure so that BookCard entries don’t come too fast.

OK(3)2. Publisher immediately
 sends two work
 requests.

1. Subscriber allows
 three messages from
 the publisher.

3. Subscriber decides
 to cancel subscription.

5. Previously sent
 work arrives.

4. Publisher processes
 cancellation.

Publisher

Cancel

Subscriber

Work

Work

Figure 7.4 Some messages may continue to arrive after a subscription is canceled.
ore/books/9781617292460

https://itbook.store/books/9781617292460

172 CHAPTER 7 Reactive streaming

www.itbook
Figure 7.5 shows the components you need to create. You can download the source
code for this chapter from http://mng.bz/71O3.

7.3.1 Adding streams to a project

The catalog loader is a stand-alone application with its own build.sbt. Akka Streams
is separate from the Akka core, so start by adding both modules as dependencies, as
follows.

val akkaVersion = "2.5.4"

scalaVersion := "2.12.3"

name := "catalogLoader"

libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-actor" % akkaVersion,
 "com.typesafe.akka" %% "akka-stream" % akkaVersion
)

Listing 7.4 build.sbt for the catalog loader

2. FileIO source converts the file
 into a continuous ByteString.

1. Start with a comma-separated
 file of new book catalog entries.csv

Processing
stages

Catalog

3. Framing flow breaks the single
 ByteString into one ByteString
 per line.

4. Mapping flow converts each
 ByteString into an Array[String].

5. Mapping flow converts each
 Array[String] into a BookCard.

6. Sink converts the flow elements
 into actor messages.

7. Librarian actor adds the
 BookCard to the catalog.

Source

Framing

Mapping

Mapping

Sink

Actor

Figure 7.5 Processing stages should be simple operations
that are composed into a complete processing graph.
.store/books/9781617292460

http://mng.bz/71O3
https://itbook.store/books/9781617292460

173Streaming with Akka

.

www.itbook.st
The complete catalog loader has many moving parts, so you’ll build it in phases.

TIP The Alpakka initiative (https://github.com/akka/alpakka) has connec-
tors that handle integration with Amazon Web Services (AWS), Google
Cloud, Microsoft Azure, and several queueing packages. The project also
maintains a list of externally developed connectors.

7.3.2 Creating a stream source from a file

The goal of the first phase (listing 7.5) is to read a file and print the contents. The
source is based on a file path, and the sink is a println(). Not surprisingly, running
the stream requires an actor system. The actor system is no different from the actor
systems for RareBooks introduced in chapter 6. The stream also requires an Actor-
Materializer, which is new. The job of the materializer is to transform the flow into
processors to be executed by actors.

package com.rarebooks.library

import java.nio.file.Paths

import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import akka.stream.scaladsl._

import scala.concurrent.Await
import scala.concurrent.duration.Duration

object Cataloging extends App {
 implicit val system =
 ➥ ActorSystem("catalog-loader")
 implicit val materializer = ActorMaterializer()

 val file = Paths.get("books.csv")

 val result = FileIO.fromPath(file)
 .to(Sink.foreach(println(_)))
 .run()

 Await.ready(result, Duration.Inf)
 system.terminate()
}

Use sbt run to execute the stream. If everything is working, sbt run outputs a very
long line like this:

ByteString(…)

The reason is that Akka FileIO produces an akka.util.ByteString, which is an
optimized data type for working with streams of raw bytes.

Listing 7.5 Stream to read a file

Processing
stages execute
in this system. Transforms the stages

into processors

Be sure that this file is
in the current directory

Stream source
based on the fileAttaches

the sink Starts the stream processing

Waits for the stream
to completeShuts down the

actor system
ore/books/9781617292460

https://github.com/akka/alpakka
https://itbook.store/books/9781617292460

174 CHAPTER 7 Reactive streaming

Co
B

www.itbook
7.3.3 Transforming the stream

The next phase of development is transforming those raw bytes into a stream of
BookCards that the librarian can add to the catalog. The transformation comprises
the three flows described in the preceding sections: converting the continuous-source
ByteString to single-line ByteStrings, parsing each line into an array of Strings,
and converting each array to a BookCard.

 Decoding a continuous stream into a stream of discrete elements is called framing.
The Scala domain-specific language (DSL) has a function to generate a flow that
frames lines around a delimiter, which in this case is a newline. The input is a single
ByteString, and the output is a stream of individual ByteStrings.

 Converting each ByteString to an array of Strings is a mapping constructed
from a couple of utility functions. Turning that mapping into a flow is easy because
Flow has a map function for that purpose. Following is the resulting application.

// ... previous imports
//
import akka.util.ByteString
import LibraryProtocol.BookCard

object Cataloging extends App {
 implicit val system =

 ➥ ActorSystem("catalog-loader")
 implicit val materializer = ActorMaterializer()

 val file = Paths.get("books.csv")

 private val framing: Flow[ByteString, ByteString, NotUsed] =
 Framing.delimiter(ByteString("\n"),
 maximumFrameLength = 256,
 allowTruncation = true)

 private val parsing: ByteString => Array[String] =
 _.utf8String.split(",")

 private val conversion: Array[String] => BookCard =
 s => BookCard(
 isbn = s(0),
 author = s(1),
 // ... remaining fields
)

 val result = FileIO.fromPath(file)
 .via(framing)
 .map(parsing)
 .map(conversion)
 .to(Sink.foreach(println(_)))
 .run()
 Await.ready(result, Duration.Inf)
 system.terminate()
}

Listing 7.6 Transformation of a file into a stream of BookCards

Contains the utf8String
conversion used in parsing

Declares the
framing function

Declares the
parsing function

Declares the
conversion
function

Frames the
ByteString by line

Parses each line
into an Array[String]nverts to

ookCard
.store/books/9781617292460

https://itbook.store/books/9781617292460

175Streaming with Akka

www.itbook.st
Use sbt run to execute the stream. This time, you see individual BookCards.
 Now take a step back to look at what you’ve accomplished. You’ve created five pro-

cessing stages: a source, three flows, and a sink. Together, they read a file and trans-
form it into a stream of BookCard entries for the RareBooks catalog.

TIP It’s worth spending some time to examining the scaladoc for Flow. It
has a rich set of functions similar to those in the Scala collections library,
including basics such as filter, map, fold, and reduce.

7.3.4 Converting the stream to actor messages

The next phase is replacing the sink that generates println() messages with one
that sends messages to the librarian actor. The application has a reference to the
actor system, so one approach is to use tell, as in the following.

 // ...
 val librarian: ActorRef
 // ...
 val result = FileIO.fromPath(file)
 .via(framing)
 .map(parsing)
 .map(conversion)
 .to(Sink.foreach(card => librarian ! card))
 .run()

For a somewhat richer interface, you can use Sink.actorRef to send the messages
automatically. That function adds a final message that’s sent to the actor when the
stream is complete. Whether you choose tell or Sink.actorRef, each message to
the actor behaves in the usual way. That is, each message is nonblocking, asynchro-
nous, and one-way, which in this case presents a problem: no backpressure!

 To apply backpressure from the actor to the stream, you need to use the more
complex Sink.actorRefWithAck function. This function takes several parameters:

 ref—A reference to the actor.
 onInitMessage—A message sent before any elements from the stream.
 ackMessage—A message returned from the actor to acknowledge each

request. The sink must receive this message after it sends onInitMessage and
before it sends any stream elements, and the sink also must receive this message
after each stream element.

 onCompleteMessage—A message sent to the actor when the stream completes
successfully.

 onFailureMessage—A message sent to the actor if the stream completes with
failure.

Listing 7.7 Sink sending messages directly to an actor

Use tell to send the card
directly to the Librarian actor.
ore/books/9781617292460

https://itbook.store/books/9781617292460

176 CHAPTER 7 Reactive streaming

www.itbook
As you can see, the Librarian actor has to handle a few new messages. First, add
those messages to the LibraryProtocol, as follows.

case object LibInit
case object LibAck
case object LibComplete
case class LibError (t: Throwable)

To make the extended protocol work, you first need to make a few changes in the
Librarian’s receive function so that it’s prepared to accept the new BookCards and
respond as follows.

// ... start with the familiar Librarian you used in chapters 3, 4, and 6
 private def ready: Receive = {
 // ... preexisting match cases elided
 case LibInit =>
 log.info("Starting load")
 sender() ! LibAck
 case b: BookCard =>
 log.info(s"Received card $b")
 Catalog.books = Catalog.books + ((b.isbn, b))
 sender() ! LibAck
 case LibError(e) =>
 log.error("Load error", e)
 case LibComplete =>
 log.info("Complete load")

Now you’ve done all the preparatory work to complete the final phase of the example
by adding actorRefWithAck to the processing stream.

7.3.5 Putting it together

Following is the complete processing stream.

 // ...
 val librarian: ActorRef
 import LibraryProtocol._
 // ...
 val result = FileIO.fromPath(file)
 .via(framing)
 .map(parsing)
 .map(conversion)
 .to(Sink.actorRefWithAck(
 librarian, LibInit, LibAck, LibComplete, LibError)
 .run()

Listing 7.8 The LibraryProtocol extended to interact with the stream

Listing 7.9 Librarian actor extended to add catalog entries

Listing 7.10 Sink.actorRefWithAck to exert backpressure from the actor

Allows the stream to start
sending new books

Adds the new book
to the catalog

Allows the stream
to send another bookNo special processing

is needed for
completion or error.

Imports the messages to
interact with the librarian

Sink with the backpressure
messages defined
.store/books/9781617292460

https://itbook.store/books/9781617292460

177Introducing Reactive Streams

www.itbook.st
When you run this application, it streams the file of books into new entries in the cat-
alog. Now is a great time for you to experiment with backpressure! Here are a few
things to try:

 Have the librarian take more time adding a card entry. Instead of sending a
LibAck message right away, use the technique you learned in chapter 4 to
schedule the acknowledgement message after a short delay.

 The librarian takes time researching requests from customers. Start up a few
instances of the customer application and send some requests while the librar-
ian is busy adding new card entries.

As you explore Akka Streams, you’ll discover that they can go beyond simple linear
flows that consist of a source, flows, and a sink. Streams can be assembled into graphs
that have multiple inputs or outputs at each stage. Table 7.1 defines some terms you
may encounter that describe different stream processing stages.

7.4 Introducing Reactive Streams
So far in this chapter, you’ve learned about backpressure as a reactive technique and
applied it to Akka’s Streams library. Akka Streams is built on backpressure with actor-
based underpinnings. Other streams could be built on different frameworks but still
support backpressure. Reactive Streams is “an initiative to provide a standard for asyn-
chronous stream processing with non-blocking back pressure” (from www.reactive-
streams.org). In other words, it’s a distillation of the core features that a reactive
implementation needs to provide. Reactive Streams provides a common language that
allows different reactive implementations to interoperate.

 Akka isn’t the only implementation. Most notably, Reactive Streams is incorporated
into Java 9 through Java Enhancement Proposal JEP-266. Spring Framework version 5
incorporates Reactive Streams through Project Reactor (https://projectreactor.io).
Other implementations include RxJava, which is part of the ReactiveX project (https://
reactivex.io), Ratpack (https://ratpack.io), and Eclipse Vert.x (http://vertx.io). More

Table 7.1 Akka Streams processing stages may be categorized based on the number of inputs and
outputs.

Type Inputs Outputs

Source * 1

Sink 1 *

Flow 1 1

Fan-In multiple 1

Fan-Out 1 multiple

BidiFlow multiple multiple

* External to the stream, such as a file connector
ore/books/9781617292460

https://projectreactor.io
https://reactivex.io
https://reactivex.io
https://ratpack.io
http://vertx.io
http://www.reactive-streams.org
http://www.reactive-streams.org
https://itbook.store/books/9781617292460

178 CHAPTER 7 Reactive streaming

www.itbook
implementations are appearing regularly. Reactive Streams includes a Technology
Compatibility Kit (TCK) to help validate new implementations as they appear.

 Reactive Streams should be viewed as APIs for providers. If you’ve settled on using
a single toolkit such as Akka for your entire application, you don’t use it directly. If you
want to get two reactive systems to interoperate, and those systems don’t already have
a connector, consider using Reactive Streams to connect them.

 The entire Reactive Streams API consists of four small interfaces:

 Publisher—The provider of a stream of elements
 Subscriber—The consumer of a stream of elements
 Subscription—The interface used for a subscriber to signal a publisher
 Processor—A processing stage that obeys the contracts of both publisher and

subscriber

NOTE Reactive Streams doesn’t have any dependencies on Akka. Implemen-
tations don’t have to be based on the actor model at all.

7.4.1 Creating a Reactive Stream

Creating a Reactive Stream between two providers is easy. All you need is a reference
to a Publisher from one provider and a Subscriber from the other. The heavy lift-
ing is performed by the provider’s implementations of the interface (figure 7.6):

1 The application calls the subscribe method on the Publisher, passing a ref-
erence to the Subscriber.

2 The Publisher creates a Subscription.
3 The Publisher calls the onSubscribe method on the Subscriber, passing a

reference to the newly created Subscription.

At this point, the Subscriber uses the Subscription to start sending asynchronous
signals back to the Publisher.

Figure 7.6 The application initializes a reactive stream by calling the publisher with a reference
to the subscriber. The publisher creates a subscription and passes it to the subscriber.

Application

subscribe(Subscriber)

Publisher

Subscription
«create»

onSubscribe(Subscription)

Subscriber
.store/books/9781617292460

https://itbook.store/books/9781617292460

179Introducing Reactive Streams

www.itbook.st
WARNING Reactive Streams doesn’t allow the same Subscriber to have
multiple Subscriptions to the same Publisher. Calling Publisher
.subscribe more than once for the same Subscriber may produce excep-
tions or unpredictable behavior.

7.4.2 Consuming the Reactive Stream

The Subscriber has two signals that it can send back to the Publisher; it can
request messages or cancel the subscription. No messages flow until the subscriber
starts the flow with the first call to request messages.

 The Publisher keeps calling the Subscriber’s onNext method with new mes-
sages until it has sent as many as requested. If the Publisher runs out of messages or
if an error occurs, the Publisher signals the Subscriber by using onComplete or
onError, respectively (figure 7.7).

 The Subscriber can request that the Publisher stop sending messages by can-
celing the Subscription. In that event, the publisher is required to stop sending
messages eventually, but it may not stop immediately.

Figure 7.7 The publisher can end a stream by calling onComplete or onError. The subscriber can
asynchronously request the publisher to end the stream by calling cancel.

TIP The default mailbox in Akka is unbounded, but several of the other
implementations are bounded. If you’re integrating with a Reactive Streams
implementation, be sure not to request more messages than your applica-
tion’s inbox can hold. Otherwise, you could be subject to the overflowing-
buffer conditions discussed at the beginning of this chapter.

Application

onNext(t)

request(n)

Subscription Subscriber

request(n)

onNext(t)

cancel()

onComplete()

Starts the flow

Up to n times

Subscriber can
request cancellation.

Or onError(Throwable)
ore/books/9781617292460

https://itbook.store/books/9781617292460

180 CHAPTER 7 Reactive streaming

www.itbook
7.4.3 Building applications with streaming

It seems that the software world is heading to streaming. You find streams in Apache
Spark, Storm, Samza, Apex, Flink, Kafka, and more. If you stop and reflect for a
moment, you realize that the move to streaming is a consequence of software that bet-
ter reflects the real world, because the real world has a lot of asynchronous events. No
matter how many incoming messages a system can handle at the same time, a few too
many events might arrive and spoil the fun. In the real world, the solution is to slow
the influx to something that the system can handle. Reactive streaming brings the
same solution to software by telling the source to slow down so the application can
catch up. This chapter showed you how to do that. In the next chapter, you put this
knowledge to use with two types of messages that often arrive in a stream: commands
and events.

Summary
 Bursts of message traffic can overflow into unexpected parts of your system.

Overflowing buffers damage resiliency because the system relies on lower levels
to recover.

 Backpressure defends your application by telling clients how many messages it’s
prepared to handle. Backpressure is implemented according to the same reac-
tive principles as the rest of the system, so it’s nonblocking, message-driven, and
asynchronous.

 Akka Streams are constructed from processing stages. A typical stream consists
of a source, some flows, and a sink. The Scala DSL is a rich library for assem-
bling commonly needed processing stages.

 A stream of events can be converted to messages that can be processed by an
actor.

 Reactive Streams is an API for implementing backpressure. You can use it to
identify messaging frameworks with backpressure support and to create more
portable reactive applications. Implementations include Akka Streams, Java 9,
Spring 5, and .Net.
.store/books/9781617292460

https://itbook.store/books/9781617292460

www.itbook.store/books/9781617292460

https://itbook.store/books/9781617292460

	SC-DeVore-front
	SampleChapterPages-7
	SC-Ch-07
	DeVore-back

