
M A N N I N G

Mike McNeil
Irl Nathan

IN ACTION

S A M P L E C H A P T E R

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

Sails.js in Action

by Mike McNeil
Irl Nathan

 Chapter 11

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

v

brief contents
1 ■ Getting started 1

2 ■ First steps 37

3 ■ Using static assets 55

4 ■ Using the blueprint API 88

5 ■ Custom backend code 112

6 ■ Using models 137

7 ■ Custom actions 171

8 ■ Server-rendered views 214

9 ■ Authentication and sessions 235

10 ■ Policies and access control 261

11 ■ Refactoring 282

12 ■ Embedded data and associations 318

13 ■ Ratings, followers, and search 345

14 ■ Realtime with WebSockets 376

15 ■ Deployment, testing, and security 405

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

282

Refactoring

It’s been several months since we delivered the last version of Brushfire to Chad.
We thought we’d begin work on the next phase of content management: associat-
ing users with the videos they added. But when Chad arrived at our offices, plans
had changed. Chad was anxious to give us some good news and some bad news.
The bad news was his investor/mom was again shaken by the lack of cat videos on
Brushfire. She could not “in good conscience” continue to subsidize the prolifera-
tion of “videos without cats.” We explained to Chad that although we could associ-
ate users with the videos they added, thereby identifying violations of his mom’s
Terms of Service, we could not manufacture exclusive interest in cats. He under-
stood and added, “None of that mattered when compared to the other exciting
development.”

This chapter covers
 Organizing, implementing, and refactoring a

project pivot

 Using the async library in Sails

 Customizing built-in responses

 Adding a password-recovery system

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

283Maintaining your sanity when requirements change

 Chad’s good news was the spectacular growth in traffic generated by do-it-yourself
(DIY) videos on Brushfire during our hiatus. Brushfire users were adding their
favorite how-to YouTube videos at a phenomenal rate. Bottom line, he said, “The
market had spoken,” and he would take the last of his mom’s investment and pivot
once again.

DEFINITION A pivot is a change in product direction and features. Chad
started this project as a way to aggregate YouTube videos. Based on his mom’s
influence, Brushfire pivoted to a cat video site. So this was Chad’s second
pivot of Brushfire.

Chad’s last bit of news was that he managed to obtain some new investors who don’t
share his DNA.

 In chapters 6–10, we went on a journey to achieve the design and implementation
of an identity, personalization, authorization, and access control system. Along the
way you learned a lot about Sails. With this pivot, we’ll set out on another journey in
chapters 11–15. By the end of the journey, we’ll have a fully realized version of Brush-
fire deployed into the wild. We’ll also be exploring many more features of Sails.

 In this chapter, we’ll differentiate between pivots based on market forces versus a
lack of frontend decision making. We’ll take a systematic approach to identify
requirements based on the needs of the client and how that translates to the needs of
the frontend and backend. We’ll also cover best practices for refactoring when
changes are unavoidable, as well as some tricks you can use to make your applications
easier to maintain.

DEFINITION Code refactoring is a process in which you take existing code and
restructure it. This is done for a variety of reasons including organization,
readability, and an overall reduction in the complexity.

Finally, we’ll explore Sails custom responses as well as build out an initial requirement
of the new Brushfire—user-initiated password resets.

 Brushfire has an expanded number of models to support the new requirements. In
chapter 12, we’ll introduce associations, which are a way of organizing and accessing
multiple models. In chapter 13, we’ll take what you’ve learned and implement addi-
tional core features to Brushfire, including the ability to rate content, follow users,
and search and browse tutorials. In chapter 14, we’ll add chat to Brushfire, which will
allow you to thoroughly explore WebSockets integration with Sails. Finally, in chap-
ter 15, we’ll address security and testing and ultimately deploy Brushfire into the wild.
You have a lot to learn, so let’s get started.

11.1 Maintaining your sanity when requirements change
The client pivot is a very common scenario. But you want to distinguish a pivot based
on market feedback versus a pivot based on a lack of frontend decision making. You

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

284 CHAPTER 11 Refactoring

know you have a pivot based on a lack of frontend decision making when you hear
either of these comments:

 “You know, after looking at this <insert feature> implemented, what I really want is….”
This response is endemic when there’s a lack of frontend wireframes that show
what a feature will look like.

 “I didn’t know you needed me to respond with the username. It’s going to take some time
to change the backend to make that kind of response.” This response indicates a lack
of wireframes to identify requests and the requirements of those requests.

A market-based pivot involves user-driven feature changes that aren’t always predictable.
A pivot based on a lack of frontend decision making, however, is highly predictable
and preventable. What do we mean by a lack of frontend decision making? At this
point, we can’t imagine implementing a backend without first examining the front-
end for requests and requirements of those requests. This examination leads to deci-
sions on how to design the backend to meet the requirements of the frontend. It also
results in deciding what the application will look like and how it will function before
fully implementing the backend. Making these decisions isn’t easy because choosing
to do one thing means that we’re choosing not to do another thing.

 Without getting into behavioral psychology, a field we’re completely unqualified to
address, we’ve determined that developers (us included) like the infinite possibilities
of coding. And given an opportunity, developers will spend eternity examining each
of those infinite possibilities because it’s easier to do that than to make decisions.
Barry Schwartz, author of The Paradox of Choice, claims that too many options make it
difficult to make any choice at all. And that’s why having a clearly defined frontend to
guide our choices is so valuable.

 Before we can design the frontend, we need to get our client’s requirements. So,
let’s do that next.

11.1.1 Obtaining and revising requirements

When Chad was able to calm down from his excitement, he began to explain some of
the similar feature requests he received from many Brushfire users. With all due
respect to Chad’s mom, no one wanted cat videos. They did ask that Brushfire be
enhanced so that they could add YouTube videos around a particular subject matter
they called tutorials. For example, one user wanted to aggregate his individual You-
Tube videos into a JavaScript closure tutorial. Others wanted to aggregate videos
about house-training a puppy, makeup techniques, and even how to distill homemade
whiskey. They also wanted the ability to rate and search for tutorials as well as follow
their favorite tutorial creators. Finally, they wanted to be able to leave messages about
a particular video and chat in real time if someone else was watching the same video.
As a complete aside, Chad pleaded with us to add a way for users to reset their own
passwords. He said this feature alone would reduce his inbox “by at least 80%.” How
do we effectively create a plan based on this new information?

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

285Maintaining your sanity when requirements change

11.1.2 Organizing views into five categories

We’re already well equipped to handle the pivot. In chapters 3 and 4, we started a pro-
cess of examining wireframes to guide our backend development we called a frontend-
first approach.

NOTE We take a very broad view of wireframes. They can include anything from
a mockup to working frontend assets. Our personal choices of tools for mockups
include combining the contents of Keynote, Google Docs, and Photoshop.

Based on the pivot requirements, we’ve divided Brushfire views and their wireframes
into five categories in table 11.1.

Some of the views within each of these categories can display different content based
on the condition of the user-agent, including

 The authenticated state
 Whether the authenticated user-agent is the designated owner of a tutorial or

profile
 Whether the authenticated user-agent is designated as an admin

Let’s examine some of the category’s wireframes to identify their requests and request
requirements, as well as how to manage displaying content based on the condition

Table 11.1 The five categories of views in Brushfire

Category Description Views

Navigation bar The overall top bar navigation has states
that dictate how the markup is displayed.

navigation.ejs
signin.ejs
signup.ejs
signout.ejs

Search, browse, and
administration

Brushfire includes a search view, browse
view, and our existing administration view.

homepage.ejs
browse-tutorials-list.ejs
administration.ejs

Profile The user profile takes on a new level of
importance in the way users can find con-
tent created by other users.

profile.ejs
profile-followers.ejs
profile-following.ejs
edit-profile.ejs

Tutorial and video Tutorials aggregate one or more videos. tutorials-detail.ejs
tutorials-detail-new.ejs
tutorials-detail-edit.ejs
show-video.ejs
tutorials-detail-video-new.ejs
tutorials-detail-video-edit.ejs

Other A catchall for all other views. layout.ejs
restore-profile.ejs
password-recovery-email.ejs
password-recovery-email-send.ejs
password-reset.ejs

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

286 CHAPTER 11 Refactoring

of the user-agent. Although we’ll review only a portion of the wireframes and
requirements in this chapter, you can access all of them via the chapter 11 hub here:
http://sailsinaction.github.io/chapter-11/.

11.1.3 Obtaining the example materials for this chapter

Before we look at the wireframes, you need to get the assets for the remainder of the
book. As we said earlier, this pivot will encompass the remaining five chapters of Sails.js in
Action. Therefore, the repo that contains the starting assets for these remaining chapters
is vast. We encourage you to take a tour of the new assets, but don’t get overwhelmed.
We’ll go over every inch of the project in the coming chapters. The chapter repo can
be cloned directly here: https://github.com/sailsinaction/brushfire-ch11-start. After
cloning the repo, install the Node module dependencies via npm install.

 First, you added a local.js file in chapter 6 to hold the Google API key you were
using in the bootstrap.js file to seed YouTube videos. You no longer need to seed You-
Tube videos and therefore don’t need to configure the API key in the local.js file. But
there are several configuration parameters you’ll want to aggregate in a local.js file. In
Sublime, create brushfire/config/local.js, and add the following code.

module.exports.blueprints = {
 shortcuts: true,
 prefix: '/bp',
};

module.exports.connections = {
 myPostgresqlServer: {
 adapter: 'sails-postgresql',
 host: 'localhost',
 database: 'brushfire'
 }
};

NOTE If you’re using different credentials for your PostgreSQL database, you
can simply copy the database credentials from your brushfire/config/local.js
file from your chapter 10 repo.

As it turns out, using blueprint shortcut routes to access the underlying database
records can be extremely helpful. So we’ve decided to bring blueprint shortcut routes
back during development. But to protect any of your existing or future routes, we’ve
namespaced the blueprint shortcut routes using the prefix /bp. To use a shortcut,
you’ll need to preface the URL with /bp.

DEFINITION Namespacing is a technique to avoid collisions of similarly named
things, in this case route names. By adding the prefix /bp, you’ll avoid collid-
ing with paths of routes with the same name.

We’ve also modified the way our models connect to PostgreSQL. Up to this point we
were using PostgreSQL strictly for the user model by assigning the connection property

Listing 11.1 Adding to the local.js file

These settings
will override any
existing settings.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

287Maintaining your sanity when requirements change

in the user model itself. We’ve removed the connection from the user model and
instead included it in brushfire/config/model.js. This makes the myPostgresqlServer
connection the default connection for all models. If we had a requirement for a particu-
lar model to use a different connection, then we could specify the connection directly in
that model file so that it would override the default connection in brushfire/con-
fig/model.js. But we don’t have that as a requirement. Let’s see this in action. Restart
Sails via sails lift and navigate your browser to localhost:1337/ bp/user/find. You
should see the two user accounts that are created using the bootstrap.js file.

11.1.4 Refactoring navigation

We now have a requirement to incorporate tutorials into Brushfire. We also have a
requirement to allow all users to access user profiles. Finally, we have a requirement to
add standalone signup and sign-in pages. These requirements make new demands of
the navigation view to display different markup based on the condition of the user–
agent, as illustrated in figure 11.1.

User-agent is not authenticated.

User-agent is authenticated and an admin.

User-agent is authenticated with the add-tutorial button.

User-agent is authenticated and an admin with the add-tutorial button.

User-agent is authenticated.

b

c

d

e

f

Figure 11.1 The navigation markup has five basic states based on the conditions of the
user-agent: unauthenticated B, authenticated without the add tutorial button displayed c,
authenticated with the add-tutorial button displayed d, authenticated and an admin e, and
authenticated and an admin with the add tutorial button displayed f.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

288 CHAPTER 11 Refactoring

The display of the administration link will remain unchanged. What has changed is
the way in which Sign Up and Sign In now function. Based on Chad’s requirements,
we’ve created two new wireframes that coincide with standalone views for the sign-in
and signup pages. Links to each page are now on the navigation bar when the user-
agent is unauthenticated, as depicted in figure 11.2.

When the user-agent is authenticated, there’s a drop-down to navigate to the user pro-
file or to log out, as illustrated in figure 11.3.

We’ve also added a brushfire/views/logout.ejs view that you’ll use later to provide
functionality if a GET request to /logout is made. These changes to the assets are
reflected in the frontend markup you cloned earlier. You’ll also see a new button on
the navigation bar named add tutorial. A user must be authenticated to add a tutorial.
There are situations where you don’t want an authenticated user-agent to be able to
add a tutorial. For example, if a user is editing a tutorial, then you want to hide the

User-agent is not authenticated.

Figure 11.2 Sign In and Sign Up now have standalone views.

User-agent is authenticated

Figure 11.3 The navigation bar adds a drop-down when the user-agent is authenticated
to allow access to the user profile and the ability to log out.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

289Maintaining your sanity when requirements change

display of the add-tutorial button from the navigation bar. Therefore, we added some
logic to the partial view brushfire/views/navigation.ejs to handle a new local property,
showAddTutorialButton, shown in listing 11.2.

...
<% if (me) { %>
 <ul class="nav navbar-nav navbar-right">
 <% if (typeof showAddTutorialButton !== 'undefined' &&

showAddTutorialButton) { %>
 <li style="margin-right:5px"><p class="navbar-btn"><a type="button"

class="btn btn-primary" href="/tutorials/new">add tutorial</p>
 <% } %>
...

By checking whether the property is defined via the typeof operator, you have the
option of passing it via a local or not. If you don’t pass the local, then the button
won’t be displayed. The following listing shows how to change the home action to also
pass a value for showAddTutorialButton so that it’s displayed when the homepage is
rendered.

...
return res.view('homepage', {
 me: {
 username: user.username,
 gravatarURL: user.gravatarURL,
 admin: user.admin
 },
 showAddTutorialButton: true
});
...

We’ve documented all the requests and request requirements for Brushfire in an
online API Reference that can be found at http://mng.bz/apXw. Navigate your
browser to that link and look at the requirements for the Signup form, which are sim-
ilar to the display in figure 11.4.

 The Brushfire API Reference contains the inputs and exits of each request shown
in the wireframes, similar to figure 11.5.

 We used the wireframes for each view to create the API Reference documentation
and the documentation to create a working frontend with partially implemented end-
points. We say partially implemented because we won’t integrate actions using real data
until chapter 12. For now, we’ll simulate records using arrays of dictionaries for lists
and individual dictionaries for particular records. Speaking of models, the pivot will
involve the use of a feature of Waterline we haven’t covered yet: associations. We’ll

Listing 11.2 Handling the display of the add-tutorial button in the navigation bar

Listing 11.3 Passing the showAddTutorialButton property via a local in the view

Checks if the user-agent
is authenticated

Makes sure the showAddTutorialButton property
is defined and then, if true, displays it

Setting the showAdd-
TutorialButton property
to display the button

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

290 CHAPTER 11 Refactoring

explain associations in detail in chapters 12 and 13. For now, know that associations
will provide some helpful functionality to manage the relationships between related
models: users, tutorials, videos, and ratings. You may have noticed that the API
Reference documentation for the login request also contains a Responses section, as
shown in figure 11.6.

 This is where you can document requests that have different responses based on
different response status codes. Next, let’s look at the search, browse, and adminis-
tration views.

b
c

d

e

f

j

h

g

i

Figure 11.4 The API Reference documents each request’s friendly name B, description c,
incoming parameters (if any) d, view (if any) e, locals f, method and URL path g, controller
and action h, response type i, and frontend controller (if any) j.

POST /signup

email

username

password

confirmation

GET /signup

Signup form

Signup a user

GET /signin

Signin form
GET /profile/restore

Restore profile page

b

c

c

c

Figure 11.5 The wireframes contain documentation for the attributes B and requests c of each
view.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

291Maintaining your sanity when requirements change

11.1.5 Refactoring views

Users want the ability to search and browse for the tutorials created within Brushfire.
So we transformed the homepage into a search page, as shown in figure 11.7.

b c d

Figure 11.6 The login request has three different response codes if the user-agent is deleted B, banned c, or
successful d.

searchCriteria GET /

GET /tutorials/search

Homepage

Figure 11.7 The post-pivot home/search page

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

292 CHAPTER 11 Refactoring

We’ll implement search in chapter 13 where we’ll use the home/search page to cap-
ture searchCriteria to use as criteria for a query of the tutorial model. It’s impor-
tant to note that the content of the homepage doesn’t change based on the condition
of the user-agent. For example, the homepage doesn’t change whether the user-
agent is authenticated or not. We also have a requirement that users have the ability
to browse tutorials. We created a wireframe for the browse-tutorials page shown in
figure 11.8.

Like the homepage, the browse-tutorials page doesn’t display different content based
on the condition of the user-agent. Finally, we created a wireframe for the User
Administration page in figure 11.9, but the functionality of this page hasn’t changed
from previous earlier versions of Brushfire.

 Now let’s move to the profile category of views.

GET /tutorials/browse

GET /tutorials

Browse-tutorials page

Figure 11.8 The browse-tutorials page

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

293Custom routing and error pages

11.2 Custom routing and error pages
Before the pivot, a profile could be viewed only if the user was authenticated in Brush-
fire. We used req.session.userId as criteria for a query of the user model to find the
user record with the email, gravatarURL, and admin attributes to display the profile.
Because we were using the req.session.userId property to determine which profile
to display, only the profile of the authenticated user could be displayed. Chad’s new
requirements provide for a profile that can be viewed with or without authentication,
including users other than the profile owner. This will enable Brushfire users to
explore tutorials created by other Brushfire users via their profile page. Brushfire
users also want the ability to follow users they like as well as other followers of the user.
The profile page will therefore be expanded to three different views:

 A profile with tutorials view
 A profile with followers view
 A profile with those being followed view

Let’s look at each view and its requests and request requirements. The first view is the
profile page, shown in figure 11.10.

GET /templates/admin-
users.html

User Administration page

GET /user/adminUsers

Administration users

PUT /user/updateAdmin

PUT /user/updateBanned

PUT /user/updateDeleted

Update admin

Update banned

Update deleted

admin

banned

deleted

emailusernameid
gravatarURL

Figure 11.9 The User Administration page

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

294 CHAPTER 11 Refactoring

The second view is the profile-following page, shown in figure 11.11. The final view is
the profile-followers page, shown in figure 11.12.

 The profile link on the navigation bar now displays the username related to the
current session’s userId property instead of the email address. We did this for both
privacy and continuity, because the path of the route that links to the profile in the
navigation bar now uses /:username. We’ll discuss the impact of using a variable, also
referred to as a slug, in the next section.

DEFINITION Slug is shorthand for a generated URL that distinguishes between
endpoints using a string.

Open brushfire/api/controllers/PageController.js in Sublime and see how to distin-
guish between profile owners in the profile action, similar to the next listing.

GET /:username

Profile page
GET /profile/edit

Edit-profile page

PUT /user/remove-profile

Remove profile

GET /tutorials/:id

Tutorials-detail pageProfile-following page

GET /:username/following

Profile-followers page

GET /:username/followers

Figure 11.10 The profile page with tutorials

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

295Custom routing and error pages

GET /:username/following

Profile-following page
GET /profile/edit

Edit-profile page
PUT /user/remove-profile

Remove profile

Profile page
GET /:username

Profile-followers page
GET /:username/followers

Profile page
GET /:username

Figure 11.11 The profile page with users followed

GET /:username/followers

Profile-followers page
GET /profile/edit

Edit-profile page
PUT /user/remove-profile

Remove profile

Profile page
GET /:username

Profile-following page
GET /:username/following

Profile page
GET /:username

Figure 11.12 The profile page with users following

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

296 CHAPTER 11 Refactoring

...
var me = {
 email: loggedInUser.email,
 username: loggedInUser.username,
 gravatarURL: loggedInUser.gravatarURL,
 admin: loggedInUser.admin
};

 if (req.session.userId === foundByUsername.id) {
 me.isMe = true;
 }

return res.view('profile', {
 me: me,
 showAddTutorialButton: true,
 username: foundByUsername.username,
 gravatarURL: foundByUsername.gravatarURL,
 tutorials: tutorials
});
...

You’ll either pass the isMe property set to true to the me dictionary, which will enable
the user-agent to modify the profile, or pass the locals without it, allowing the user to
view but not modify the profile.

11.2.1 The impact of variables in routes

The new profile route, and specifically the path /:username (a.k.a. a slug) presents an
opportunity to address some issues related to the use of variables in a route’s path. In
Sublime, open brushfire/config/routes.js, which is similar to the following listing.

...
 /***
 * JSON API Endpoints *
 ***/

 'PUT /login': 'UserController.login',
 'POST /logout': 'UserController.logout',
 'GET /logout': 'PageController.logout',
 ...
 /***
 * Server Rendered HTML Page Endpoints *
 **/
 ...
 'GET /:username': 'PageController.profile'
}

Before we discuss the impact of using /:username, let’s look at some overall organiza-
tion changes we’ve made to brushfire/config/routes.js. We’ve aggregated the explicit

Listing 11.4 The profile action of the page controller

Listing 11.5 The explicit routes of Brushfire

Builds up a dictionary of
information about the
user and assigns it to me

isMe is true if the
userId of the current
session is equal to the
foundByUsername id.Passes the

locals to the
profile view

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

297Custom routing and error pages

routes into two general groups: JSON API endpoints and server-rendered HTML page
endpoints. For added organization, we’ve also associated related resources together
within each of these groups. For example, routes related to the user resource are
placed together. But what’s the impact of the order of routes?

 From previous chapters, you know that the routes contained in brushfire/con-
fig/routes.js are considered explicit or custom routes. The Sails router looks to match
an incoming request to explicit routes before trying to match the request to the other
types of Sails routes like blueprint routes, asset routes, and the /csrfToken route.
Routes are matched by the Sails router in the order in which they’re placed in the
brushfire/config/routes.js file. If a variable like :username isn’t specified in the path
of a route, then the order chosen for routes can be purely based on your organiza-
tional aesthetic. But if you include a variable like :username in your path, the order
becomes important.

 For example, the path /:username will be triggered on any combination of charac-
ters after the initial slash (/). Therefore, any routes after /:username whose path con-
tains a single segment will never be triggered.

DEFINITION A segment consists of a slash (/) and one or more alphanumeric
characters. For example, the following path contains two segments: /tutori-
als/:id.

When using variables in a route’s path, place the route with the variable below any other
routes with the same number of segments. Figure 11.13 illustrates how this works.

 If you don’t place routes with the same number of segments below the route with a
variable like :username, those routes will never be matched by the Sails router. There’s

Incoming Request

'GET /logout'

Sails router

'GET /:username': 'PageController.profile',
'PUT /login': 'UserController.login',
'POST /logout': 'UserController.logout',
'GET /logout': 'PageController.logout',
'GET /profile/edit': 'PageController.editProfile',
...

Explicit Routes

Incoming Request

‘GET /logout’

Sails router

'PUT /login': 'UserController.login',
'POST /logout': 'UserController.logout',
'GET /logout': 'PageController.logout',
'GET /:username': 'PageController.profile',
'GET /profile/edit': 'PageController.editProfile',
...

Explicit Routes

b c

Figure 11.13 The first example B illustrates the impact of the route order on other single-segment routes when
using the :username variable. A GET request to /logout would be matched with the GET /:username route,
which isn’t the intended result. In the second example c, we placed the GET /:username route below the
route to the GET /logout route. The GET request to /logout was matched with the route that contained the
GET /logout path, which is what was intended. Note that the two-segment route to GET /profile/edit was
unaffected.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

298 CHAPTER 11 Refactoring

one other issue with /:username. Start Sails via sails lift and navigate your browser
to localhost:1337/favicon.ico. Open the browser’s console window, and you should
see that Sails responded with a 404 Not Found status.

NOTE You get bonus points if you also recognized that the Sails 404 response
page wasn’t rendered. We’ll deal with that issue in the next section.

Sails provides a favicon.ico file in the root of brushfire/assets/ folder. As you learned
in chapter 3, the assets folder performs like the web root of a web server. Any file in that
folder automatically has a built-in asset route. If the file has a recognized type, it will
be rendered by the browser. So navigating to localhost:1337/favicon.ico should result
in the browser rendering the favicon.ico file. The issue is that localhost:1337/favi-
con.ico is being superseded by /:username. You can easily fix this by using the skip-
Assets property in the route’s configuration. Head back to Sublime and open
brushfire/config/routes.js, and make the following changes to /:username.

...
'GET /:username': {
 controller: 'PageController',
 action: 'profile',
 skipAssets: true
 },
...

After adding the skipAssets property to the route configuration, any file in the root
of brushfire/assets will no longer be superseded by /:username. Restart Sails using
sails lift and navigate your browser to localhost:1337/favicon.ico. You should now
see the Sails favicon displayed. But why wasn’t the Sails 404 response page displayed
earlier when the favicon.ico file couldn’t be found? You’ll fix that in the next section.

11.2.2 Customizing Sails’ built-in response pages

Earlier, the Sails 404 response page wasn’t displayed when we made a GET request to
localhost:1337/favicon.ico. The page didn’t get displayed because the me dictionary
wasn’t sent as a local to the view. When the 404 page was rendered, the layout file
added the navigation markup in brushfire/views/partials/navigation.ejs. That naviga-
tion view attempted to use a property named me, and because it didn’t exist, an error
was generated. But where did this error come from? It came from the notFound.js
response. Let’s back up for a moment. Sails provides a convenient way of handling
common response types like Bad Request (400), Forbidden (403), and Not Found
(404) with custom code for each response: badRequest.js, forbidden.js, notFound.js,
and so on. The source code for these responses can be found in the brushfire/api/
responses/ folder. Some of the responses also have corresponding views that are sent
as the response if the requesting user-agent doesn’t require JSON.

Listing 11.6 Adding the skipAssets property to a route

Any files in the root of
brushfire/assets won’t be
superseded by this route.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

299Custom routing and error pages

NOTE Each response tries to guess whether the user-agent requires JSON.
For example, if the request is an AJAX request, you can assume that the request
wants JSON.

For example, forbidden.js uses brushfire/views/403.ejs, notFound.js uses brushfire/
views/404.ejs, and serverError.js uses brushfire/views/500.ejs. In our current situa-
tion, the code that renders the not-found response in the 404.ejs view is in brushfire/
api/responses/notFound.js. Let’s again take a look at the 404 response generated but
this time using a different example.

 Restart Sails using sails lift and navigate your browser to localhost:1337/irlIs-
Old. The Sails router matches a GET request to /irlIsOld with the route containing the
path GET /:username and executes the profile action of the page controller. The
resulting 404 error in the terminal window should look similar to the next listing.

warn: res.notFound() :: When attempting to render error page view, an error

➥ occurred (sending JSON instead). Details: ReferenceError:

➥ /brushfire/views/layout.ejs:36
 34| </head>
 35| <body ng-app="brushfire">
 >> 36| <%- partial('./partials/navigation.ejs') %>
 37| <%- body %>
 38|
 39| <!--TEMPLATES-->
/brushfire/views/partials/navigation.ejs:21
 40| <ul class="nav navbar-nav">
 41| <a style="font-family:verdana;font-size: 18px;"
 ➥ href="/tutorials/browse">browse
 >> 42| <% if (me && me.admin) { %>
me is not defined

It looks like the brushfire/views/partials/navigation.ejs view was looking for a me
local that doesn’t exist. You can confirm that no locals were sent by looking at the
profile action of the page controller that’s executing the res.notFound() response.
In Sublime, open brushfire/api/controllers/PageController.js, and locate return
res.notFound() in the profile action, as shown here.

...
User.findOne({
 username: req.param('username')
 }).exec(function(err, foundByUsername) {
 if (err) {
 return res.negotiate(err);
 }

 if (!foundByUsername) {
 return res.notFound();
 }
...

Listing 11.7 A 404 error related to the 404.ejs response

Listing 11.8 The notFound response of the profile action

If the user isn’t
found, respond
with notFound().

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

300 CHAPTER 11 Refactoring

After the GET request to /irlIsOld is made, the :username parameter irlIsOld is
used as criteria by a User.findOne() model method in the profile action to find a
user. There’s no user record with irlIsOld as a username, so brushfire/api/
responses/notFound.js is executed via return res.notFound(). Let’s see what hap-
pens when res.notFound() is executed, as illustrated in figure 11.14.

module.exports = function notFound (data, options) {

var req = this.req;
var res = this.res;
var sails = req._sails;

res.status(404);

if (data !== undefined) {
sails.log.verbose('Sending 404 ("Not Found") response: \n',data);

}
else sails.log.verbose('Sending 404 ("Not Found") response');

if (sails.config.environment === 'production') {
data = undefined;

}

if (req.wantsJSON) {
return res.jsonx(data);

}

options = (typeof options === 'string') ? { view: options } : options || {};

if (options.view) {
return res.view(options.view, { data: data });

}

else return res.view('404', { data: data }, function (err, html) {

if (err) {
if (err.code === 'E_VIEW_FAILED') {
sails.log.verbose('res.notFound() ...

}
else {
sails.log.warn('res.notFound() :: When ...

}
return res.jsonx(data);

}

return res.send(html);
});

};

The first argument
expects locals.

The second argument
expects a view to be
used with the response.

Involves logging
and whether you’re
in production both
of which you can
ignore for now.

If this is an AJAX request,
respond with JSON passing
any locals in the response.

If options contains a string,
assume it’s a view and add a
view property to options
assigning options as its value.
If not a string assign options
to existing options or
as an empty dictionary.

Try to render
the view with
locals.

Involves error
handling of
rendering
the view, which
you can ignore
for now.

The rendered HTML.

c
b

d

e

f

g
h

i

Figure 11.14 The notFound.js response

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

301Custom routing and error pages

The notFound.js response method expects locals B as the first argument and a
view c as the second argument. In this case, you didn’t pass any locals or a view. The
code in d logs errors and prevents locals from being sent if you’re in a production
environment, and it can be ignored for now. If you were making an AJAX request e,
the response would return early, passing any locals as JSON. You’re not making an
AJAX request in this case. If a second argument was passed as a view, the response
would check if the argument is a string f. If it is, you’ll attempt to add a view prop-
erty to the options dictionary and assign its value to the new options.view property.
Once again, you didn’t pass in any view to the response. Here’s the important part:
the response g will try to render the default view, 404, with any locals sent as the
first argument. The response will handle any errors h and then render the view i.

 When the 404.ejs view is rendered, it tries to render brushfire/views/partials/navi-
gation.ejs because it’s part of the layout.ejs view, which expects a me property that
doesn’t exist, and so you get an error. To resolve this, you could pass me as an argu-
ment to notFound({me: null}), but locals would now have the signature data.me
instead of what the view is expecting: me. This also wouldn’t handle your authenticated
state. The best solution is to alter notFound.js to take a detour before it renders the
view. You’ll check whether the user-agent is authenticated via req.session.userId. If
the user-agent isn’t authenticated, you’ll pass a me dictionary that’s null. If the user-
agent is authenticated, you’ll find that user and pass a me dictionary that contains the
found email, username, gravatarURL, and admin properties. Making these changes to
the response will also provide an opportunity to demonstrate how to incorporate asyn-
chronous detours in existing source code.

 Your first option is to copy all the existing response code for both cases: the unau-
thenticated state and the authenticated state. This would result in duplicative code
and a rather inelegant solution. If you’d like to see the source code for this solution in
all its ugliness, check out the gist at http://mng.bz/6nLw. A second approach, found
in the next listing, isn’t perfect, but it allows you to take your detour without adding
duplicative code.

...
 options = (typeof options === 'string') ? { view: options } : options ||

{};

 function afterwards(err,loggedInUser){
 if (err) { return res.serverError(err); }

 var me;
 if (!loggedInUser) {
 me = null;
 }
 else {
 me = {
 email: loggedInUser.email,

Listing 11.9 Creating an asynchronous detour in the notFound response

Declares a function that will be
executed after you determine the
user-agent’s authenticated state

If there’s no loggedInUser,
assigns me to null

If loggedInUser exists, assigns
the necessary properties for
the navigation bar to me

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

302 CHAPTER 11 Refactoring

 gravatarURL: loggedInUser.gravatarURL,
 username: loggedInUser.username,
 admin: loggedInUser.admin
 };
 }

 var locals = {
 data: data,
 me: me
 };

 if (options.view) {
 return res.view(options.view, locals);
 }

 else return res.view('404', locals, function (err, html) {

 if (err) {
 if (err.code === 'E_VIEW_FAILED') {
 sails.log.verbose('res.notFound() :: Could not locate view for
 ➥ error page (sending JSON instead). Details: ',err);
 }
 else {
 sails.log.warn('res.notFound() :: When attempting to render error
 ➥ page view, an error occurred (sending JSON instead). Details: ',
 ➥ err);
 }
 return res.jsonx(data);
 }
 return res.send(html);
 });
 }

 if (!req.session.userId) {
 return afterwards();
 }

 User.findOne({ id: req.session.userId }).exec(function(err,user){
 if (err) return afterwards(err);
 return afterwards(null, user);
 });
};

Here, you move the actual rendering of the 404.ejs view into a function named after-
wards(err,loggedInUser). The User.findOne() model method will execute first,
and then your afterwards method will execute, passing in the results of your User
.findOne() query. This isn’t a bad option, but you can do even better.

 The next approach may look strange at first, but we promise that after you’ve gone
through it a few times, you’ll be transformed into an asynchronous virtuoso.

Declares a locals dictionary
with the legacy data dictionary
and the new me dictionary

If a view is specified as an
argument, renders it with
the locals dictionary

If no view is
specified,

renders
404.ejs with

the locals
dictionary

If no session exists,
executes afterwards()

Looks up the session’s userId
property in the user model and

returns the result to afterwards()

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

303Custom routing and error pages

...
 options = (typeof options === 'string') ? { view: options } : options || {};

 (function ifThenFinally (cb){
 if (!req.session.userId) {
 return cb();
 }

 User.findOne({ id: req.session.userId }).exec(function(err,user){
 if (err) return cb(err);
 return cb(null, user);
 });

 })(function afterwards(err,loggedInUser){
 if (err) { return res.serverError(err); }

 var me;
 if (!loggedInUser) {
 me = null;
 }
 else {
 me = {
 email: loggedInUser.email,
 gravatarURL: loggedInUser.gravatarURL,
 username: loggedInUser.username,
 admin: loggedInUser.admin
 };
 }

 var locals = {
 data: data,
 me: me
 };

 if (options.view) {
 return res.view(options.view, locals);
 }
 else return res.view('404', locals, function (err, html) {
 if (err) {
 if (err.code === 'E_VIEW_FAILED') {
 sails.log.verbose('res.notFound() :: Could not locate view for
 ➥ error page (sending JSON instead). Details: ',err);
 }
 else {
 sails.log.warn('res.notFound() :: When attempting to render error
 ➥ page view, an error occurred (sending JSON instead). Details: ',
 ➥ err);
 }
 return res.jsonx(data);
 }
 return res.send(html);
 });
 });
};

Listing 11.10 Using an asynchronous IIFE detour in the notFound response

Declares the IIFE

If no session exists, executes
the callback afterwards()

Looks up the session’s
userId property in the

user model and returns
the result to the
callback named

afterwards()

Passes the
afterwards()

function as
the callback

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

304 CHAPTER 11 Refactoring

You first declare an immediately invoked function expression (IIFE). This function
will check for the authenticated state of the user-agent and execute the User.find-
One() model method if the user-agent is authenticated. The results of those checks
are passed in as arguments to the IIFE. The advantage here is that you accomplish the
same result as the last option with what we feel is a much more intuitive flow.

DEFINITION An IIFE is a function that’s both declared and executed at the
same time.

What about the other responses that have views, like forbidden.js and serverError.js?
These error pages shouldn’t show up in the normal course of using the application.
Therefore, we’ve chosen to remove the layout and the navigation partial from server-
Error.js and forbidden.js. We removed the layout by passing in the layout property
and assigning it to false in each response of your cloned repository, similar to the fol-
lowing listing.

...
if (options.view) {
 return res.view(options.view, { data: data, layout: false });
}
...
else return res.view('403', { data: data, layout: false }, function (err,

html) {
...

Let’s move on to the tutorial and video views in the next section.

11.3 Adjusting access control rules
By far, the tutorial and video views are the largest additions to Brushfire functional-
ity. Recall that users want the ability to aggregate YouTube videos into a collection
called Tutorials. They want to be able to rate the tutorials, chat with other users who
happen to be watching a particular tutorial, and post chat messages. Based on these
requirements, we created wireframes that encompass the functionality for each view,
including these:

 tutorials-detail.ejs—Used as the main page for a tutorial
 tutorials-detail-new.ejs—Used when creating a new tutorial
 tutorials-detail-edit.ejs—Used when editing an existing tutorial
 show-video.ejs—Used when viewing a video
 tutorials-detail-video-new.ejs—Used when creating a new video
 tutorials-detail-video-edit.ejs—Used when editing an existing video

In addition to creating the wireframes, we documented the requirements for each
request in the API reference.

Listing 11.11 Removing the layout in serverError.js and forbidden.js

If the a view is passed as an argument,
adds a layout property in locals set to false

If the default view is rendered, adds a
layout property in locals set to false

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

305Adjusting access control rules

11.3.1 Customizing a view based on edit permissions

The tutorials-detail page has three different wireframe states depending on the user-
agent’s condition:

 Unauthenticated user-agent
 Authenticated user-agent but not the owner of the tutorial
 Both an authenticated user-agent and the owner of the tutorial

Figure 11.15 shows the model and attributes for each state of the view.

User-agent authenticated and tutorial owner

User-agent unauthenticated

User-agent authenticated

user-username

tutorial-titletutorial-description

tutorial-createdAt tutorial-updatedAt

rating-stars-calc

video-title
video-lengthInSeconds-calc

rating-stars

c

b

d

Figure 11.15 The model and attribute for each view are shown if they’re not duplicated in the user-
agent authenticated and tutorial-owner views c. Therefore, all the attributes in the unauthenticated
view B are referenced in c. Notice that some of the attributes use the term calc for “calculated
value.” The value isn't stored as displayed but instead calculated in an action.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

306 CHAPTER 11 Refactoring

Next, let’s look at the requests for each state of the view in figure 11.16.

GET /tutorials/:id

Tutorials-detail page

GET /:username

Profile page

Edit-tutorial page

GET /tutorials/:id/edit
Delete tutorial

DELETE /tutorials/:id

Create-video page

GET /tutorials/:id/videos/new

Edit-video page

GET /tutorials/:tutorialId/videos/:id/edit

Video player page

GET /tutorials/:tutorialId/videos/:id/show

Delete video

DELETE /videos/:id

GET /:username

Profile page

GET /:username

Profile page

Rate tutorial

PUT /tutorials/:id/rate

User-agent authenticated and tutorial owner

User-agent unauthenticated

Create-tutorial page

GET /tutorials/new

User-agent authenticated

Video player page

GET /tutorials/:tutorialId/videos/:id/show

Video player page

GET /tutorials/:tutorialId/videos/:id/show

b

c

d

Figure 11.16 All the requests for each view are shown based on the state of the user-agent.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

307Adjusting access control rules

To control the contents of the view based on the user-agent’s state, you’ll employ a
combination of the me dictionary you’ve been using and a new me.isMe property,
which, if true, indicates that the user-agent is authenticated as the creator of the tuto-
rial. As shown in figure 11.16, when a user-agent is not authenticated, a read-only view
of the tutorial detail page is displayed B. In this state, the page contains two requests.
One request links the tutorial back to its owner, and the other request loads a video
record into the video player page. d When a user-agent is authenticated but isn’t the
owner of the tutorial, a read-only version of the page is again displayed but with an
added myRating request, similar to figure 11.17.

Finally, c when a user-agent is both authenticated and the owner of the tutorial, UI
elements to edit, delete, and otherwise alter the tutorial and video are displayed, simi-
lar to figure 11.18.

sailsinaction != nikolatesla

Profile page Rate tutorial

PUT /tutorials/:id/rate

Video player page

GET /tutorials/:tutorialId/videos/:id/show

GET /:username

Figure 11.17 This tutorial was created by the user sailsinaction, but it’s being viewed by the
user nikolatesla. Therefore, nikolatesla can rate and view the tutorial but not edit it.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

308 CHAPTER 11 Refactoring

So the display of additional requests is controlled via an isMe local in the tutorials-
detail action of brushfire/api/controllers/PageController.js, similar to the following.

...
if (user.username === tutorial.owner) {
 me.isMe = true;

 return res.view('tutorials-detail', {
 me: me,
 stars: tutorial.stars,
 tutorial: tutorial
 });
}
...

If the user-agent is authenticated, you look up the user by the session’s userId. You
then compare the returned username property of that found user with the tutorial
record’s owner. If the two properties are equal, the isMe property is set to true and
passed on as a local to the view. Markup in the view is displayed depending on the
value of me.isMe. We’ll look at the wireframes for the other views related to the tutorial

Listing 11.12 The isMe property in the tutorials-detail action of the page controller

GET /:username

Profile page

Edit-tutorial page
GET /tutorials/:id/edit

Delete tutorial
DELETE /tutorials/:id

Create-video page

GET /tutorials/:id/videos/new

Edit-video page

GET /tutorials/:tutorialId/videos/:id/edit

Video player page

GET /tutorials/:tutorialId/videos/:id/show

Delete video

DELETE /videos/:id

Create-tutorial page

GET /tutorials/newsailsinaction === sailsinaction

Figure 11.18 A user-agent who is both authenticated and the owner of the tutorial adds an additional request
to modify the tutorial and video. Note that an owner of a tutorial can’t rate their own tutorial.

The isMe property is true
if the user-agent’s session
username is equal to the
tutorial’s owner.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

309Patterns and best practices

and video as we implement each feature in coming chapters. If you’re curious, you can
review the requirements of all the wireframes in the API Reference and see all the wire-
frames in the chapter 11 hub located here: http://sailsinaction.github.io/chapter-11/.

11.4 Patterns and best practices
Application development is a constantly evolving process of solving problems and
then editing and refining the solutions. Certain times, however, are better than others
for refining your code. The pivot is one of those opportunities to reflect on the cur-
rent code base and make changes before embarking on new features. One of the first
tasks you should consider is removing code that’s no longer used in the project. For
example, in chapter 3 we began working on the frontend as a single-page application
(SPA) and later transitioned to a hybrid combination of using server-rendered views
and a frontend framework like Angular. We were able to remove a lot of unused tem-
plates and code. As you review the repo, you’ll see that we were able to trim quite a bit
of unused source code from the project. In this chapter, we’ll also do some actual
refactoring of our source.

11.4.1 Refactoring repetitive action names

As your application grows, you’ll start to notice things that annoy you. One of these
things is your naming choices. For example, when we started Brushfire we wanted to
be descriptive in our page controller, so we prefixed each action with the word show
and added the word Page on the end (for example, showHomePage, showProfilePage).
What began as a well-intended naming structure has now become a distraction, mak-
ing the actions more difficult to read. To remedy this, we removed show and Page
from each action name. This, of course, required us to check our action name changes
in explicit routes found in the brushfire/config/routes.js file as well as changes to
action names in policies via brushfire/config/policies.js. As you review the new repo,
you’ll see these and other naming enhancements to the Brushfire project.

11.4.2 Using folders to organize views

Sometimes it makes sense to go back and aggregate views into folders for better orga-
nization. Let’s look at an example relating to the password-recovery system to aggre-
gate some views. We decided to organize all the views related to password recovery in a
views subfolder named password-recovery. The following listing illustrates the way you
reference the path to a view in res.view().

...
passwordRecoveryEmail: function(req, res) {
 return res.view('./password-recovery/password-recovery-email', {
 me: null
 });
},
...

Listing 11.13 Referencing a path to a view in Sails

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

310 CHAPTER 11 Refactoring

Now that you know how to access views in subfolders from res.view(), we’ll leave it
up to you to determine how best to organize other related views based on your future
requirements.

11.4.3 Refactoring EJS views and client-side templates

We’ve settled on a hybrid approach to creating frontend views that combines EJS tags
with Angular controllers and directives. But how do you know when to use either
approach? As a general rule, if the current elements on a page won’t change between
a page refresh, we’ll use EJS. For example, in brushfire/views/partials/navigation.ejs,
none of the elements—nav links, gravatarURL, and so on—change between a page
refresh, so we refactored using if statements within EJS tags instead of using Angular
ng-hide and ng-show directives. But if an element will change between page refreshes,
we’ll use Angular. As you’ll see shortly, the search form on the homepage displays a
results list before the page itself is refreshed.

NOTE As always, when we say to use Angular, we mean you can use whatever
frontend JavaScript framework you prefer.

Another factor that influences the use of EJS tags versus Angular is search engine opti-
mization (SEO). Generally, a page whose content is already rendered versus one that
must be rendered on the frontend after the page is loaded will achieve better search
engine results. Search engines are improving their ability to derive content from
JavaScript, but we’ve found that if it’s important for a page to be incorporated by a
search engine, then you should use EJS tags and server-rendered views instead.

 Any interaction with the user that involves responding to click events will also
require some form of frontend JavaScript such as Angular’s ng-click directive. Form
validation is also made easier using a frontend JavaScript framework like Angular. The
same holds true for form management in general. For example, using a combination
of ng-submit and ng-model makes form submission easier to accomplish than harvest-
ing form elements manually. Finally, loading states benefit from frontend JavaScript
because of the ease of configuring them.

 The biggest consideration when combining these two approaches, however, is how
you transfer backend data to the frontend. Recall that there are three ways to get
backend data to your frontend in Brushfire:

 You can send locals to an EJS view and use EJS tags to render the locals on
the page.

 You can append locals to the browser’s window dictionary and make them
accessible in an Angular controller via assignment to the $scope dictionary.

 You can make an AJAX request to a backend endpoint and assign the results to
the Angular $scope dictionary.

The first two options are necessary when the frontend framework requires access to
the data between a page refresh. For example, because the navigation bar doesn’t

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

311Patterns and best practices

change between a page refresh, you can simply send the me dictionary as a local to
the view. This avoids the need to grab the values of me from the window dictionary and
place them into a frontend controller and then into the page via Angular. As you
review the new Brushfire repo, you’ll see that we incorporated all these general princi-
ples in our decisions of when to use EJS and Angular in the project.

11.4.4 Using async.each()

Because users aren’t bashful about adding videos as part of tutorials, we no longer
need to seed YouTube videos in the bootstrap. But in order to do adequate testing, we
need to create multiple test users. So we’ve refactored the bootstrap to use the popu-
lar async library. async is an npm module that provides functions for working with
asynchronous JavaScript. Here, we use asynchronous methods to build up our test
users. We need a way to coalesce the results of each method that won’t produce issues
because we don’t know when each method will return. In Sublime, open brush-
fire/config/bootstrap.js to see the changes similar to the following listing.

module.exports.bootstrap = function(cb) {

 var async = require('async');
 var Passwords = require('machinepack-passwords');
 var Gravatar = require('machinepack-gravatar');

 var TEST_USERS = [{
 email: 'sailsinaction@gmail.com',
 username: 'sails-in-action',
 password: 'abc123',
 admin: true
 },
 ...
 }];

 async.each(TEST_USERS, function findOrCreateEachFakeUser(fakeUser, next){

 User.findOne({
 email: fakeUser.email
 }).exec(function (err, existingUser){

 if (err) return next(err);

 if (existingUser) {
 return next();
 }

 Passwords.encryptPassword({
 password: fakeUser.password,
 }).exec({
 error: function(err) {
 return next(err);
 },
 success: function(encryptedPassword) {

Listing 11.14 Refactoring the bootstrap.js file

cb is a way to tell Sails
you’re finished with the
bootstrap and it can
continue lifting.

next is a way to tell
async.each() you’re

finished with an
iteration.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

312 CHAPTER 11 Refactoring

 var gravatarURL;
 try {
 gravatarURL = Gravatar.getImageUrl({
 emailAddress: fakeUser.email
 }).execSync();

 } catch (err) {
 return next(err);
 }

 User.create({
 gravatarURL: gravatarURL,
 encryptedPassword: encryptedPassword,
 email: fakeUser.email,
 username: fakeUser.username,
 deleted: false,
 admin: fakeUser.admin,
 banned: false,
 }).exec(function(err, createdUser) {
 if (err) {
 return next(err);
 }
 return next();
 }); //</User.create()>
 }
 }); //</Passwords.encryptPassword>
 }); // </ User.find
 }, function afterwards(err){
 if (err) {
 return cb(err);
 }
 return cb();
 });
};

async.each() provides a callback named next as an added argument to the iterator.
This provides a way for you to tell async when you’ve finished with each iteration.
After all iterations have been successfully completed or you get an error, the after-
wards method is executed, either returning bootstrap’s cb—or callback—with an
error, or simply cb if the iterations were successful. It’s important to distinguish the
bootstrap cb from async’s next callback. You can think of both callbacks as a way of
telling either async or the bootstrap when you’ve finished. Therefore, you wouldn’t
use cb within the async.each()method because that’s a different scope and time
than the bootstrap method. You can name the callback methods whatever you want.
By convention, we use cb() for the bootstrap file and next() for async.each().

afterwards will call either
cb(err) if there’s an error
or cb() if the iterations
were successful.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

313In depth: adding a password-recovery flow

11.4.5 Adding new features

Based on user feedback, Chad asked us to implement ratings on tutorials. He said, “Let
users rate tutorials up to five stars.” This seems like an innocuous request. But when you
don’t lock down what ratings really means, you can quickly get in a quagmire:

 Can an unauthenticated user rate a tutorial?
 Can an owner of a tutorial rate their own tutorial?
 What does the UI do, if anything, to let a user who has already rated this tutorial

know that they’ve already rated it?
 What does the UI do, if anything, to let a user who has already rated this tutorial

know that, after choosing a new rating, they’ve updated their previous rating?
 How do you differentiate in the UI an average of many users’ ratings and a par-

ticular user’s rating?

As you can see, there’s a bit more involved with defining the requirements of the rat-
ing feature. After some additional discussions, Chad agreed on the following more-
specific requirements:

 There will be two ratings: an overall rating and a myRating. Whether a particu-
lar view displays one or both of the ratings will depend on the requirements of
that view.

 A user-agent must be authenticated in order to rate a tutorial. Therefore, the
myRating won’t be displayed if the user-agent isn’t authenticated.

 A user-agent can change their vote at will.
 When a user-agent hasn’t yet rated a tutorial, the myRating will have empty

stars. When a user-agent successfully rates a tutorial, a toastr message will be
displayed.

Our point here is to never underestimate the need to fully document a feature
because even a seemingly simple one can quickly become complex.

11.5 In depth: adding a password-recovery flow
Chad has been inundated with emails from Brushfire users who forgot their pass-
words. To address this, we’ll create a password-recovery flow into Brushfire. This will
allow users to reset their passwords.

11.5.1 Understanding how password recovery works

A typical password-recovery system allows the user to request a password reset in the
event they can’t remember their existing password. The system sends an email to the
address used when signing up for an account. We’ll use a popular service called Mail-
gun that allows us to send email programmatically. A reset link is then attached to the
email that provides a one-time-use token to reset the password. Figure 11.19 illustrates
the flow of the recovery system.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

314 CHAPTER 11 Refactoring

The password-recovery system starts with a GET request to /password-recovery-email
from the sign-in page. This triggers the passwordRecoveryEmail action, as shown in
the next listing, of the page controller that you set up in the repo you cloned at the
beginning of the chapter.

passwordRecoveryEmail: function(req, res) {

 return res.view('./password-recovery/password-recovery-email', {
 me: null
 });
},

The user supplies the email address they provided when originally signing up for
Brushfire. Clicking the Send Password Recovery Email button triggers the genera-
teRecoveryEmail action of the user controller, similar to this.

Listing 11.15 The passwordRecoveryEmail action

Reset password

Password-recovery email form

Generate-recovery email

Generate-recovery email sent page

Password-recovery form

c

b

d

f

g

e

Figure 11.19 A password-recovery system has several components including a form B that captures the email
address used when creating the account, an action that generates a one-time token c and the email e and
responds with an email-sent form d, and the f password-reset form with the reset password action g.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

315In depth: adding a password-recovery flow

generateRecoveryEmail: function(req, res) {

 if (_.isUndefined(req.param('email'))) {
 return res.badRequest('An email address is required!');
 }

 User.findOne({
 email: req.param('email')
 }).exec(function foundUser(err, user) {

 if (err) return res.negotiate(err);

 if (!user) return res.notFound();

 try {
 var randomString = Strings.random({}).execSync();

 } catch (err) {
 return res.serverError(err);
 }

 User.update({
 id: user.id
 }, {
 passwordRecoveryToken: randomString
 }).exec(function updateUser(err, updatedUser) {
 if (err) return res.negotiate(err);

 var recoverUrl = sails.config.mailgun.baseUrl + '/password-reset-
 ➥ form/' + updatedUser[0].passwordRecoveryToken;

 var messageTemplate = 'Losing your password is a drag, but don\'t
 ➥ worry! \n' +
 '\n' +
 'You can use the following link to reset your password: \n' +
 recoverUrl + '\n' +
 '\n' +
 'Thanks, Chad';

 Mailgun.sendPlaintextEmail({
 apiKey: sails.config.mailgun.apiKey,
 domain: sails.config.mailgun.domain,
 toEmail: updatedUser[0].email,
 subject: '[Brushfire] Please reset your password',
 message: messageTemplate,
 fromEmail: 'sailsinaction@gmail.com',
 fromName: 'Chad McMarketing',
 }).exec({
 error: function(err) {
 return res.negotiate(err);

 },
 success: function() {

 return res.ok();
 },
 });

Listing 11.16 The generateRecoveryEmail action

Finds the user via the
provided email parameter

Generates a random
alphanumeric
string using the
machinepack-strings
random machine

Updates the user record’s
passwordRecoveryToken

Generates
the URL to be

inserted in
the email

Creates
the email
template

Sends the email
template using the
machinepack-mailgun

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

316 CHAPTER 11 Refactoring

 });
 });
},

We already reviewed most of the mechanics of how this action works in previous chapters.
There are a few new details. For example, we’re using two new machines: one to gener-
ate a random string—machinepack-strings—and one to send email—machinepack-

mailgun.sendPlainTextEmail.
 The Mailgun service requires an API key and domain, which you’ll obtain and con-

figure in brushfire/config/local.js in the next section. For now, know that the local.js
file places the properties on a global Sails dictionary that you access in this action.
The result of the generateRecoveryEmail action is that an email is sent to the user’s
email address with a link that (when clicked) makes a GET request to /password-reset-
form/:passwordRecoveryToken, passing the passwordRecoveryToken as a parameter.
The frontend passwordRecoveryPageController redirects the user-agent to a pass-
word-recovery-email-sent page via a GET request to /password-recovery-email-sent.
When the user clicks the link in the email message, a GET request to /password-reset-
form/:passwordRecoveryToken is made that triggers the passwordReset action of the
page controller, which renders the password-reset view. This view contains a form
for the user to provide a new password. When the user clicks the Reset Password but-
ton, a PUT request to /user/reset-password is made, which triggers the resetPassword
action of the user controller, similar to the following listing.

 resetPassword: function(req, res) {

 if (!_.isString(req.param('passwordRecoveryToken'))) {
 return res.badRequest('A password recovery token is required!');
 }
...
 success: function(encryptedPassword) {
 User.update(user.id, {
 encryptedPassword: encryptedPassword,
 passwordRecoveryToken: null
 }).exec(function (err, updatedUsers) {
 if (err) {
 return res.negotiate(err);
 }

 req.session.userId = updatedUsers[0].id;
 ...

The functionality in this action should look familiar from previous chapters. You use
_.isString() for secondary validation instead of _.isDefined(). This gives you the
advantage of checking for both a value as well as whether that value is a string in one
method. Also recall that the User.update() method of the model returns an array of

Listing 11.17 The resetPassword action

Using __.isString()
checks for a value and

if that value is a string.

Remember that
User.update()
returns an array.

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

317Summary

dictionaries and not a single dictionary. If everything is successful, the frontend redi-
rects the user-agent to the profile page via a GET request to /:username.

11.5.2 Sending emails

Mailgun is a commercial service that provides APIs that allow you to send email pro-
grammatically. In order to use the service, you need credentials, and in this section
we’ll show you how to store and incorporate your credentials using the local.js file.
You’re not limited to using Mailgun for sending emails. Create a free account by navi-
gating your browser to http://mailgun.com. You’ll want to select the free account that
allows for up to 10,000 emails per month. Once you’ve created your account, you’ll
need to collect two values: your domain and your API key. In Sublime, open brush-
fire/config/local.js, and add the following code with your credentials.

...
module.exports.mailgun = {
 apiKey: 'ADD YOUR API KEY',
 domain: 'ADD YOUR DOMAIN',
 baseUrl: 'http://localhost:1337'
};
...

Your password-recovery system is now ready to start sending emails and resetting
passwords.

11.6 Summary
 Proper attention to detail on frontend mockups, requirements, and decision

making should limit pivots to those based on market feedback.
 Refactoring is a process in which existing code is restructured to increase orga-

nization and readability and produce an overall reduction in complexity.
 Using variables in custom routes requires added emphasis on the route’s order

in brushfire/config/routes.js.
 Third-party services like Mailgun can send emails on Sails’ behalf to fulfill an

essential component of a password-recovery system.

Listing 11.18 Adding mailgun credentials to local.js

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

McNeil ● Nathan

S
ails makes professional web development a breeze. This
instantly familiar MVC framework automatically handles
the tedious application boilerplate, so you can concentrate

on developing features and creating business value. You get
powerful tools for rapid API development, task automation,
an ORM, and easy integration with any web, mobile, or IoT
frontend. And because you’re using Node.js, it’s JavaScript all
the way down.

Sails.js in Action is a comprehensive guide on how to build
enterprise-capable web applications. Written by the creators of
Sails.js, this book introduces each concept and technique with
real-world examples and thorough explanations. As you read,
you’ll learn to build the backend of a typical web application
while you explore real-time programming with WebSockets,
security fundamentals, and best practices for building Sails/
Node.js apps.

What’s Inside
● Creating the backend for a web, mobile, or IoT app
● Real-time programming with WebSockets
● User management, authentication, and password recovery
● Using Sails to autogenerate REST APIs
● Custom backend development and third-party
 API integrations

Readers should be comfortable with JavaScript and frontend
web development.

Mike McNeil is the creator of Sails.js. Irl Nathan is the producer
of sailsCasts, a series focused on using Sails.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/sails-js-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

Sails.js IN ACTION

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Look no further—you’ve
found the ultimate source.”

—Damien White, Visoft

“This book is your path
through the crazy jungle

 of JavaScript.”—Sam Kreter
Software Engineer, Microsoft

“Get up to speed quickly on
full-stack web development

using Sails.js.”—Alvin Raj, Oracle

“If you need to ship fast
 with Node.js, this book will
 defi nitely fl oat your boat.”

—Stephen Byrne, Dell

“Comprehensive ... equally
relevant to both beginners

 and professionals.”
—Damian Esteban, betterPT

SEE INSERT

www.itbook.store/books/9781617292613

https://itbook.store/books/9781617292613

