
M A N N I N G

Mike McNeil
Irl Nathan

IN ACTION

S A M P L E C H A P T E R

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

Sails.js in Action

by Mike McNeil
Irl Nathan

 Chapter 1

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

v

brief contents
1 ■ Getting started 1

2 ■ First steps 37

3 ■ Using static assets 55

4 ■ Using the blueprint API 88

5 ■ Custom backend code 112

6 ■ Using models 137

7 ■ Custom actions 171

8 ■ Server-rendered views 214

9 ■ Authentication and sessions 235

10 ■ Policies and access control 261

11 ■ Refactoring 282

12 ■ Embedded data and associations 318

13 ■ Ratings, followers, and search 345

14 ■ Realtime with WebSockets 376

15 ■ Deployment, testing, and security 405

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

1

Getting started

Too often, backend programming is put on a pedestal, where only highly trained
and disciplined experts are worthy. That’s baloney. Backend programming isn’t
rocket science—but that doesn’t mean it’s easy. It means that for those new to it,
you just need a healthy curiosity and a powerful framework like Sails to get started.
If you already have experience with backend programming in a language other
than JavaScript, the transition can also be frustrating. Shifting from synchronous
to asynchronous patterns can take some time to master. Whether you’re new or
experienced, Sails will make this transition much easier. Our goal is to provide an

This chapter covers
 Reviewing modern web development

 Understanding the architecture of the Sails
framework

 Positioning Sails in modern web development

 Installing the necessary components of the
technical stack

 Setting up the tools of your development
environment

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

2 CHAPTER 1 Getting started

entertaining, practical, gap-free path to understanding Sails as well as modern back-
end web development.

1.1 What is Sails?
Sails is a JavaScript backend framework that makes it easy to build custom, enterprise-
grade Node.js apps. It’s designed to emulate the familiar MVC pattern of frameworks
like Ruby on Rails but with support for the requirements of modern apps: data-driven
APIs with a scalable, service-oriented architecture. It’s especially good for building
chat, realtime dashboards, or multiplayer games, but you can use it for any web appli-
cation project, top to bottom.

 The book is targeted at two types of developers. First is a developer who has fron-
tend experience and is looking to become a full-stack programmer using JavaScript,
a language they already know. Second is a developer who has backend experience in a
language other than JavaScript and is looking to expand their knowledge to Node.js.
In either case, familiarity with HTML, CSS, and JavaScript is expected, as well as expe-
rience with making AJAX requests. Most important is a curiosity about how to build a
web application.

1.2 What can you build with Sails?
Whether you’re a frontend developer seeking to expand your backend knowledge or
a server-side developer unfamiliar with using Node and JavaScript on the backend, the
common denominator we all share is a desire to create web applications. Sails is
designed to be compatible with whatever strategy you have for building your frontend,
whether it be Angular, Backbone, iOS/Objective-C, Android/Java, or even a “head-
less” app that just offers up a raw API to be used by another web service or your devel-
oper community. Sails is great for building everyday backend apps that handle HTTP
requests and WebSockets. It isn’t a good approach for building the client side of your
application—that part is completely up to you. If you end up changing your approach
(for example, switching from Backbone to Angular) or building a new frontend entirely
(for example, building a Windows Phone native app), your Sails app will still work.

WARNING You’re about to experience a buzzword bonanza. If you see a term
you don’t recognize, don’t worry—we’ll return to these concepts in detail
later in the book.

What types of applications can you build? Sails excels at building these:

 Hybrid web applications—These applications combine a JSON API with server-
rendered views; that is, in addition to an API, this type of application can serve
dynamic (that is, personalized) HTML pages, making it suitable for use cases
that demand search engine optimization (SEO). These applications often use a
client-side JavaScript framework (for example, Angular, Ember, React, and so
on), but they don’t necessarily have to. Examples of hybrid web applications
you might be familiar with are Twitter, GitHub, and Basecamp.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

3Why Sails?

 Pure APIs—These applications fulfill requests from one or more independent
frontend user interfaces. We say independent because the frontend doesn’t have
to be delivered by the same server that’s providing the JSON API—or even by a
server at all. This umbrella category includes single-page apps (SPAs), native
mobile applications (for example, iOS and Android), native desktop applica-
tions (for example, OS X, Windows, Linux), and the venerated Internet of
Things (IoT). Many mobile-first products (think Uber, Instagram, Snapchat)
start off as pure APIs.

If you aren’t sure which category your application falls into, don’t worry: the concepts
overlap. A pure API is to a hybrid web application as a square is to a rectangle. We’ll
spend the first half of this book building a pure API, and the remaining chapters
extending and maintaining it as it transitions into a hybrid web application.

1.3 Why Sails?
Sails’ ensemble of small modules works together to provide simplicity, maintainability,
and structural conventions to Node.js apps. Sails is highly configurable, so you won’t
be forced into keeping functionality you don’t need. But at the same time, it provides
a lot of powerful features by default, so you can start developing your app without hav-
ing to think about configuration. Here are some of the things Sails does right out of
the box:

 100% JavaScript—Like other MVC frameworks, Sails is built with an emphasis
on developer happiness and a convention-over-configuration philosophy. But
Node.js takes this principle to the next level. Building on top of Sails means
your app is written entirely in JavaScript, the language you and your team are
already using in the browser. Because you spend less time shifting context,
you’re able to write code in a more consistent style, which makes development
more productive and fun.

NOTE Both authors of this book can attest to how nice it is to work with one
language instead of constantly switching back and forth between JavaScript
and whatever backend language our company or customers are using. The
best part? It means you get really good at it.

 Rock-solid foundation—Sails is built on Node.js, a popular, lightweight, server-
side technology that allows developers to write blazing-fast, scalable network
applications in JavaScript. It also uses Express for handling HTTP requests and
Socket.IO for managing WebSockets. So if your app ever needs to get really low
level, you can access the raw Express or Socket.IO objects. And there’s another
nice side effect: if you already have an Express app, your existing routes will
work perfectly well in a Sails app, so migrating is a breeze.

 Frontend agnostic—Although the promise of “one language and/or framework
to rule them all” is certainly enticing, it isn’t always realistic. Different organiza-
tions, technologies, and personalities all have their preferred way of doing things.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

4 CHAPTER 1 Getting started

It’s because of this that Mike McNeil made Sails compatible with any frontend
strategy, whether it’s Angular, Backbone, iOS/Objective-C, Android/Java, Win-
dows Phone, or something else that hasn’t been invented yet. Plus, it’s easy to
serve up the same API to be consumed by another web service or community of
developers.

 Autogenerated REST APIs—Sails comes with “blueprints” that help jumpstart
your app’s backend without writing any code. Just run sails generate api
dentist and you’ll get an API that lets you search, paginate, sort, filter, create,
destroy, update, and associate dentists. Because these blueprint actions are built
on the same underlying technology as Sails, they also work with WebSockets
and any supported database out of the box.

 Use any popular database—Sails bundles a powerful object-relational mapping
(ORM) tool, Waterline, which provides a simple data access layer that just
works, no matter what database you’re using. In addition to a plethora of com-
munity projects, officially supported adapters exist for MySQL, MongoDB, Post-
greSQL, Redis, and local disk storage.

 Powerful associations—Sails offers a new take on the familiar relational model,
aimed at making data modeling more practical. You can do all the same things
you might be used to doing in an ORM (one-to-many, many-to-many), but you
can also assign multiple named associations per model. For instance, a cake
might have two collections of people: “havers” and “eaters.” Better still, you can
assign different models to different databases, and your associations/joins will
still work—even across NoSQL and relational boundaries. Sails has no problem
implicitly or automatically joining a MySQL table with a Mongo collection and
vice versa.

 Standardization—When you build a Sails app, you’re taking advantage of all
sorts of open standards behind the scenes. Almost everything has a specifica-
tion, from database and file upload adapters to hooks that make up the
framework itself. Using the machine specification, you can even make any
function in your app pluggable, making it easy to switch between different
providers for services like email delivery and social authentication. Building
on top of well-defined interfaces means that whenever you need to do some-
thing custom, your work is self-documenting, quick to implement, and simple
to debug.

 Node machine services—The Machine Specification is an open standard for Java-
Script functions. Each machine has a single, clear purpose—whether it be
sending an email, translating a text file, or fetching a web page. Machines are
self-documenting, quick to implement, and simple to debug.

 Realtime with WebSockets—Sails translates incoming socket messages for you,
making them compatible with every route in your Sails app.

 Reusable security policies—Sails provides basic security and role-based access con-
trol by default.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

5Fundamental concepts of a web application

 Sails generators—Sails provides a consistent way of creating projects using rea-
sonable defaults. Sails also contains generators for automating many tasks like
creating models and controllers. Generators are built on an extensible architec-
ture, supported by a community of developers.

 Flexible asset pipeline—Sails ships with opinionated build scripts and a default
directory structure for client-side assets. Out of the box, the asset pipeline pro-
vides support for LESS, CoffeeScript, precompiled client-side HTML templates,
and production minification. This makes setting up new projects easy and con-
sistent, but it does pose a problem when it comes time to tweak or completely
redefine that tooling to fit your personal preferences or your organization’s
best practices. Fortunately, all the default automation in Sails is implemented as
plugins for the Grunt task runner, which means your entire frontend asset
workflow is completely customizable. It also means you can choose from the
thousands of widely used, open source Grunt plugins already out there.

If you don’t understand some of these bullet points, don’t worry. Our goal isn’t to
teach you a bunch of jargon and acronyms. But by the end of the book, you’ll have a
firm conceptual grasp of each of these topics—and, more important, you’ll be able to
apply that understanding when building the backend for any of the different types of
apps listed.

1.4 Fundamental concepts of a web application
Web application development is riddled with core concepts and terminology that may
or may not be familiar to you. It’s critical that we have a common frame of reference
for them before we begin this extended journey together. This section is a jump-start
to your understanding of an important core concept in backend development: the
HTTP request/response protocol. If this seems like a review, feel free to skip to sec-
tion 1.5, “Understanding databases.”

1.4.1 Requests and responses

The heart of a web application is handling the conversations made through requests
sent by the frontend and responses sent by the backend. We’ll ease into this discus-
sion using a tool we’re all familiar with: the browser. To start with, let’s take a look
at the completed version of Brushfire, the application we’ll build together through-
out the rest of this book. Navigate your browser to https://brushfire.io, as shown in
figure 1.1.

 The browser just made a request on your behalf and the Sails server responded with
the contents of the home page you now see displayed, as shown in figure 1.2.

 When you’re talking with a waiter, you might use a protocol such as English or Span-
ish to make a request (“Could I have a glass of water?”) and receive a response (“Cer-
tainly!”). The same kind of conversation exists between a frontend and your Sails
application, but because computers don’t have the kinds of mouths, ears, or brains fit

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

6 CHAPTER 1 Getting started

for processing human language, the client and server communicate by sending spe-
cially formatted strings back and forth. This conversation is called the Hypertext Trans-
fer Protocol (HTTP).

TIP “Wait, no one said anything about learning protocols!” HTTP is just an
agreed-upon set of rules not unlike a rudimentary language. And it is this
language that enables different devices that know how to speak HTTP to
talk to each other. For the adventurous who want a low-level explanation,
check out the Request For Comments (RFC) pages for HTTP found here,
http://tools.ietf.org/html/rfc7230#page-5, which are surprisingly readable.

Requests and responses sent back and forth using the protocol comprise the underly-
ing communication bridge between our frontend client and backend Sails server.

 Let’s take a closer look at the actual request and the response. Click the Sign Up
button in the upper navigation bar of the homepage, and you should see the signup
page, as illustrated in figure 1.3.

Figure 1.1 The contents of a response from an initial request by your browser to https://brushfire.io

request

response

Figure 1.2 The frontend makes a request and the backend makes a response.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

7Fundamental concepts of a web application

Once again, the browser makes an HTTP request on your behalf and the Sails
server responds, in this case with a string of HTML markup representing the signup
page. Figure 1.4 displays an overview of the steps that culminate in the rendered
signup page.

Figure 1.3 Clicking the Sign Up button generates a request to the Sails backend, which responds with the
signup page.

controller/
action

router/route

frontend: browser

backend: server

request
GET /signup

response
signup.html

render
signup.ejs

What the frontend wants…

Do we recognize a request?

Satisfy the request…
Render the view to html.

Respond with the HTML.

Figure 1.4 The components necessary for the backend to satisfy the request and deliver the
signup page to the frontend

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

8 CHAPTER 1 Getting started

At a high level, figure 1.4 shows an often-repeated pattern of Sails components you’ll
use to build the backend. We’ll focus on the details of each of these components in
chapters 3 through 15. For now, let’s concentrate on the request. A portion of the raw
request string that was sent from your browser to Sails looks like this:

GET /signup HTTP/1.1

This is technically called the request line or start line, but what matters is that it consists
of the method (GET) and the path (/signup).

NOTE For our purposes, the protocol version (HTTP/1.1) can be ignored—
we’re interested in just the method and the path. The request contains two
other things we care about: request headers and a request body. We’ll discuss
them a little later in the book.

Next, let’s move over to the response. The Sails server received the GET request to
/signup and determined that the intent of the request was to receive a response con-
taining the signup page. The first piece of the raw response string sent from the Sails
server to your browser looks like this:

HTTP/1.1 200 OK

This portion of the response message is called the response line or start line and consists
of the protocol version, HTTP/1.1, the server status code, 200, and something called the tex-
tual reason phrase, OK.

NOTE Naming stuff is probably the hardest thing to do in programming. It’s
so hard that we get names like textual reason phrase.

The important part is the server status code (200), a special number that indicates the
status or outcome of the request, like how the code exited. In addition to the status
code, the response also contains the HTML of the startup page in a part of the
response called the response body.

NOTE The complete response message also contained response headers, which
aren’t part of our example, so we’ll postpone discussing them.

Now for some good news! Because requests originate in a limited number of ways,
you’ll rarely have to work with a raw request or a raw response. Instead, outgoing
requests will be generated by one of the approaches in table 1.1.

Table 1.1 Sources of HTTP requests

Approach Example

A browser URL bar http://www.myApp.com/signup

An anchor tag

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

9Fundamental concepts of a web application

Incoming raw requests to the backend are parsed and transformed by Sails into dic-
tionaries with properties you can easily access in your backend code.

DEFINITION What—JavaScript has dictionaries? Because the word object is
used ubiquitously in JavaScript to describe almost everything, we use the term
dictionary to refer to an object that’s declared using {} curly braces. For exam-
ple, { foo: 'bar' } is a dictionary.

The browser’s location
property on the window
dictionary

window.location = "http://www.myApp.com/signup"

The browser window dic-
tionary open method

window.open("http://www.myApp.com/signup")

An AJAX request $.ajax({
 url: '/signup',
 type: 'GET',
 success: function(result){
 console.log('result: ', result);
 },
 error: function(xhr, status, err){
 console.log(err);
 }
});

Via an HTTP library
(Android example)

// Instantiate the RequestQueue.
RequestQueue queue = Volley.newRequestQueue(this);
String url ="http://www.google.com";

// Request a string response from the provided URL.
StringRequest stringRequest = new
StringRequest(Request.Method.GET, url,
 new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 // Display the first 500 characters of the
response string.
 mTextView.setText("Response is: "+
response.substring(0,500));
 }
}, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 mTextView.setText("That didn't work!");
 }
});
// Add the request to the RequestQueue.
queue.add(stringRequest);

Table 1.1 Sources of HTTP requests (continued)

Approach Example

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

10 CHAPTER 1 Getting started

For outgoing responses, you’ll rely on Sails’ built-in methods for responding to a
request with JSON or a dynamic HTML web page. This allows you to focus on how
your application is supposed to work, instead of the detailed minutiae of HTTP.

NOTE For 99% of use cases, this level of abstraction is more than flexible
enough. But if you ever need lower-level access, don’t worry. Sails and Node.js
allow you to work directly with the underlying HTTP request and response
streams on a case-by-case basis.

Now that you know a bit more about the request and response, let’s explore how
they’re used to successfully fulfill the requirements of our application.

1.4.2 HTTP methods

In section 1.4.1, we introduced HTTP as a way for the frontend and backend to send
data back and forth. But requests are useful for more than just transporting data: they
also convey intent. The Sails server must interpret that intent and respond with
something that fulfills the requirements of the initial request. Let’s examine how
this communication is accomplished using the signup page as a real-world example.
In your browser, fill out the Brushfire signup form you navigated to earlier, and click
Create Account. This triggers an AJAX request from the browser. An overview of this
request/response can be found in figure 1.5.

Once again, don’t get overwhelmed by the details; we’ll reinforce each component
many times with examples. If you looked at the raw request string, it would look like this:

POST /user/signup HTTP/1.1

Because the request included the method, POST, and the path, /user/signup, in this
example, you’d say that the browser sent a POST request to /user/signup. HTTP

controller/
action

router/route

backend: server

request
POST /user/signup

response
200

frontend: browser

Figure 1.5 The components necessary for the backend to satisfy the request
by creating a user and responding with the result

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

11Fundamental concepts of a web application

methods (also known as verbs) like POST, GET, PUT, and DELETE are simply labels that
help indicate the intent of a request.

NOTE The request on the signup page is intended to create a new user.
Shortly, you’ll see that the frontend and backend have made an agreement
that when the frontend makes a POST request to /user/signup, the backend
Sails server will create the user. The request is the frontend’s portion of that
agreement.

The term HTTP method can be confusing because it gives the impression that each
method has some inherent, specific purpose. The reality is that the method label,
POST, doesn’t inherently do anything. It can express your intent, but it’s up to the
backend to determine how to interpret that intent and respond.

 For example, you could create a Sails app that interprets a GET request to the path
/signup as a request to create a new user. Technically, this would work just fine, but it
would be a bad idea, because it would violate a common convention.

DEFINITION We use the term convention to mean an informal agreement
between programmers for how something is supposed to work. It’s usually a
bad idea to break conventions. Not only do they make it easier for developers
to collaborate and get up to speed on a code base, but they also make it easier
for you to remember how your app works as it matures.

The GET method, by convention, is used to indicate that an action is cacheable or safe,
because nothing should change as a result of making a GET request. If your backend
interpreted a GET request to the path /signup as a request to create a new user, adding
the user would violate this convention. The conventional side effects of each HTTP
method are listed in table 1.2.

But we want to stress again that these are what the methods should do according to
convention. It will be up to you to implement them in this way on the backend.

 The other part of the request is the URL path, which looks like a file system path
on your computer’s local hard disk. Although a path can be anything, more often the

Table 1.2 HTTP method conventions

Method Side effects

GET Should be cacheable; that is, sending a GET request shouldn't cause any side effects.
Often used for fetching data.

POST No guarantees. Any given POST request could cause side effects such as sending an
email or creating a pet store in the database.

PUT Should be idempotent; that is, sending the same PUT request over and over has the same
side effects as sending it only once. Often associated with updating a resource.

DELETE Should be idempotent (see the previous entry). Often associated with deleting a resource.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

12 CHAPTER 1 Getting started

path is simply a reference to a resource and action. For example, the path /user/signup
consists of a user resource and a signup action.

TIP You can think of a resource as a label that groups related tasks together
and an action as one of those tasks.

By combining the POST method with the path /user/signup, you convey the request’s
intent—to sign up or create a new user.

 Next, let’s move to the response. The Sails server received the POST request to
/user/signup, interpreted its intent, and as you’ll see later, created the user account
before responding to the browser like this:

HTTP/1.1 200 OK

Here, the only part of the response line you’re interested in is the status code.

DEFINITION The conventional meaning of a status code is even more ingrained
than the conventional meaning behind HTTP method labels. You’ll use status
codes in your responses as a shorthand way to convey the status of a request.
In this case, the Sails server responded with a status 200, signaling that the cre-
ation of the user account was successful. For an exhaustive list of conventional
status codes, see https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

In our previous example, you learned how the request can convey intent to create a
user. But what interprets that intent on the backend? The short answer is that Sails
matches the incoming request with a route using its built-in router. We’ll explore
routes and the router in the next section.

1.4.3 Routing

It’s easier to examine how Sails interprets the intent of an incoming request using fig-
ure 1.6.

 Recall that in the earlier example you made an AJAX POST request to /user/signup.
Sails “heard” the request via a built-in module called the router B. The router recognized

'POST /user/signup': 'UserController.signup',
'PUT /user/follow': 'UserController.follow',
'PUT /user/unfollow': 'UserController.unfollow'

UserController.signup()

explicit routes

S
ai

ls
 r

o
u

te
r S

ails ro
u

ter

Incoming Request

'POST /user/signup '

controller/action

Figure 1.6 Understanding how the Sails router matches the incoming request with routes to trigger an
action

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

13Fundamental concepts of a web application

the particular request because the request matched c the configured route address
of an explicit route, and then that triggered an action d, as illustrated in figure 1.7.

In Sails, explicit routes are configured in a JavaScript file, where they’re written as a dic-
tionary with a key for each unique route. The key POST /user/signup is called the route
address, and it consists of the HTTP method and path. On the right side, every explicit
route has a route target, special syntax that tells Sails what to do when it receives matching
requests. In most cases, this route target consists of a controller, UserController, and an
action, signup. When a request is made, the router looks for a matching route address,
and if it finds one, it executes the corresponding controller action.

NOTE The action is itself a JavaScript function, and the controller is a name
we give the dictionary that aggregates actions under a common resource. So
in the signup example, you named the controller UserController because
the actions will all concern a user.

It’s easy to get lost in all the new terminology, so let’s compare a route to something
you already understand, a jQuery click event, in figure 1.8.

an explicit route

'POST /user/signup': 'UserController.signup’

method path controller action

route address target

Figure 1.7 The router matched the
request as part of an explicit route.

route address target

'POST /user/signup': 'UserController.signup’

method path controller action

a
ro

u
te

$('#signup-button').click(function() {});

selector DOM event event handler functionjQ
u

er
y

cl
ic

k
ev

en
t

co
m

p
ar

in
g

Figure 1.8 A route B operates like a click event handler c. The route
address d serves a similar purpose to the combination of the DOM selector
e and DOM event. And the route target f is similar to an event handler
function g.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

14 CHAPTER 1 Getting started

When the Sails router analyzes an incoming request, POST /user/signup HTTP/1.1,
and it matches a route’s method and path, POST /user/signup, it executes the con-
troller action similarly to the way the browser analyzes an incoming DOM event,
matches it against a particular selector, and executes an event handler function.

 Now that you can convey intent from the frontend via a request and interpret that
intent on the backend using a route and a router, let’s explore how to fulfill the
requirements of the request on the backend using controller actions.

1.4.4 Performing actions

To better understand controller actions (or simply actions), let’s focus on an exam-
ple: a signup form. When the user submits the form, a POST request is sent to
/user/signup. When it arrives at the Sails backend, the request is automatically com-
pared with your app’s configured routes. The first matching route will be triggered,
which then calls a controller action. It’s the job of this controller action to fulfill the
requirements of this request. Recall that actions are just JavaScript functions and that
controllers are just dictionaries of related actions.

 The requirements for the example endpoint ('POST /user/signup') are to create
a new user, store that user in your database, and respond with the status code of 200 to
indicate success. If anything goes wrong, you’ll want to respond with a different status
code, depending on what issue or error occurred. These requirements seem simple,
but they bring up some fundamental questions about Sails:

 How do you send the data harvested from your form input elements to the
backend, for example, email, username, and password?

 How do you tell Sails where to put the new user’s data? And how do you tell it
which database to use?

 Speaking of that, what code do you write to store the properties of a user in the
database? And where should you write it?

 How do you tell Sails you’re finished—in other words, that you’d like to send a
response to the requesting user-agent (your form)? And how do you tell Sails
what status code and/or data to use?

A significant portion of the book is devoted to answering these questions in detail, so
we mustn’t get ahead of ourselves. But the least we can do is take a first step toward
explaining the answers to these questions right away.

 First, a bit about actions: Because you already know actions are JavaScript func-
tions, it probably won’t come as a shock that they also receive arguments. The first of
these arguments (req) represents the incoming request, and the second (res) repre-
sents the eventual outgoing response. Both req and res are special objects called
streams that come from the depths of Node.js Core. Fortunately, you rarely (if ever)
have to think about them that way, because by the time you get hold of req and res in
your Sails actions, they’ve been loaded up with a ton of useful properties and conve-
nient functions that make your life much simpler.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

15Fundamental concepts of a web application

From your action, you can access the data that the user originally typed into the form
on your signup page by calling req.param(), one of the functions provided on the
req dictionary. For example, when you call req.param('username'), it will return
the value from the username input element in your form. This begs the question,
though, how is the frontend sending these values (called parameters) to your action in
the first place? If you were sending this request from a native iPhone app or your ter-
minal, the way parameters are bundled would completely depend on the HTTP client
library used to create the request. But in this example, because you use a web page as
your frontend, you can narrow things down a bit. There are three common ways that
parameters are included in a request from a web browser to the backend:

 When using a regular or traditional form submission, the contents of form
input elements are included automatically as parameters in the request when
the form is submitted. Depending on the method you put in your HTML, these
parameters are bundled in either the request’s body or in its URL query string
(sometimes simply called the query string).

 When using an AJAX request, the parameters can be included in either the
URL query string or in the body of a request.

 When navigating to a URL by pressing Enter in your browser’s address bar,
including parameters is as simple as typing out a URL query string by hand.

Remember the request line from an HTTP request we looked at earlier?

POST /user/signup HTTP/1.1

Well, the body is just another line like that in the HTTP request. It’s used to transport
stuff like the email and password parameters from your form. Don’t overthink the
term body. Even though it might seem foreign at first compared with something more
familiar like a URL, it’s just another way to stick data in a request.

 The URL query string is similar in that it’s another way to transport stuff inside a
request, but luckily, it’s even simpler to explain. You’ve probably seen query strings

The flexibility of req and res
One of the great things about Node.js is that even when you hide away complexity
with helper methods, all the advanced and powerful features are still there, working
their magic behind the scenes. Because req and res are still technically Node.js
streams, you have as much flexibility as you would with Node.js out of the box. Imag-
ine some ridiculously specific use case; perhaps you need to handle strange requests
from a legacy point-of-sale system (read: broken-down cash register) in a small fish
bait shop. And maybe that PoS system doesn’t expect a normal response—instead
it expects your server to slowly drip-drop each letter of the alphabet, one every second
over the course of two long, excruciating minutes. No problem! You’ll write your code
to handle the incoming requests from that cash register in the same place you’d write
any of your other request-handling code in Sails: an action.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

16 CHAPTER 1 Getting started

countless times already in your browser’s address bar. This is because, as you can see
from figure 1.9, the query string is just a part of the URL.

The URL query string begins with a question mark (?) B followed by parameter
key/value pairs, where the name of each parameter is separated from its value by an
equals sign (=) c. The key/value pairs are separated from each other by ampersands
(&) d.

 When do you use the body and when do you use a query string? The short answer
is most of the time the frontend framework or utility you’re using makes the choice
for you. For example, in jQuery if you use the $.get() syntax to send an AJAX
request, the parameters will be transformed into a query string and tacked on at the
end of the URL:

$.get('/dogs', {
 page: 4
}, function(data){ ... });

On the other hand, if you send a POST request using $.post() syntax, jQuery will bun-
dle the parameters in the request’s body:

$.post('/user/signup', {
email: 'sailsinaction@gmail.com',
password: 'abc123'
}, function(data){ ... });

So what’s the difference? If the URL query string and the body are just two different
ways to include parameters in a request, why use one over the other? The truth is that
99% of the time it doesn’t have any practical impact on your code. A recurring philos-
ophy in Sails is encapsulation; in other words, it shouldn’t matter how you send param-
eters in your requests to the backend; what matters is what you send. That said, certain
security considerations dictate when you can and can’t safely use the URL query
string, so we’ll return briefly to this subject to cover best practices when we explore
shortcut routes and the blueprint API in chapter 4.

 We realize that it’s a bit of a paradox for us to show you parts of the raw HTTP
request but then go on to say that you’ll rarely, if ever, interact with them in their raw
state. You may be wondering, “Why do I care? You’re not my algebra teacher! I don’t
need to know this!” Fair enough. On the frontend, we could have simply shown the

POST /user/signup?email=sailsinaction@gmail.com&password=abc123

path query stringverb

Figure 1.9 An example of the URL query string that starts with a question
mark, contains a key/value pair separated by an equals sign, and is
separated by an ampersand

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

17Understanding databases

syntax of how to send an AJAX request with jQuery, which demonstrates the verb and
the path. We could have turned to the backend and showed the same verb and path in
a route address. We could even have pointed you to a video with zooming cloud imag-
ery and whooshing noises, to help you visualize the journey of a request in flight.

 But that would be doing you a disservice. It’s been the experience of both authors
of this book that it was not until we completely demystified the raw HTTP request and
response that we were able to intuitively understand how servers really work: by slurp-
ing up strings and spitting new strings back out. But enough didactics.

 An important thing to remember is that you send requests to communicate intent
and transport stuff, intent like “Enroll this new user, please” and stuff like { email:
chad@hotmail.com }. When you send a request from a browser or any other user-
agent, you’re simply generating a string called an HTTP request and blasting it out to
the internet. Your request is just like any other string, except that it’s specially format-
ted according to a well-defined standard called HTTP. That means it contains a
method (a.k.a. verb), a URL, and maybe some headers and a body.

 When your Sails server receives a request, it’s parsed and routed to one of your
controller actions automatically, at which point Sails runs your code. That backend
code tells the server what to do next, whether that’s sending an email, saving data,
doing math, operating robot arms to play dueling banjos, or a combination of all
these. Eventually, this backend code should always send a response; otherwise, the
frontend would sit there waiting forever.

 When the code in your controller action indicates that it’s time to respond, Sails
generates a string called an HTTP response and blasts it back out to the internet. This
response is—you guessed it—also formatted according to the HTTP standard. It
contains a status code and maybe some headers and a body of its own. The status
code is used for specifying the outcome of the request, for example, to indicate that
a new user was successfully created, or that the provided email address was already
in use, or even that some other unexpected error occurred. The response body is
used for transporting any relevant data back to the frontend, stuff like JSON data or
an HTML web page.

 Finally, back on the frontend, the user-agent (browser) receives and parses the
response. Then it acts accordingly. For example, if you’re using AJAX, jQuery triggers
the callback function you provided. And that’s it—back where you started!

 Now that we’ve demystified the request and response a bit and set up the related
terminology we’ll use throughout the book, we’re ready to explore what’s going on in
the backend code itself. We’ll start with the most fundamental responsibility of any
backend application: working with data.

1.5 Understanding databases
Although some experience with a database is helpful, it’s not required for you to get
through this book. In this section, we’ll give a brief introduction to databases in the
context of what you’ll need to know about them while creating a Sails application.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

18 CHAPTER 1 Getting started

Specifically, we’ll talk about Sails models and the methods used to access various data-
bases. We’ll also take a deep dive into the subject of models in chapter 6. If you’re
already familiar with these concepts, feel free to skip to section 1.6.

 A database can seem mysterious at first. But it’s just another application: an appli-
cation that stores an organized collection of data into records. In most cases, but not
always, the database stores records in nonvolatile memory like your computer’s hard
drive. Or, infrequently, the records are stored using volatile memory like the RAM in
your computer. A database even has its own API, similar to the one you’ll design in the
coming chapters. But unlike the web API you’ll build in this book, which uses HTTP
to communicate between the client and server, the underlying protocol you use to
communicate between a Sails app and a database is abstracted away for you by a built-
in component of Sails called Waterline.

TIP What’s the difference between Sails and Waterline? Sails is composed of
many Node.js modules that work together to help you build web applications.
Waterline is one of those modules.

Waterline gives your Sails apps an abstraction layer on top of underlying databases like
MongoDB or PostgreSQL, providing methods that allow you to easily query and manip-
ulate data without writing PostgreSQL-specific integration code. Sails organizes these
methods in a dictionary called a model.

1.5.1 What’s in a Sails model?

A Sails model is a JavaScript dictionary representing a resource such as a MySQL table or
a MongoDB collection. Every model contains attribute definitions, model methods, and
other settings. When you start a Sails app, the framework automatically builds up model
dictionaries from a variety of configuration files in your project, adding a whole suite of
powerful methods. Your code can then use these methods to find and manipulate data-
base records (a.k.a. rows). Let’s look at the PostgreSQL database as an example and use
the signup page frontend as a reference. You might define a model called User to store
username, email, and password attributes, as displayed in figure 1.10.

User Model

passwordattributes emailusername

User.update()User.create()User.find() User.destroy()methods

sails-postgresqladapter

connectionsettings migrate schema

Figure 1.10 The components of a model include attributes, methods, and settings.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

19Understanding databases

The attributes B describe the properties of each user record that the database will be
tasked with managing—in this case, username, email, and password.

NOTE Attribute definitions are optional when working with some databases
like MongoDB, whereas other databases like PostgreSQL require predefined
attributes.

Model methods c are the built-in set of functions provided by Sails that you use to
find and manipulate records. Model settings d include configurable properties like
connection, tableName, migrate, and schema. Of particular importance is the con-
nection setting, which describes the database the model methods will be run on.

NOTE In Sails v1.0 and above, the connection setting for a model is referred
to as its datastore. To make sure you’re comfortable with both terms, we’ll use
them interchangeably throughout the book.

For example, if you use the User.find() method to find a particular record, this
option tells Sails which database to search. The connection points to a dictionary that
contains configuration information like the host, port, and credentials necessary to
access the database. If any of that sounds unfamiliar, don’t worry—we’ll come back to it
a few times throughout the book. Another model setting, migrate, designates how
Sails should handle existing records in the database and whether or not to use auto-
migration. As a final example, the schema setting allows you to enforce the use of a
schema, even if the underlying database would allow you to proceed without one. This
is particularly useful for schemaless databases like MongoDB.

 The adapter e is a Node.js module that allows your model to communicate with vir-
tually any type of database, whether that’s a traditional relational database like Postgre-
SQL or a non-relational database like MongoDB. As long as you install the adapter for
a particular database, your app can talk to it using built-in model methods provided by
Sails. Behind the scenes, the adapter takes care of translating code that uses model
methods into the specific queries required by the underlying database system. The
adapter to use for a particular model is determined by its connection setting.

1.5.2 Sails model methods

Earlier we briefly mentioned blueprint actions: find, create, update, and destroy.
These built-in actions are provided by Sails, but, internally, they use functions we call
model methods to fetch and manipulate records in a database. These are the same meth-
ods you’ll call in your custom controller actions later in the book. Table 1.3 displays
the most commonly used model methods provided by Sails.

Table 1.3 Common model methods

Method Description

.create() Creates a new record in the database

.find() Finds and returns all records that match a certain criteria

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

20 CHAPTER 1 Getting started

We’ll start messing with databases in chapters 4 and 5 and get immersed in them in
chapter 6.

NOTE In Sails, like most web frameworks, you can write code that works with
the database that can be run from anywhere from tests to custom scripts. But
for most apps, the overwhelming majority of the data-manipulation code you
write will be triggered as the result of incoming web requests.

1.6 Putting it all together in a backend API
Now that we’ve covered the fundamental pieces of any Sails application, let’s take
what you’ve learned so far and see how it all fits together. You saw how the frontend
talks to your Sails app by sending HTTP requests and how your Sails app replies with
HTTP responses. We looked at how every time your Sails app receives a request, it uses
your configured routes to determine which controller action to run. And in the last
section, we introduced model methods, which are just one example of the many Sails
and Node.js library methods you can call from the backend code in your controller
actions. But, in theory, you could create almost any imaginable server-side web appli-
cation with routes and controller actions alone. Routes and controller actions are the
fundamental pieces of any Sails application. In practice, controller actions usually
leverage many additional library methods provided by Sails and Node.js.

 Controller actions can be simple or complex. For example, in the same app you
might write one controller action (PageController.showHomePage) that simply
responds with an HTML web page and another (CartController.checkout) that uses
model methods to fetch data, calls out to a service with custom business logic, contacts
a third-party service to process a bitcoin transaction, and responds with a 200 status
code to indicate success. Thinking about the different parts of your application this
way can get very complicated very quickly—particularly as time passes and more hands
touch the code.

 Luckily, there’s another, simpler way to reason about the backend that’s widely
accepted by developers all over the world. Regardless of what a particular controller
action (or endpoint) does, it’s usually pretty easy to discuss how it responds and why it
ran in the first place. Instead of focusing on the code inside the controller action, you
can simply consider the request you need to send from the frontend to kick it off and

.findOne() Attempts to find a particular record in your database that matches the given criteria

.update() Updates existing records in the database that match the specified criteria

.destroy() Destroys records in your database that match the given criteria

.count() Returns the number of records in your database that meet the given search criteria

Table 1.3 Common model methods (continued)

Method Description

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

21Putting it all together in a backend API

the response you expect to receive in return. In the example of the complicated con-
troller action we mentioned earlier (CartController.checkout), instead of thinking
about the mechanics of working with the database and calling a third-party service,
you can simply remember that to call the endpoint you need to send a POST request to
/checkout and that you can expect a 200 status code in response (provided everything
went according to plan).

 Any abstraction that allows developers to think about what to call and what to
expect in return (instead of having to be aware of the internals of how something
works) is called an application programming interface (API). More specifically, when talk-
ing about HTTP requests and responses, we call this a backend API.

DEFINITION At times you might also hear the backend API called a web API,
cloud API, or even simply the API. No matter the variation in terminology,
rest assured that this just refers to the interface exposed by the routes and
actions in your Sails app.

Figure 1.11 provides a birds-eye view of how all the pieces we discussed earlier in this
chapter work together in harmony to expose a backend API from your Sails app to the
world. When Sails receives an incoming request B, it matches it against one of your
app’s routes c. Then, it runs the appropriate controller action d, whose job it is to
send some sort of response e.

 You’ll see this pattern repeated throughout the book.

'POST /user/signup': 'UserController.signup',
'PUT /user/follow': 'UserController.follow',
'PUT /user/unfollow': 'UserController.unfollow'

UserController.signup(req, res) {

// TODO: Get parameters from request

// TODO: Create user record passing
// in params

// TODO: Respond with 200 if ok

explicit routes

S
ai

ls
 r

o
u

te
r S

ails ro
u

ter

Incoming request

'POST /user/signup'

controller/action

Outgoing response

'HTTP/1.1 200 OK'

Figure 1.11 An endpoint from a backend API in action, processing a request from a signup form

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

22 CHAPTER 1 Getting started

1.6.1 Other types of routes

In addition to the explicit routes you define for serving web pages or working with the
database, Sails includes some additional routes of its own, named shadow routes. Unlike
explicit routes, which you write yourself, shadow routes are exposed automatically
behind the scenes. Many web frameworks have a similar concept of automatic routing,
specifically for assets. For example, adding a file called foo.jpg to the folder config-
ured as the web root for an Apache web server implicitly causes GET requests to
/foo.jpg to respond with the contents of that file. As you might expect, Sails provides
a similar abstraction for static assets like images and client-side JavaScript files, some-
times called asset routes. These routes are exposed automatically and map directly to
any files in the configured web root folder (.tmp/public/ by default). We’ll examine
asset routes extensively in chapter 3.

 The framework also exposes a couple of other important shadow routes that we’ll
cover in this book:

 Blueprint routes automate the prototyping phase of backend development by
providing an easy way to work with blueprint actions through a conventional
API. We’ll cover blueprints extensively in chapter 4.

 The cross-site request forgery (CSRF) token route is a built-in utility designed for use
as part of an overall protection technique to prevent CSRF attacks. We’ll cover
this shadow route when we show how to secure your applications against CSRF
vulnerabilities in chapter 15.

TIP Like any of the other “magic” features in Sails, you can use as many or as
few of them as you like. Every shadow route can be disabled via configuration
or overridden on a case-by-case basis by defining an explicit route with the
same HTTP method and URL pattern.

1.7 Our backend design philosophy
Now that you have a better understanding of both the components of a backend API
and how they function, it’s worth spending a moment on the overall approach we’ll
take in this book. When you set out to build a web application, it’s difficult to know
exactly where to start. Conventional wisdom is mixed on the subject; some books sug-
gest starting with UML diagrams and data modeling before you write a single line of
code. More recently, the “Ship early, ship often” mantra (for example, Facebook’s
“Move fast and break things” motto) is becoming increasingly popular. This approach
suggests getting to a first prototype as quickly as possible.

 We’ve built many startup products and enterprise tools, and in every case we’ve
found that the best place to begin is from the user’s perspective. We call this a frontend-
first approach to backend design; see figure 1.12.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

23Our backend design philosophy

Too often, development can get mired in what-if backend programming, that is, pro-
gramming the backend to handle all of the things that the user might do rather than
figuring out what the frontend will actually allow them to do and implementing only
those features. Without direction, you can waste a lot of time creating things that are
either unnecessary or aren’t compatible with how the user will ultimately engage the
frontend. Even worse, once created, backend code must be maintained—whether it’s
used or not! It’s critical to spend the time necessary to identify the requirements for
each of the API endpoints you build. Even if you think that an endpoint might be
used in more ways down the road, the important thing is to optimize for the frontend
you have today. It’s always better to build the simplest, most specific API that meets
your needs, even if it might need to be changed substantially someday as new features
are added to the user interface.

 If you come from a design or user experience–design background, this may sound
familiar. When designing user interfaces, we always prioritize the needs of human
users before making decisions on the implementation. Similarly, as backend develop-
ers, it’s our responsibility to make sure that user interaction drives backend function-
ality and not vice versa.

1.7.1 Starting with just the frontend code

The easiest way to make sure you build exactly the backend API you need is to
build the frontend part of your app first. Until you add the real backend, this will
feel more or less like a fake, interactive mockup. But it captures the basic function-
ality of the interface you’re trying to build, and it ensures that you’ve taken all the
requirements into account before you begin. For example, the signup form in fig-
ure 1.13 inspired the design of the POST /signup endpoint we showed previously in
section 1.4.

Sails backend design philosophy

frontend-first

Design Prototype Finalize

interactive mockups fake it till you make it finalize the API

Identified endpoints drive
backend requirements

Use blueprints for rapid
prototyping of endpoints

Finalize with explicit routes
and custom controller actions

Figure 1.12 The frontend-first approach to backend development

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

24 CHAPTER 1 Getting started

This interactive mockup consists of the code necessary to drive the frontend user
experience. For websites and single-page apps, this is HTML, CSS, images, and client-
side JavaScript files. For an iOS native app, it’s the .nib files, Swift scripts, and other
assets you need to compile your project in Xcode. The goal is to finalize the key pieces
of the frontend of the user interface, because that will identify all the requests that will
need to be made from a particular screen, as well as the requirements of each request.
Figure 1.14 shows an annotated example of how you might design your API endpoints
based on the requirements of this page.

 Not only does this approach help you notice inconsistencies in requirements and
catch gaps in the feature set early in the process, but it also allows you to punt on crit-
ical architectural decisions until you know more about how your application will work.
Once you’ve created interactive mockups and used them to identify the requirements
of your backend, you can use tools that Sails provides to quickly transform those inter-
active mockups into working prototypes.

1.7.2 Prototyping with blueprints

So far, we’ve focused on how you can create your own custom routes and controller
actions to create backend APIs in Sails. Recall that in section 1.5, we showed how you
might combine an explicit route and a custom action to expose an API endpoint for

Figure 1.13 An interactive mockup of a signup form. The fields in this form help determine the request
parameters you should expect when designing the API endpoint to process it.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

25Our backend design philosophy

handling new user signups. Under the covers, it’s hard to say exactly what this API
endpoint might need to do; you don’t know enough details just by looking at the
form in isolation. It might send a welcome email, encrypt a password, or even send a
confirmation text message. But even without knowing all of the details, you can at
least assume that it would need to create a new record in your database.

 Traditionally, in this scenario, frontend developers were forced to use setTimeouts
or to create a dictionary to fake a response with some JSON data. This allowed devel-
opers to test loading spinners and gave the user interface code some data to use tem-
porarily until a backend API endpoint similar to the one for the signup page was
available. Fortunately, for many use cases, Sails blueprints make this kind of tempo-
rary, throwaway code unnecessary. Instead, frontend developers can just set up a quick
set of API endpoints (a JSON CRUD API) around a particular resource, such as a user.
Those endpoints are then immediately available to use from frontend code, meaning
that the frontend code can be finished and hooked up to the server ahead of any cus-
tom backend work.

Email

Username

Password Confirmation

GET /templates/
signup.html

Signup form

POST /user/signup

Add a user
GET /templates/

restore-profile.html

Restore profile

Figure 1.14 An annotated mockup showing the requests this user interface will send to your Sails app

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

26 CHAPTER 1 Getting started

NOTE JSON is called a lightweight data-interchange format. What that means
for you is it’s a way to safely transfer data from the client to the server and vice
versa. In Node.js or the browser, you can take almost any JavaScript value
stored in memory (for example, a variable containing a dictionary with an
email address, password, and username) and stringify it, converting it into a
specially encoded string. That string can then be transported over the net-
work from the backend to the frontend or vice versa. On the receiving end,
the JSON string is parsed back into the original JavaScript value.

Because you can create them very quickly, blueprints are incredibly useful during the
prototyping phase. Instead of having to manually create the routes, controller actions,
and model methods necessary to create an API before you even understand what it
needs to do, you can use Sails’ blueprint API to supply similar functionality. To set up
blueprints for your signup example, you need only issue a single command in the ter-
minal window:

~/sailsProject $ sails generate api user

Then, the next time you start the Sails server with sails lift, you’ll have access to a
JSON CRUD API around the user resource. Table 1.4 shows the shadow routes and
built-in controller actions that this exposes automatically.

In chapter 4, we’ll examine what each blueprint action can do. For now, just note that
each action corresponds to a CRUD operation. So, instead of creating a custom route
and controller action to handle form submissions from the signup page, you just ran a
command on the terminal, and Sails took care of setting all that up for you.

 Why not use blueprints for everything? The truth is, for most applications, CRUD
alone isn’t enough, and you’ll need to write a custom controller action for most if
not all of your endpoints. For example, your signup endpoint will eventually need
to encrypt the user’s password, and as we mentioned earlier, you might also want it

Table 1.4 Shadow routes and built-in controller actions exposed by the blueprint API

CRUD
operation

Blueprint shortcut route Blueprint RESTful route

Route address Target Route address Target

Verb Path
Blueprint

action
Verb Path

Blueprint
action

Read GET /user/find find GET /user find

Read GET /user/find/:id find GET /user/:id find

Create GET /user/create create POST /user create

Update GET /user/update/:id update PUT /user/:id update

Delete GET /user/destroy/:id destroy DELETE /user/:id destroy

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

27Our backend design philosophy

to send a welcome email (or someday, even a text message). Fortunately, when the
time comes, overriding blueprint actions is just as easy as making your own custom
controller action. And, in the meantime, your frontend code has gone from an inter-
active mockup to a full-fledged, server-driven prototype.

1.7.3 Finalizing your API

There comes a point when blueprint actions alone are insufficient to meet the
requirements of the frontend. Fortunately, transitioning to custom controller actions
is easy: as we discussed earlier in this chapter, you just write code for the actions and
then define explicit routes that point at them. As you can see in figure 1.15, the imple-
mentation of your Sails app doesn’t affect the interface. In other words, as long as

Shortcut blueprints
You might have noticed a subset of blueprint routes known as shortcut blueprint
routes (or just shortcut blueprints). These are just more shadow routes that point to
the same, built-in blueprint actions. The only difference is that you can access all of
them from your browser’s URL bar. Seems like a bad idea, right? That’s why you
should never enable shortcut blueprints in your production application.

What makes shortcut blueprints so insanely useful is that they allow you to quickly
access and modify your data during development without needing to rely on a database-
specific client like phpMyAdmin. As you build your application throughout this book,
you’ll take advantage of this Sails feature frequently.

controller/
action

router/route

backend: server

request
POST /user/signup

response
200

What the frontend wants.

Do we recognize a request?

Validate and store.

ORM Model Database

Send the result.

Stand alone API

frontend: browser

Figure 1.15 As long as the expected request and response for an API endpoint remain consistent, frontend
code doesn’t need to change.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

28 CHAPTER 1 Getting started

your custom controller actions are written to be compatible with the requests that
your frontend sends and the responses it expects, then your frontend code doesn’t
need to change at all.

 Remember, controller actions are just JavaScript functions. This makes them
incredibly powerful, because they can do anything that a JavaScript function can do.
But with such great power comes great responsibility. You’ll want to protect some of
your actions, so that only certain logged-in users are allowed to run them. Fortunately,
Sails provides a powerful feature for managing access to controller actions called poli-
cies. We’ll explore and implement policies in chapter 10.

1.8 Delivering frontend assets
Now that you understand how clients and servers communicate and how to design
and build backend APIs, we’ll turn our attention to the frontend itself. Wait a second,
isn’t Sails a backend framework? It is! But for certain kinds of apps, the backend is
responsible for delivering frontend assets. Whether that fits your Sails app depends on
the types of frontends you’re building or, more specifically, the types of user-agents
your application will need to support.

DEFINITION A user-agent is any program that makes a request, such as brows-
ers, spiders (web-based robots), command-line tools, custom applications,
and mobile apps.

When we use the term frontend, we’re talking about the user interface elements of
your application. Figure 1.16 depicts the universe of common frontend user-agents
for web applications.

Browsers

Native mobile apps

Native
desktop/laptop apps

Internet of Things

Figure 1.16 Examples of frontend user-agents used in web applications

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

29Delivering frontend assets

If you were building a smart toaster or a native mobile or desktop application, you
could skip ahead to chapter 4 and jump right into building and integrating a stellar,
standalone API with Sails. Why? Because the frontend assets for Internet of Things
(IoT), native mobile, and native desktop applications usually aren’t distributed on
the web. Instead, they’re downloaded from an app store or bundled on a piece of
hardware. Therefore, Sails can be blissfully unconcerned about their delivery. In
that case, as shown in figure 1.17, all your Sails app has to worry about is requests for
data (like a high score list) and behavior (like sending a text message or processing
a signup).

NOTE There are two cases that may necessitate Sails delivering native app ele-
ments: for example, apps built using a frontend wrapper framework like
PhoneGap or Electron. PhoneGap uses a browser within a native mobile app
to display the UI. Some native app developers opt to deliver some or all
frontend assets (for example, HTML, CSS, and JavaScript) via Sails because it
allows for a greater degree of flexibility. In this case, treat the frontend like a
browser user-agent and a single-page app.

Once installed, native and IoT applications make normal requests to Sails endpoints
that fulfill backend requirements like storing and sharing data.

 On the other hand, browser user-agents rely on some combination of HTML,
CSS, and JavaScript for the frontend user interface. Instead of visiting an app store,
users download the frontend app (or web page) by visiting a URL in their browser.
If you plan to build an app that will support web browsers, then you need to decide
how each page or view in the app will be delivered and ultimately rendered. There
are two basic approaches: single-page apps (SPAs) and hybrid web applications. Fig-
ure 1.18 illustrates the two kinds of requests you can expect to see when building
an SPA.

 This approach is not too different from the approach for native apps because it
relies on client-side rendering. The only real difference is that in addition to exposing
endpoints for fetching data and triggering backend logic, Sails may also need to
deliver static assets: files like images, HTML templates, client-side JavaScript, and style

backend: server

NSURLRequest (AJAX-ish)
POST /user/update-profile

Native app approach

Figure 1.17 Sails used as a pure API with no responsibilities for delivering frontend assets

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

30 CHAPTER 1 Getting started

sheets. Using this approach, Sails delivers the initial HTML page as a static asset, and
then client-side JavaScript (running in the browser) is responsible for making inter-
mediate changes to the view via AJAX requests to the backend API. Wholesale page
navigation, if any, is managed by special client-side JavaScript code (sometimes called
a client-side router).

 The second approach, a hybrid web application, relies (at least to some degree) on
server-side rendering. That means Sails is responsible for preparing personalized,
dynamic web pages on the backend from special templates called views and then deliv-
ering the personalized HTML to the browser. Figure 1.19 illustrates the kinds of
requests you can expect to see if you’re building a hybrid web application.

Using this approach, Sails provides the initial server-rendered view for some or all of
the pages on a website. Client-side JavaScript might also update the DOM by making
calls to the Sails app, but most or all navigation between pages in a hybrid web applica-
tion is handled by allowing users to navigate between different URLs in the browser,
fetching freshly personalized HTML from the server each time.

backend: server

AJAX
POST /user/update-profile

frontend: browser
STATIC ASSETS

GET /images/logo.png

SPA approach

Figure 1.18 Typical frontend requests to the backend using the SPA approach

backend: server

AJAX
POST /user/update-profile

frontend: browser

Static assets
GET /images/logo.png

Hybrid approach

Server-rendered view
GET /user/profile

Figure 1.19 Delivering personalized HTML and static assets to a hybrid web application

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

31Realtime (WebSockets)

 Our experience, based on many client projects, has shown that when in doubt, the
hybrid approach provides the best overall results. But in an effort to give you a broad
knowledge base, we’ll demonstrate both the SPA and hybrid approaches. We’ll start by
building an SPA in chapter 3. When it comes time to incorporate user authentication,
access control, and SEO in chapter 8, we’ll transition to the hybrid approach.

1.9 Frontend vs. backend validations
We’ll address security throughout the book, with some extra emphasis on the subject
in chapter 15. But in the meantime, we need to focus on an important security con-
cept before you start building your application: whom can you trust? There are two
basic realms in a web application: the frontend and the backend. Each of these realms
guarantees a different level of trustworthiness and therefore requires a different
degree of rigor when it comes to security, as depicted in figure 1.20.

We’ll address the implications of this security reality as they come up periodically
throughout the book. For example, in chapter 7, we’ll introduce frontend validations
to restrict users from creating a password with fewer than six characters. But because
you can’t trust the frontend, it’s important to be aware of the possibility that the same
user could maliciously use a tool like Postman or cURL to make any conceivable
request from outside the browser, thus completely bypassing whatever frontend valida-
tion you put in place.

NOTE Another example of a security concern is a frontend that won’t let the
user submit a form until they fill out a required field. This is good UX, but
your controller action on the backend still needs to do its own check, because
it can’t trust that the corresponding parameter will exist in the incoming
request.

If you’ve done any sort of backend development, this concept might be old hat, but
it’s important enough that we wanted to address it up front. If this is a new concept for
you, just remember this: you have to design your backend applications under the
assumption that any given request might be malicious and could contain anything.

1.10 Realtime (WebSockets)
So far in this chapter, we’ve used HTTP to communicate between the user-agent
(frontend) and the Sails server (backend). For most traditional web applications, this

frontend

backend Figure 1.20 The two security realms of
a web application

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

32 CHAPTER 1 Getting started

is all you need. The frontend always initiates requests, and whenever it receives a
request, the backend responds. But for some apps that rely on features like chat
(Slack), schedules (Nest thermostat), and realtime location tracking (Pokémon Go),
this isn’t enough.

 Sails apps are capable of full-duplex realtime communication between the client
and server. Instead of always having to initiate requests itself, client-side code can
establish and maintain a persistent connection to a Sails server, allowing your backend
code to send messages to individual clients or to broadcast messages to whole seg-
ments of your user base, at any time. In chapter 2, when you generate a new Sails app,
start it up, and open your home page in the browser for the first time, you’ll witness
this behavior firsthand.

 Sails implements support for realtime messaging and persistent connections using
Socket.IO, a popular MIT-licensed open-source tool that helps ensure a wide array of
legacy browser support, including Internet Explorer 7 and up. We’ll explore Web-
Sockets extensively in chapter 14.

DEFINITION In this book, we’ll use both the terms sockets and WebSockets to
refer to a two-way, persistent communication channel between a Sails app and
a client. Communicating with a Sails app via WebSockets is really a form of
AJAX, in that it allows a web page to interact with the server without refresh-
ing. But sockets differ from traditional AJAX in two important ways: First, a
socket can stay connected to the server for as long as the web page is open,
allowing it to maintain state. Traditional AJAX requests, like all HTTP requests,
are stateless. Second, because of the always-on nature of the connection, a
Sails app can send data down to a socket at any time, whereas AJAX allows the
server to respond only when a request is made.

1.11 Asynchronous programming
One of the highest hurdles for most new Node.js developers is learning how to write
asynchronous code. Even if you’re already familiar with AJAX callbacks, timeouts, and
event handlers from client-side JavaScript, the sheer number of nested callbacks that
show up when writing JavaScript on the server can be a bit intimidating at first. There
are also new patterns to learn: concepts like asynchronous loops (async.each), asyn-
chronous recursion (imagine building Dropbox in Node.js), and asynchronous condi-
tionals (if/then/finally); or doing something asynchronous under some conditions
and something synchronous under others.

 In this book, we don’t expect you to have any past experience writing asynchro-
nous functions. We’ll cover that in depth throughout the coming chapters. But before
you start, it’s a good idea to get familiar with what it means to use an asynchronous
function and what that looks like.

 Asynchronous JavaScript programming is very similar to web programming on the
frontend. In a browser, you might want to trigger a function each time a button on
the page is clicked. So you bind an event handler (a.k.a. event listener), which is just a

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

33Asynchronous programming

callback function that will be executed whenever the button is clicked. Let’s look at an
example using jQuery.

$('#my-button').click(function whenClicked (){
 $.get('some3rdpartyAPI', function(data) {
 $('.result').html(data);
 });
});

Listing 1.1 shows code that binds a callback as an event handler. Whenever the user
clicks the specified button, the callback function (whenClicked) will run.

 Now let’s look on the backend for something similar. Let’s say you want to create a
user in a database. The time it takes to create the record in a database can vary, and
you don’t want every incoming request to your app to have to wait. Herein lies the
beauty of Node.js, Sails, and server-side JavaScript in general: instead of blocking all
incoming requests while the server communicates with the database, file system, or
other third-party APIs, Node.js keeps working, allowing other requests to be processed
while it waits, granting Node.js apps a huge scalability and performance boost.

 But like everything in life, this comes with a price: instead of simply returning a
value or throwing an error like normal code you might be used to, asynchronous func-
tion calls in Node.js expect you to provide a callback function. When Node.js hears
back from the database, whether good news or bad, Node.js triggers the callback func-
tion you provided. If something goes wrong, the first argument (err) will be truthy.
The pattern you’ll see repeatedly is something like what’s shown here.

User.create({name: nikola}).exec(function userCreated(err, newUser) {
 if (err) {
 console.log('the error is: ', err);
 return;
 }

 console.log("The result: ", newUser);
 return;

});

In this example, you want to create a user named nikola, and then once the user
record has been created, you want Sails to log a message to the console. You provide a
callback function, userCreated, that will be called once User.create() has finished.
If anything goes wrong, your callback will receive a truthy err, which it will log to the
console and then bail. Otherwise, everything works out, so a different message will be
shown with the result from User.create().

 The important thing to recognize as a consumer of asynchronous functions in
Node.js is that your later callback will always have at least one argument: err. And if

Listing 1.1 jQuery callback pattern

Listing 1.2 A typical Node asynchronous callback pattern

Sets up a callback function
(whenClicked) that will run anytime
the DOM element identified by
#my-button is clicked

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

34 CHAPTER 1 Getting started

the asynchronous function you’re calling has output (as is the case with .create()),
then you can expect a second argument: newUser. You can name these arguments what-
ever you want; it’s often useful to name the second argument something that represents
the expected result. By convention, the first argument is typically named err and it con-
tains what you would think: a JavaScript error instance or at the very least some truthy
value. This allows you to simply check if (err) {…} to find out if anything went wrong.

 This pattern differs considerably from traditional synchronous programming,
where you would do something like this:

var keys = Object.keys({name: 'nikola'});

In this example, when Object.keys() runs, the process is completely blocked until the
JavaScript runtime can calculate an array consisting of all the keys from the specified
dictionary. In the meantime, no other code runs, no callbacks are fired, and no new
requests are handled. If everything works out, the synchronous instruction (a.k.a. func-
tion call), Object.keys(), returns the result (['name']). If something goes wrong (if
this was Object.keys(null), for example), then Object.keys will throw an error.

Finally, let’s take a look at one last example that puts it all together. The next listing
demonstrates what it looks like to use multiple asynchronous instructions (function
calls) in a row.

 Request.get('http://some3rdpartyAPI.com/user', function(err, response) {
 if (err) {
 console.log('the error is: ', err);
 return;
 }

 User.create({name: response.body.name}).exec(function(err, newUser) {
 if (err) {
 console.log('the error is: ', err);
 return;
 }

Listing 1.3 Nesting other functions in an asynchronous function

Handling uncaught exceptions
Possibly the most important thing to remember about writing code for Node.js is that
throwing uncaught exceptions inside any callback from an asynchronous function will
cause your server to crash. So it’s imperative that, when writing code inside an asyn-
chronous callback, you wrap anything that might throw in a try/catch block.

But don’t worry! We’ll reiterate this again and again throughout the book to help drive
the point home. And once you’ve gotten used to this style of coding, you’ll protect
yourself by instinct. Eventually, you may even find, as we did, that writing code like
this makes you a more efficient programmer (because it forces you to think about
error conditions from the very beginning).

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

35Asynchronous programming

 console.log('The new user record: ', newUser);
 // All done!
 return;
 });//</after creating new user>
 });//</after receiving response to 3rd party request>

// No code should go down here!

Here, you’re doing a GET request to some other API, some3rdpartyAPI.com. You don’t
know when the response will come back, so you provide a callback that will be trig-
gered when the request is completed. Then (in that callback), you create the user
based on the response you got back. Notice that instead of writing one line of code
after another, when using asynchronous instructions, you’ll want to nest whatever
comes next within the callback of the previous instruction.

 In Node.js, like in most programming languages, in synchronous instructions time
flows from top to bottom. If you write two instructions, one on line 3 and one on
line 4, then the instruction on line 3 will run first, followed by the instruction on line 4.
But in asynchronous instructions, time flows from left to right. If you write two asyn-
chronous instructions, then the second instruction must be nested inside the callback
of the first.

 New Node.js developers often refer to this as callback hell. Some developers find sev-
eral strategies helpful when attempting to mitigate the amount of nesting in Node.js
code (promises, fibers, await, and so on). There are also some trusted tricks and
indispensable tools, such as an npm package called async. We’ll cover some of our own
tricks, as well as best practices for working with async, on a few occasions throughout
the book.

 For now, bear in mind that like most hells, callback hell is subjective. Asynchro-
nous callbacks are a reality of Node.js. And until you’ve accumulated some serious
experience working with them, they can feel a bit clumsy. But you may find that after a
few months you feel just as comfortable using them as you do writing traditional syn-
chronous code.

Mastering callbacks
We can’t stress enough how important it is to master the basic use of callbacks
before attempting to learn technologies like promises, async/await, or fibers. We’ve
seen and dealt with countless timing issues and memory leaks introduced in Node.js
apps. The vast majority of them could have been easily avoided by following this
advice. So please learn callbacks first. It’s far too easy to introduce bugs in a well-
intentioned attempt to reduce the number of callbacks in your code.

The examples in this book are designed to give you plenty of reps with callbacks. If
you follow along, you’ll be more than prepared to make an informed decision about
whether to use callbacks or promises in your own application.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

36 CHAPTER 1 Getting started

Okay, enough asynchronous programming theory. Even if your head is swimming
with all the new vocabulary, don’t despair! We promise that in a few chapters you’ll
look at asynchronous functions and marvel at how much you know and how easy
they are to use.

 That about wraps up our primer. We’re almost ready to start building stuff! But
first, in the final section of this chapter, we’ll outline the recurring scenario and exam-
ple application that we’ll use throughout the remainder of the book.

1.12 Meet Chad
This book would be boring if we just droned on and on about “feature this” and “fea-
ture that.” So, to keep you on the edge of your seat (and to keep us motivated) we
invented a fictional character—a friend named Chad. Likely, you’re thinking: “Been
there, done that. No more books about invisible friends.” Don’t worry. We won’t make
a habit of it.

 Chad considers himself quite savvy in the ways of social and viral media. He
explained to us that he has a vision: “I’m going to build the most virally adopted web
app in history.” Clearly, what Chad lacks in development experience, he makes up for
in confidence. Normally, we avoid partnerships like these, but Chad is a nice guy. He
even referred us to a couple of clients, and he is letting us sleep in his house for a cou-
ple of weeks. Long story short, we agreed to help build his vision. The only problem is
that Chad’s vision changes from week to week. Currently, the only thing he’s sure
about is that “the app must include YouTube video clips.”

 Armed with those detailed requirements, we’re sure to build a prototype of some-
thing amazing. We’ll pick back up on that in chapter 3 when we explore static assets.
But before bringing Chad into the mix, you need to get your environment ready and
take Sails for a quick spin.

1.13 Summary
 The heart of any web application backend is in handling incoming requests.
 The anatomy of a backend API includes its routes and controller actions, which

deliver on the requirements of an incoming request.
 The ORM tool in Sails, called Waterline, allows you to communicate with data-

bases like MySQL or MongoDB using JavaScript.
 Three common types of applications whose assets are delivered in different ways

by Sails are native apps, SPAs, and hybrid web applications.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

McNeil ● Nathan

S
ails makes professional web development a breeze. This
instantly familiar MVC framework automatically handles
the tedious application boilerplate, so you can concentrate

on developing features and creating business value. You get
powerful tools for rapid API development, task automation,
an ORM, and easy integration with any web, mobile, or IoT
frontend. And because you’re using Node.js, it’s JavaScript all
the way down.

Sails.js in Action is a comprehensive guide on how to build
enterprise-capable web applications. Written by the creators of
Sails.js, this book introduces each concept and technique with
real-world examples and thorough explanations. As you read,
you’ll learn to build the backend of a typical web application
while you explore real-time programming with WebSockets,
security fundamentals, and best practices for building Sails/
Node.js apps.

What’s Inside
● Creating the backend for a web, mobile, or IoT app
● Real-time programming with WebSockets
● User management, authentication, and password recovery
● Using Sails to autogenerate REST APIs
● Custom backend development and third-party
 API integrations

Readers should be comfortable with JavaScript and frontend
web development.

Mike McNeil is the creator of Sails.js. Irl Nathan is the producer
of sailsCasts, a series focused on using Sails.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/sails-js-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

Sails.js IN ACTION

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Look no further—you’ve
found the ultimate source.”

—Damien White, Visoft

“This book is your path
through the crazy jungle

 of JavaScript.”—Sam Kreter
Software Engineer, Microsoft

“Get up to speed quickly on
full-stack web development

using Sails.js.”—Alvin Raj, Oracle

“If you need to ship fast
 with Node.js, this book will
 defi nitely fl oat your boat.”

—Stephen Byrne, Dell

“Comprehensive ... equally
relevant to both beginners

 and professionals.”
—Damian Esteban, betterPT

SEE INSERT

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

