
M A N N I N G

Alex Young
Bradley Meck
Mike Cantelon
WITH Tim Oxley
 Marc Harter
 T.J. Holowaychuk
 Nathan Rajlich

SECOND EDITION

SAMPLE CHAPTER

www.itbook.store/books/9781617292576

https://itbook.store/books/9781617292576

Node.js in Action, Second Edition
by Alex Young, Bradley Meck, Mike Cantelon

with Tim Oxley, Marc Harter, T.J. Holowaychuk, Nathan Rajlich

Sample Chapter 1

Copyright 2017 Manning Publications

www.itbook.store/books/9781617292576

https://itbook.store/books/9781617292576

brief contents
PART 1 WELCOME TO NODE ... 1

1 ■ Welcome to Node.js 3
2 ■ Node programming fundamentals 19
3 ■ What is a Node web application? 50

PART 2 WEB DEVELOPMENT WITH NODE 65
4 ■ Front-end build systems 67
5 ■ Server-side frameworks 81
6 ■ Connect and Express in depth 108
7 ■ Web application templating 159
8 ■ Storing application data 182
9 ■ Testing Node applications 224

10 ■ Deploying Node applications and maintaining uptime 250

PART 3 BEYOND WEB DEVELOPMENT 265
11 ■ Writing command-line applications 267
12 ■ Conquering the desktop with Electron 279

www.itbook.store/books/9781617292576

https://itbook.store/books/9781617292576

www.itbook.store
Part 1

Welcome to Node

Node is now a mature web development platform. In chapters 1 to 3, you’ll
learn about Node’s main features, including how to use the core modules and
npm. You’ll also see how Node uses modern JavaScript, and how to build a web
application from scratch. After reading these chapters, you’ll have a solid under-
standing of what Node can do and of how to create your own projects.

/books/9781617292576

https://itbook.store/books/9781617292576

2 CHAPTER

www.itboo
k.store/books/9781617292576

https://itbook.store/books/9781617292576

www.itbook.sto
Welcome to Node.js
Node.js is an asynchronous, event-driven JavaScript runtime that offers a powerful
but concise standard library. It’s managed and supported by the Node.js Founda-
tion, an industry consortium with an open governance model. Two actively sup-
ported versions of Node are available: Long-Term Support (LTS) and Current. If
you want to learn more about how Node is managed, the official website has plenty
of documentation (https://nodejs.org/).

 Since Node.js appeared in 2009, JavaScript has gone from a barely tolerated
browser-centric language to one of the most important languages for all kinds of
software development. This is partly due to the arrival of ECMAScript 2015, which
solved several critical problems in previous versions of the language. Node uses
Google’s V8 JavaScript engine that’s based on the sixth edition of the ECMAScript
standard, which is sometimes called ES6 and abbreviated as ES2015. It’s also due
to innovative technologies such as Node, React, and Electron, which allow Java-
Script to be used everywhere: from the server to the browser, and in native mobile

This chapter covers
 What is Node.js?

 Defining Node applications

 The advantages of using Node

 Asynchronous and nonblocking I/O
3

re/books/9781617292576

https://nodejs.org/
https://itbook.store/books/9781617292576

4 CHAPTER 1 Welcome to Node.js

www.itboo
applications. Even big companies such as Microsoft are embracing JavaScript, and
Microsoft has even contributed to the success of Node.

 In this chapter, you’ll learn more about Node, its event-driven nonblocking model,
and some of the reasons that JavaScript has become a great general-purpose program-
ming language. First, let’s look at a typical Node web application.

1.1 A typical Node web application
One of the strengths of Node and JavaScript in general is their single-threaded
programming model. Threads are a common source of bugs, and although some
recent programming languages, including Go and Rust, have attempted to offer safer
concurrency tools, Node retains the model used in the browser. In browser-based
code, we write sequences of instructions that execute one at a time; code doesn’t
execute in parallel. This doesn’t make sense for user interfaces, however: users don’t
want to wait around for slow operations such as network or file access to finish. To
get around this, browsers use events: when you click a button, an event fires, and a
function runs that has previously been defined but not yet executed. This avoids
some of the issues found in threaded programming, including resource deadlocks
and race conditions.

1.1.1 Nonblocking I/O

What does this mean in the context of server-side programming? The situation is simi-
lar: I/O requests such as disk and network access are also comparatively slow, so we
don’t want the runtime to block business logic from executing while reading files or
sending messages over the network. To solve this, Node uses three techniques: events,
asynchronous APIs, and nonblocking I/O. Nonblocking I/O is a low-level term from a
Node programmer’s perspective. It means your program can make a request for a net-
work resource while doing something else, and then, when the network operation has
finished, a callback will run that handles the result.

 Figure 1.1 shows a typical Node web application that uses the web application
library Express to handle the order flow for a shop. Browsers make requests to buy a
product, and then the application checks the current stock inventory, creates an
account for the user, emails the receipt, and sends back a JSON HTTP response.
Concurrently, other things happen as well: an email receipt is sent, and a database
is updated with the user’s details and order. The code itself is straightforward,
imperative JavaScript, but the runtime behaves concurrently because it uses non-
blocking I/O.

 In figure 1.1 the database is accessed over the network. In Node, that network
access is nonblocking, because Node uses a library called libuv (http://libuv.org/) to
provide access to the operating system’s nonblocking network calls. This is imple-
mented differently in Linux, macOS, and Windows, but all you have to worry about
is your friendly JavaScript database library. While you’re writing code such as
db.insert(query, err => {}), Node is doing highly optimized, nonblocking
networking underneath.
k.store/books/9781617292576

http://libuv.org/
https://itbook.store/books/9781617292576

5A typical Node web application

www.itbook.
Disk access is similar, but intriguingly not the same. When the email receipt is gener-
ated and the email template is read from the disk, libuv uses a thread pool to provide
the illusion that a nonblocking call is being used. Managing a thread pool is no fun at
all, but writing email.send('template.ejs', (err, html) => {}) is definitely
much easier to understand.

 The real benefit to using asynchronous APIs with nonblocking I/O is that Node
can do other things while these comparatively slow processes happen. Even though
you have only a single-threaded, single-process Node web app running, it can handle
more than one connection from potentially thousands of website visitors at any one
time. To understand this, you need to look at the event loop.

1.1.2 The event loop

Now let’s zoom into a specific aspect of figure 1.1: responding to browser requests. In
this application, Node’s built-in HTTP server library, which is a core module called
http.Server, handles the request by using a combination of streams, events, and
Node’s HTTP request parser, which is native code. This triggers a callback in your
application to run, which has been added using the Express (https://expressjs.com/)

Check
inventory

Request body: order info
Response

JSON

SQL INSERT

Error
handler

Register
user

Thread
A

Thread
C

Thread
B

Email
receipt

HTTP
response

Load template
from disk

JavaScript
error object

next
(error)

called

Node and ExpressYour application

libuv

HTTP
router

Nonblocking
network I/O

Browser

Receipt
email

Database

Figure 1.1 Asynchronous and nonblocking components in a Node application
store/books/9781617292576

https://expressjs.com/
https://itbook.store/books/9781617292576

6 CHAPTER 1 Welcome to Node.js

www.itboo
web application library. The callback that runs causes a database query to run, and
eventually the application responds with JSON using HTTP. This whole process uses a
minimum of three nonblocking network calls: one for the request, one for the data-
base, and another for the response. How does Node schedule all these nonblocking
network operations? The answer is the event loop. Figure 1.2 shows how the event
loop is used for these three network operations.

The event loop runs one way (it’s a first-in, first-out queue) and goes through several
phases. Figure 1.2 shows a simplified set of the important phases that run on each iter-
ation of the loop. First, the timers execute, which are the timers scheduled with the
JavaScript functions setTimeout and setInterval. Next, I/O callbacks run, so if
any I/O has returned from one of the nonblocking network calls, this is where your
callback is triggered. The poll phase is where new I/O events are retrieved, and then
callbacks scheduled with setImmediate run at the end. This is a special case because
it allows you to schedule a callback to run immediately after the current I/O callbacks
already in the queue. This might sound abstract at this stage, but what you should take
away is the idea that although Node is single-threaded, it does give you tools to write
efficient and scalable code.

 Over the last few pages, you might have noticed that the examples have been written
using ES2015 arrow functions. Node supports many new JavaScript features, so before
moving on, let’s look at what new language features you can use to write better code.

1.2 ES2015, Node, and V8
If you’ve ever used JavaScript and been disheartened by the lack of classes and
strange scoping rules, you’re in luck: Node has fixed most of these problems! You can
now make classes, and using const and let (instead of var) fixes scoping issues. As
of Node 6, you can use default function parameters, rest parameters, the spread

libuv

Function:
post/order Create user

Send JSON
to browser

Event loop

Run timers
Call pending callbacks

Poll for I/O
setImmediate

Database

1. Request call 2. Database call 3. Response call

Figure 1.2 The event loop
k.store/books/9781617292576

https://itbook.store/books/9781617292576

7ES2015, Node, and V8

www.itbook.
operator, for…of loops, template strings, destructuring, generators, and more. A
great summary of Node’s ES2015 support can be found at http://node.green.

 First, let’s look at classes. ES5 and earlier versions required the use of prototype
objects to create class-like constructs:

function User() {
 // constructor
}

User.prototype.method = function() {
 // Method
};

With Node 6 and ES2015, you can now write the same code by using classes:

class User {
 constructor() {}
 method() {}
}

This uses less code and is a little easier to read. But there’s more: Node also supports
subclassing, super, and static methods. For those versed in other languages, the adop-
tion of class syntax makes Node more accessible than when we were stuck with ES5.

 Another important feature in Node 4 and above is the addition of const and let.
In ES5, all variables were created with var. The problem with var is it defines variables
in function or global scope, so you couldn’t define a block-level variable in an if state-
ment, for loop, or other block.

Node also has native promises and generators. Promises are supported by lots of librar-
ies, allowing you to write asynchronous code with a fluent interface style. You’re prob-
ably familiar with fluent interfaces already: if you’ve ever used an API such as jQuery
or even JavaScript arrays, you’ll have seen it. The following short example shows you
how to chain calls to manipulate an array in JavaScript:

[1, 2, 3]
 .map(n => n * 2)
 .filter(n => n > 3);

Generators are used to give a synchronous programming style to asynchronous I/O. If
you want to see a practical example of generators in Node, take a look at the Koa web

Should I use const or let?
When deciding whether to use const or let, you almost always want const.
Because most of your code will use instances of your own classes, object literals, or
values that don’t change, you can use const most of the time. Even instances of
objects that have properties that change can be declared with const, because
const means only that the reference is read-only, not that the value is immutable.
store/books/9781617292576

https://atom.io/
https://atom.io/
http://localhost:3000
http://localhost:3000
http://node.green
https://itbook.store/books/9781617292576

8 CHAPTER 1 Welcome to Node.js

www.itboo
application library (http://koajs.com/). If you use promises or other generators with
Koa, you can yield on values rather than nesting callbacks.

 One other useful ES2015 feature in Node is template strings. In ES5, string literals
didn’t support interpolation or multiple lines. Now by using the backtick symbol (`),
you can insert values and span strings over several lines. This is useful when stubbing
quick bits of HTML for web apps:

this.body = `
 <div>
 <h1>Hello from Node</h1>
 <p>Welcome, ${user.name}!</p>
 </div>
`;

In ES5, the previous example would have to be written like this:

this.body = '\n';
this.body += '<div>\n';
this.body += ' <h1>Hello from Node</h1>\n';
this.body += ' <p>Welcome, ' + user.name + '</p>\n';
this.body += '<div>\n';

The older style not only used more code but also made introducing bugs easy. The
final big feature, which is of particular importance to Node programmers, is arrow
functions. Arrow functions let you streamline syntax. For example, if you’re writing a
callback that has a single argument and returns a value, you can write it with hardly
any syntax at all:

[1, 2, 3].map(v => v * 2);

In Node we typically need two arguments, because the first argument to a callback is
often an error object. In that case, you need to use parentheses around the arguments:

const fs = require('fs');
fs.readFile('package.json',
 (err, text) => console.log('Length:', text.length)
);

If you need to use more than one line in the function body, you need to use curly
brackets. The value of arrow functions isn’t just in the streamlined syntax; it has to do
with JavaScript scopes. In ES5 and before, defining functions inside other functions
makes the this reference become the global object. Here’s an ES5-style class that suf-
fers from a bug due to this issue:

function User(id) {
// constructor
 this.id = id;
}

User.prototype.load = function() {
 var self = this;
 var query = 'SELECT * FROM users WHERE id = ?';
k.store/books/9781617292576

http://koajs.com/
https://itbook.store/books/9781617292576

9ES2015, Node, and V8

www.itbook.
 sql.query(query, this.id, function(err, users) {
 self.name = users[0].name;
 });
};

The line that assigns self.name can’t be written as this.name, because the function’s
this will be the global object. A workaround used to be to assign a variable to this at
the entry point to the parent function or method. But arrow functions are bound cor-
rectly. In ES2015, the previous example can be rewritten to be much more intuitive:

class User {
 constructor(id) {
 this.id = id;
 }

 load() {
 const query = 'SELECT * FROM users WHERE id = ?';
 sql.query(query, this.id, (err, users) => {
 this.name = users[0].name;
 });
}
}

Not only can you use const to better model the database query, but there’s also no
need for the clumsy self variable. ES2015 has many other great features that make
Node code more readable, but let’s look at what powers this in Node and how it
relates to the nonblocking I/O features that you’ve already looked at.

1.2.1 Node and V8

Node is powered by the V8 JavaScript engine, which is developed by the Chromium
project for Google Chrome. The notable feature of V8 is that it compiles directly to
machine code, and it includes code-optimization features that help keep Node fast. In
section 1.1.1, we talked about the other main native part of Node, libuv. That part
handles I/O; V8 handles interpreting and running your JavaScript code. To use libuv
with V8, you use a C++ binding layer. Figure 1.3 shows all of the separate software com-
ponents that make up Node.

Your cool app.js

Node’s JavaScript core modules

Node.js platform's JavaScript,
C, and C++ libraries

C++ bindings
V8

libuv c-ares http

The operating system
Figure 1.3 Node’s software stack
store/books/9781617292576

https://itbook.store/books/9781617292576

10 CHAPTER 1 Welcome to Node.js

www.itboo
The specific JavaScript features that are available to Node therefore come down to
what V8 supports. This support is managed through feature groups.

1.2.2 Working with feature groups

Node includes ES2015 features based on what V8 provides. Features are grouped
under shipping, staged, and in progress. The shipping features are turned on by default,
but staged and in progress can be enabled using command-line flags. If you want to
use staged features, which are almost complete but not considered complete by the V8
team, then you can run Node with the --harmony flag. In-progress features, however,
are less stable and are enabled with specific feature flags. Node’s documentation rec-
ommends querying the currently available in-progress features by grepping for in
progress:

node --v8-options | grep "in progress"

The list will vary between Node releases. Node itself also has a versioning schedule
that defines which APIs are available.

1.2.3 Understanding Node’s release schedule

Node releases are grouped into Long-Term Support (LTS), Current, and Nightly. LTS
releases get 18 months of support and then 12 months of maintenance support.
Releases are made according to semantic versioning (SemVer). SemVer gives releases
a major, minor, and patch version number. For example, 6.9.1 has a major version of
6, minor of 9, and patch of 1. Whenever you see a major version change for Node, it
means some of the APIs may be incompatible with your projects, and you’ll need to
retest them against this version of Node. Also, in Node release terminology, a major
version increment means a new Current release has been cut. Nightly builds are auto-
matically generated every 24 hours with the latest changes, but are typically used only
for testing Node’s latest features.

 Which version you use depends on your project and organization. Some may pre-
fer LTS because updates are less frequent: this might work well in larger enterprises
that find it harder to manage frequent updates. But if you want the latest performance
and feature improvements, Current is a better choice.

1.3 Installing Node
The easiest way to install Node is to use the installer from https://nodejs.org. Install
the latest Current version (version 6.5 at the time of this writing) by using the Mac or
Windows installer. You can download the source yourself, or install it by using your
operating system’s package manager. Debian, Ubuntu, Arch, Fedora, FreeBSD, Gen-
too, and SUSE all have packages. There are also packages for Homebrew and
SmartOS. If your operating system doesn’t have a package, you can build from source.

NOTE Appendix A provides more details on installing Node.
k.store/books/9781617292576

https://ghost.org/
https://ghost.org/
https://ghost.org/
https://nodejs.org
https://itbook.store/books/9781617292576

11Node’s built-in tools

www.itbook.
The full list of packages is on Node’s website (https://nodejs.org/en/download/
package-manager/), and the source is on GitHub (https://github.com/nodejs/node).
Bookmarking the GitHub source is worthwhile in case you want to poke around in the
source without downloading it.

 Once you’ve installed Node, you can try it out straight away by typing node -v in
the terminal. This should print out the version of Node that you just downloaded and
installed. Next, create a file called hello.js that looks like this:

console.log("hello from Node");

Save the file and run it by typing node hello.js. Congratulations—you’re now
ready to start writing applications with Node!

When you install Node, you also get some built-in tools. Node isn’t just the inter-
preter: it’s a whole suite of tools that form the Node platform. Let’s look in more
detail at the tools that are bundled with Node.

1.4 Node’s built-in tools
Node comes with a built-in package manager, the core JavaScript modules that sup-
port everything from file and network I/O to zlib compression, and a debugger. The
npm package manager is a critical piece of this infrastructure, so let’s look at it in
more detail.

 If you want to verify that Node has been installed correctly, you can run node -v
and npm -v on the command-line. These commands show the version of Node and
npm that you have installed.

Getting started quickly in Windows, Linux, and macOS
If you’re fairly new to programming in general and you don’t yet have a preferred text
editor, then a solid choice for Node is Visual Studio Code (https://code.visualstudio
.com/). It’s made by Microsoft, but it’s open source and a free download, and sup-
ports Windows, Linux, and macOS.

Some of the beginner-friendly features in Visual Studio Code include JavaScript syn-
tax highlighting and Node core module completion, so your JavaScript will look clearer
and you’ll be able to see lists of supported methods and objects as you type. You
can also open a command-line interface where Node can be invoked just by typing
Node. This is useful for running Node and npm commands. Windows users might pre-
fer this to using cmd.exe. We tested the listings with Windows and Visual Studio
Code, so you shouldn’t need anything special to run the examples.

To get started, you can follow a Visual Studio Code Node.js tutorial (https://
code.visualstudio.com/docs/runtimes/nodejs).
store/books/9781617292576

https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://github.com/nodejs/node
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/runtimes/nodejs
https://code.visualstudio.com/docs/runtimes/nodejs
https://itbook.store/books/9781617292576

12 CHAPTER 1 Welcome to Node.js

www.itboo
1.4.1 npm

The npm command-line tool can be invoked by typing npm. You can use it to install
packages from the central npm registry, but you can also use it to find and share your
own open and closed source projects. Every npm package in the registry has a website
that shows the readme file, author, and statistics about downloads.

 That doesn’t cover everything, though. npm is also npm, Inc.—the company that
runs the npm service and that provides services used by commercial enterprises. This
includes hosting private npm packages: you can pay a monthly fee to host your com-
pany’s source code so your JavaScript developers can easily install it with npm.

 When installing packages with the npm install command, you have to decide
whether you’re adding them to your current project or installing them globally. Glob-
ally installed packages are usually used for tools, typically programs you run on the
command line. A good example of this is the gulp-cli package.

 To use npm, create a package.json file in a directory that will contain your Node
project. The easiest way to create a package.json file is to use npm to do it for you.
Type the following on the command line:

mkdir example-project
cd example-project
npm init -y

If you open package.json, you’ll see a simple JSON file that describes your project. If
you now install a module from www.npmjs.com and use the --save option, npm will
automatically update your package.json file. Try it out by typing npm install, or npm
i for short:

npm i --save express

If you open your package.json file, you should see express added under the depen-
dencies property. Also, if you look inside the node_modules folder, you’ll see an
express directory. This contains the version of Express that you just installed. You can
also install modules globally by using the --global option. You should use local mod-
ules as much as possible, but global modules can be useful for command-line tools
that you want to use outside Node JavaScript code. An example of a command-line
tool that’s installable with npm is ESLint (http://eslint.org/).

 When you’re starting out with Node, you’ll often use packages from npm. Node
comes with lots of useful built-in libraries, which are known as the core modules. Let’s
look at these in more detail.

1.4.2 The core modules

Node’s core modules are similar to other languages’ standard libraries; these are the
tools you need to write server-side JavaScript. The JavaScript standards themselves
don’t include anything for working with the network, or even file I/O as most server-
side developers know it. Node has to add features for files and TCP/IP networking at a
minimum to be a viable server-side language.
k.store/books/9781617292576

http://eslint.org/
https://itbook.store/books/9781617292576

13Node’s built-in tools

www.itbook.
FILESYSTEM

Node ships with a filesystem library (fs, path), TCP clients and servers (net), HTTP
(http and https), and domain name resolution (dns). There’s a useful assertion
library that’s used mostly to write tests (assert), and an operating system library for
querying information about the platform (os).

 Node also has libraries that are unique to Node. The events module is a small
library for working with events, and it’s used as a basis for much of Node’s APIs. For
example, the stream module uses the events module to provide abstract interfaces for
working with streams of data. Because all data streams in Node use the same APIs, you
can easily compose software components; if you have a file-stream reader, you can
pipe it through a zlib transform that compresses the data, and then pipe it through a
file-stream writer to write the data out to a file.

 The following listing shows how to use Node’s fs module to create read- and write-
streams that can be piped through another stream (gzip) to transform the data—in
this case, by compressing it.

const fs = require('fs');
const zlib = require('zlib');
const gzip = zlib.createGzip();
const outStream = fs.createWriteStream('output.js.gz');

fs.createReadStream('./node-stream.js')
 .pipe(gzip)
 .pipe(outStream);

NETWORKING

For a while, we used to say that creating a simple HTTP server was Node’s true Hello
World example. To build a server in Node, you just need to load the http module and
give it a function. The function accepts two arguments: the incoming request and the
outgoing response. The next listing shows an example you can run in your terminal.

const http = require('http');
const port = 8080;

const server = http.createServer((req, res) => {
 res.end('Hello, world.');
});

server.listen(port, () => {
 console.log('Server listening on: http://localhost:%s', port);
});

Save listing 1.2 as hello.js and run it with node hello.js. If you visit http://local-
host:8080, you should see the message from line 4.

Listing 1.1 Using core modules and streams

Listing 1.2 Hello World with Node’s http module
store/books/9781617292576

https://itbook.store/books/9781617292576

14 CHAPTER 1 Welcome to Node.js

www.itboo
 Node’s core modules are minimal but also powerful. You can often achieve a lot
just by using these modules, without even installing anything from npm. For more on
the core modules, refer to https://nodejs.org/api/.

 The final built-in tool is the debugger. The next section introduces Node’s debug-
ger with an example.

1.4.3 The debugger

Node includes a debugger that supports single-stepping and a REPL (read-eval-print
loop). The debugger works by talking to your program with a network protocol. To
run your program with a debugger, use the debug argument at the command line.
Let’s say you’re debugging listing 1.2:

node debug hello.js

Then you should see the following output:

< Debugger listening on [::]:5858
connecting to 127.0.0.1:5858 ... ok
break in node-http.js:1
> 1 const http = require('http');
 2 const port = 8080;
 3

Node has invoked your program and is debugging it by connecting on port 5858. At
this point, you can type help to see the list of available commands, and then c to con-
tinue program execution. Node always starts the program in a break state, so you always
need to continue execution before you can do anything else.

 You can make the debugger break by adding a debugger statement anywhere in
your code. When the debugger statement is encountered, the debugger will halt,
allowing you to issue commands. Imagine you’ve written a REST API that creates
accounts for new users, and your user creation code doesn’t seem to be persisting the
new user’s password hash to the database. You could add debugger to the save
method in the User class, and then step over each instruction to see what happens.

Interactive debugging
Node supports the Chrome Debugging Protocol. To debug a script using Chrome’s
Developer Tools, use the --inspect flag when running a program:

node --inspect --debug-brk

This will make Node launch the debugger and break on the first line. It’ll print a URL
to the console that you can open in Chrome so you can use Chrome’s built-in debug-
ger. Chrome’s debugger lets you step through code line by line, and it shows the
value in each variable and object. It’s a much better alternative to typing con-
sole.log.
k.store/books/9781617292576

https://nodejs.org/api/
https://itbook.store/books/9781617292576

15The three main types of Node program

www.itbook.
Debugging is covered in more detail in chapter 9. If you want to try it right now, the
best place to start is the Node manual page on the debugger (https://nodejs.org/api/
debugger.html).

 So far in this chapter, we’ve talked about how Node works and what it provides to
developers. You’re probably also itching to hear about the kinds of things that people
are using Node for in production. The next section looks at the types of programs you
can make with Node.

1.5 The three main types of Node program
Node programs can be divided into three typical types: web applications, command-
line tools and daemons, and desktop applications. Web applications include simple
apps that serve up single-page applications, REST microservices, and full-stack web
apps. You may have already used command-line tools written with Node—for exam-
ple, npm, Gulp, and webpack. Daemons are background services. A good example is
the PM2 (www.npmjs.com/package/pm2) process manager. Desktop applications
tend to be software written with the Electron framework (http://electron.atom.io/),
which uses Node as the back end for web-based desktop apps. Examples include the
Atom (https://atom.io/) and Visual Studio Code (https://code.visualstudio.com/)
text editors.

1.5.1 Web applications

Node is server-side JavaScript, so it makes sense as a platform for building web applica-
tions. By running JavaScript on both the client and server, opportunities exist for code
reuse between each environment. Node web apps tend to be written with frameworks
such as Express (http://expressjs.com/). Chapter 6 reviews the major server-side
frameworks available for Node. Chapter 7 is specifically about Express and Connect,
and chapter 8 is about web application templating.

 You can create a quick Express web application by creating a new directory and
then installing the Express module:

mkdir hello_express
cd hello_express
npm init -y
npm i express --save

Next, add the following JavaScript code to a file called server.js.

const express = require('express');
const app = express();

app.get('/', (req, res) => {
 res.send('Hello World!');
});

Listing 1.3 A Node web application
store/books/9781617292576

https://nodejs.org/api/debugger.html
https://nodejs.org/api/debugger.html
http://electron.atom.io/
https://atom.io/
https://code.visualstudio.com/
http://expressjs.com/
https://itbook.store/books/9781617292576

16 CHAPTER 1 Welcome to Node.js

www.itboo
app.listen(3000, () => {
 console.log('Express web app on localhost:3000');
});

Now type npm start and you’ll have a Node web server running on port 3000. If you
open http://localhost:3000 in a browser you’ll be able to see the text from the
res.send line.

 Node is also a big part of the front-end development world, because it’s the main
tool used when transpiling other languages such as TypeScript to JavaScript.
Transpilers compile languages from one high-level language to another; this contrasts
with traditional compilers, which compile from high-level to low-level languages.
Chapter 4 is dedicated to front-end build systems, where we look at using npm scripts,
Gulp, and webpack.

 Not all web development involves building web apps. Sometimes you need to do
things such as extract data from a legacy website to use when rebuilding it. We’ve
included appendix B, which is all about web scraping, as a way of showing how Node’s
JavaScript runtime can be used to work with the Document Object Model (DOM), as
well as showing how to use Node outside the comfort zone of typical Express web
apps. If you just want to quickly make a basic web app, chapter 3 provides a self-con-
tained tutorial on building Node web applications.

1.5.2 Command-line tools and daemons

Node is used to write command-line tools such as process managers and JavaScript
transpilers that are used by JavaScript developers. But it’s also used as a convenient
way to write handy command-line tools that do other things, including image conver-
sion, and scripts for controlling media playback.

 Here’s a quick command-line example that you can try. Create a new file called
cli.js and add the following lines:

const [nodePath, scriptPath, name] = process.argv;
console.log('Hello', name);

Run the script with node cli.js yourName and you’ll see Hello yourName. This
works by using ES2015 destructuring to pull out the third argument from pro-
cess.argv. The process object is available to every Node program and forms the
basis for accepting arguments when users run your programs.

 You can do a few other things with Node command-line programs. If you add a line
to the start of the program that starts with #!, and grant it execute permissions
(chmod +x cli.js), then you can make the shell use Node when it invokes the pro-
gram. Now you can run your Node programs just like any other shell script. Just use a
line like this for Unix-like systems:

#!/usr/bin/env node

By using Node this way, you can replace your shell scripts with Node. This means
Node can be used with any other command-line tools, including background pro-
grams. Node programs can be invoked by cron, or run in the background as daemons.
k.store/books/9781617292576

https://itbook.store/books/9781617292576

17The three main types of Node program

www.itbook.
 If all of this is new to you, don’t worry: chapter 11 introduces writing command-
line utilities, and shows how this type of program plays into Node’s strengths. For
example, command-line tools make heavy use of streams as a universal API, and
streams are one of Node’s most powerful features.

1.5.3 Desktop applications

If you’ve been using the Atom or Visual Studio Code text editors, then you’ve been
using Node all along. The Electron framework uses Node as the back end, so when-
ever I/O such as disk or network access is required, Electron uses Node. Electron also
uses Node for managing dependencies, which means you can add packages from npm
to Electron projects.

 If you want to quickly try Electron now, you can clone the Electron repository and
start up an application:

git clone https://github.com/electron/electron-quick-start
cd electron-quick-start
npm install && npm start
curl localhost:8081

To learn how to write an app with Electron, flip ahead to chapter 12.

1.5.4 Applications suited to Node

We’ve walked through some of the types of applications you can build with Node, but
there are certain types of applications that Node excels at. Node is commonly used to
create real-time web applications, which can mean anything from user-facing applica-
tions such as chat servers to back ends for collecting analytics. Because functions are
first-class objects in JavaScript, and Node has a built-in event model, writing asynchro-
nous real-time programs feels more natural than other scripting languages.

 If you’re building traditional Model-View-Controller (MVC) web applications,
Node can do this well. Popular blogging engines are built with Node, such as Ghost
(https://ghost.org/); Node is now a proven platform for building these types of web
applications. The style of development is different from WordPress, which is built with
PHP, but Ghost supports similar features, including templates and a multiuser admin-
istration area.

 Node can also do things that are much harder in other languages. It’s based on
JavaScript, and it’s possible to run browser JavaScript in Node. Complex client-side
applications can be adapted to run on a Node server, allowing servers to pre-render
web applications, which speeds up page rendering time in the browser and also facili-
tates search engines.

 Finally, if you’re considering building a desktop or mobile app, you should try
Electron, which is powered by Node. Now that web user interfaces are as rich as desk-
top experiences, Electron desktop apps can rival native web applications and cut
down development time. Electron also supports three major platforms, so you can
reuse your code across Windows, Linux, and macOS.
store/books/9781617292576

https://ghost.org/
https://itbook.store/books/9781617292576

18 CHAPTER 1 Welcome to Node.js

www.itboo
1.6 Summary
 Node is an evented and nonblocking platform for building JavaScript applica-

tions.
 V8 is used as the JavaScript runtime.
 libuv is the native library that provides fast, cross-platform, nonblocking I/O.
 Node has a small standard library known as the core modules that add network

and disk I/O to JavaScript.
 Node comes with a debugger and a dependency manager (npm).
 Node is used for building web applications, command-line tools, and even desk-

top applications.
k.store/books/9781617292576

https://itbook.store/books/9781617292576

Young ● Meck ● Cantelon ● Oxley ● Harter ● Holowaychuk ● Rajlich

Y
ou already know JavaScript. Th e trick to mastering
Node.js is learning how to build applications that fully
exploit its powerful asynchronous event handling and

non-blocking I/O features. Th e Node server radically simplifi es
event-driven real-time apps like chat, games, and live data
analytics, and with its incredibly rich ecosystem of modules,
tools, and libraries, it’s hard to beat!

Based on the bestselling fi rst edition, Node.js in Action, Second
Edition is a completely new book. Packed with practical examples,
it teaches you how to create high-performance web servers using
JavaScript and Node. You’ll master key design concepts such as
asynchronous programming, state management, and event-
driven programming. And you’ll learn to put together MVC
servers using Express and Connect, design web APIs, and set up
the perfect production environment to build, lint, and test.

What’s Inside
● Mastering non-blocking I/O
● Th e Node event loop
● Testing and deploying
● Web application templating

Written for web developers with intermediate JavaScript skills.

Th e Second Edition author team includes Node masters
Alex Young, Bradley Meck, Mike Cantelon, and Tim Oxley,
along with original authors Marc Harter, T.J. Holowaychuk, and
Nathan Rajlich.

To download their free eBook or read it in their browser,
owners of this book should visit

www.manning.com/books/node-js-in-action-second-edition

$49.99 / Can $65.99 [INCLUDING eBOOK]

Node.js IN ACTION Second Edition

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Th e defi nitive guide to one
of the most important tools

 of the modern web.”
—William E. Wheeler

TEKsystems

“Everything you need to
know about Node.js ... and

then some.”—Sander Rossel
COAS Soft ware Systems

“Node is a vast subject;
this book is both a lighthouse

and a manual.”
—Philippe Charrière

Clever Cloud

“A gentle but powerful
introduction to the

 Node.js ecosystem.”—Jeff Smith, Ascension

SEE INSERT

www.itbook.store/books/9781617292576

https://itbook.store/books/9781617292576

	Cantelon-Node-2ed-SCfront
	SampleChapterPages-1
	Ch-01
	Cantelon-Node-2ed-ebook-back

