
S A M P L E C H A P T E R

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

Anyone Can Create an App

by Wendy L. Wise

 Chapter 5

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

v

brief contents
PART 1 YOUR VERY FIRST APP..1

1 ■ Getting started 3

2 ■ Building your first app 14

3 ■ Your first app, explained 23

4 ■ Learning more about your development tools: Xcode 30

5 ■ Capturing users’ actions: adding buttons 39

6 ■ The button app, explained 53

7 ■ Capturing user input: adding text boxes 62

8 ■ Playing on the Playground 69

PART 2 THE KEYS TO THE CITY: UNDERSTANDING KEY
DEVELOPMENT CONCEPTS..79

9 ■ Go with the flow, man! Controlling the flow of your app 81

10 ■ While you’re doing that… 91

11 ■ Collections 104

12 ■ Telling stories with storyboards 117

13 ■ ViewControllers in depth 125

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

BRIEF CONTENTSvi

14 ■ Put it on my tab: creating tab bars 136

15 ■ Table views: more than a coffee table picture book 144

16 ■ Patterns: learning to sew 159

PART 3 CREATING THE LIKE IT OR NOT APP167

17 ■ Putting it all together: the LioN app 169

18 ■ Adding data to your LioN app 180

19 ■ Displaying details of your LioN 190

20 ■ Creating the details of the detail view 201

21 ■ The AddEditView scene 212

22 ■ Delegates are everywhere 225

23 ■ Editing LioNs 236

24 ■ Saving LioNs 248

25 ■ Making your LioN prettier 260

26 ■ Working with Auto Layout 273

27 ■ Search your LioNs 285

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

39

Capturing users’ actions:
adding buttons

You’re going to create another app in this chapter. This one will have a button the
user can tap. Buttons are used throughout iPhone and iPad apps to allow the user to
do some kind of action, such as make a phone call. Each number on the phone
number screen is a button, for example, and the call and hang-up buttons are but-
tons too.

 In this chapter you’ll add a label and a button to the app and write some code.
The code you write will make the button change what the label displays. You’re also
going to change how the label looks by implementing cosmetic changes.

This chapter covers
 Creating an app with a button

 Buttons and how to use them

 Changing labels

Looking at the code
You can download all the projects from this book at www.manning.com/books/
anyone-can-create-an-app or https://github.com/wlwise/AnyoneCanCreateAnApp,
and you can refer to them anytime.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

40 CHAPTER 5 Capturing users’ actions: adding buttons

5.1 Adding a label and a button
As usual, we’re going to start with pseudocode steps so that we follow a logical road
map for completing this project. Here are the steps:

1 Start a new project using the Single View Application template.
2 Add a button and label to the storyboard, and run the app to test it.
3 Connect the button and the label to the code (wire them up), and run the app

to test it.
4 Add code to change the text on the label when the button is clicked, and run

the app to test it.
5 Change how the label looks, and run the app to test it.

You’ll notice that steps 2, 3, 4, and 5 all end with running the app and testing it. I
always find it helpful to run the app often to make sure it works the way I expect it to.
As you begin adding more and more code to your apps, it’s easier to find problems
with the code if you test it more frequently. Let’s get started.

5.1.1 Step 1: Start a new project using the Single View Application
template

I want you to get used to starting new projects, so go ahead and create a new one:

1 Click File > New > Project.
2 Remember to select Single View Application, and name it ButtonApp.
3 Make sure the language selection is still Swift. Click OK.
4 Save the project to the dev folder on your computer that you created in chapter 2.

5.1.2 Step 2: Add a button and label to the storyboard, and run the
app to test it

As before, the project is loaded, and the files are listed down the left side of Xcode.
Click Main.storyboard so the storyboard shows up in your Standard Editor panel.

STEP 2A: ADDING THE BUTTON

In the bottom-right palette on the Utilities panel, make sure you have the Object
Library showing by clicking the circle with a square inside of it (as you did in chap-
ter 2). Then, at the bottom of the panel, search for button instead of label. You’ll notice
that you have three options to choose from for the buttons. In this case, you want to
add the top one—the one that says Button. Grab it, and drop it on your storyboard
(see figure 5.1). Double-click the new button that you dropped on your storyboard,
and change the text to My Button.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

41Adding a label and a button

STEP 2B: ADDING THE LABEL TO THE STORYBOARD

Go back to the Object Library, and search for label to add a label to your storyboard.
Double-click that label, and change the text to Button Demo. (You also did this in chap-
ter 2.)

 Now run the app to make sure it looks okay (click the right arrow at top left in the
Xcode window). Your Simulator should look similar to figure 5.2.

Click the My Button button: it dims when you click it, to show that you’re interacting
with it. Great! It works, although it doesn’t do anything yet. Get ready. You’re going to
add some code now that will change the title of the button when it is clicked. I’ll walk
you through it. Stop your Simulator by clicking the square in Xcode (this looks like a
stop button on most electronics).

Figure 5.1 Drag a button from the
Object Library onto your storyboard.

Figure 5.2 The Simulator running
with the button and the label

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

42 CHAPTER 5 Capturing users’ actions: adding buttons

5.1.3 Step 3: Connect the button and the label to the code (wire them
up), and run the app to test it

In the next chapter, I’ll explain why you need to do this step, but for now you need to
follow along and make the connections. Okay, let’s change the real estate so you can
see both the storyboard (with your label and button) and the code.

STEP 3A: CONNECTING THE BUTTON TO THE CODE

You’re going to use the Assistant Editor for this, so click the Assistant Editor button (the
one that looks like two interlocking circles at top right). You should see the storyboard
on the left side and ViewController.swift on the right side, as shown in figure 5.3.

I know the ViewController may look daunting, but we’ll walk through it in chapter 13, I
promise. For now, think of it as Vanna White from Wheel of Fortune. The premise of the
show is that three contestants guess letters to a puzzle, and eventually enough letters
are guessed so that someone can guess what the puzzle spells. A contestant on the
show yells out a letter to the puzzle, and if the letter is in the puzzle, Vanna walks over
and turns the letter around so everyone can see it. If the letter is not in the puzzle, she
doesn’t move. The ViewController is like Vanna: the user presses a button (yells out a
letter), and if the button is wired up to your code (if the letter is in the puzzle), the
ViewController (Vanna) performs that code (turns the letter around). If the button
isn’t wired up (the letter is not in the puzzle), nothing happens (Vanna stays still). You
can see episodes of the game show here: www.youtube.com/watch?v=rZmWwPN3H2Y.

 Again, I’m going to show you how to “wire up the button” first and then I’ll explain
what you did afterward. I talk more about wiring up buttons in Chapter 6, but for now

Figure 5.3 The Assistant Editor shows the storyboard on the left and ViewController.swift on the right.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

43Adding a label and a button

think about it as if you’re connecting Vanna to the puzzle board. Vanna needs to know
which puzzle to use:

1 Hold down the Control button on the keyboard, and click My Button on your
storyboard.

2 With the mouse button and Control still held down, drag the mouse pointer
onto the right side of the screen in the ViewController.

3 Hover the mouse under the words class ViewController: UIViewController {.
You should see a blue link that links over to the ViewController and a box that
says “Insert Outlet, Action, or Outlet Collection.”

4 When you see that, let go of both the mouse and the Control button (with your
mouse pointer right under the class ViewController: UIViewController {
line. You now see a pop-up that looks like figure 5.4.

5 Change the Connection type (at the top of the pop-up) from Outlet to Action, type
buttonClick in the Name field, change Type from Any to UIButton, and click Con-
nect (see figure 5.5). You should see on the right panel (the ViewController.swift
side) that Xcode added a new line for you. It should state the following:

@IBAction func buttonClick(sender: AnyObject) {

Figure 5.4 The pop-up box should appear when you release the mouse button and Control button. Change the
Connection option to Action.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

44 CHAPTER 5 Capturing users’ actions: adding buttons

6 If the line says @IBOutlet instead, you need to delete the button and repeat the
steps again, but select Action instead of Outlet in the dialog window that pops
up. Your code should now look like figure 5.6.

Figure 5.5 Change the Connection, Name, and Type values.

Figure 5.6 Button demo code after you click Connect. The @IBAction line is new.
Make sure it looks like this.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

45Adding a label and a button

STEP 3B: CONNECTING THE LABEL TO THE CODE

Now you’re going to connect the label in almost the same way that you connected
the button:

1 Control-click your label on the storyboard. With the Control key still held
down, drag your mouse pointer over to the ViewController.

2 Let go of the Control key when your mouse is positioned under the class
ViewController: UIViewController { line and above the @IBAction line that
you added.

3 This time, when the dialog pops up, leave the connection as Outlet (at the top
of the box, as shown in figure 5.7).

4 Change the name to myLabel and leave all the other options set as they are.
5 Click the Connect button.

Your code should look similar to figure 5.8.
 Now run the app again to make sure it still works. The app should do exactly what

it did before you wired up the label, because you haven’t added any code yet. You run
it here to make sure that it still works.

Figure 5.7 Connect the label to the code with the Outlet connection, and change the name to myLabel.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

46 CHAPTER 5 Capturing users’ actions: adding buttons

5.1.4 Step 4: Add code to change the text on the Label when the
button is clicked, and run the app to test it

Next you’ll go back to the code and add the following line right under the @IBAction
func buttonClick(sender: UIButton) { line:

myLabel.text = "I did it!"

Make sure you add this line after the button-click line, but before the next } line. Your
code should look like figure 5.9.

 That code may look daunting, but I’ll explain more about what you’re doing and
why in chapter 6. Now run the code again, and click the button. If everything
worked, your button should now change the label to “I did it!” when you click it, as
shown in figure 5.10. Great job!

 If it didn’t work, look back at your ViewController file and see if there are any
red exclamation points with a big red highlight. If so, you have an error in your
code. Check to make sure your code looks like my code in figure 5.9, and try again.
If you accidentally created the button as an outlet or the label as an action, it won’t
work. Unfortunately, you can’t delete the code in the ViewController because the
storyboard still thinks there’s a link to the code. To fix this (only if you accidentally
created them backwards), you’ll need to delete the linkage (the wires) between the

b

c

Figure 5.8 There should be two additions: B @IBAction and c @IBOutlet.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

47Adding a label and a button

storyboard and the ViewController. Figure 5.11 assumes you accidentally created
your button as an outlet instead of an action, but you can fix any incorrect “wiring”
this way.

 This is exciting—you made an app with a button that changed the text of a label!
Now you’ll change how the label looks, and then I’ll explain what you did in chapter 6.

You added the
myLabel text
in step 4.

You added the
myLabel Outlet
in step 3b.

You added the
buttonClick
action in
step 3a.

Figure 5.9 The final code for the My Button app, with @IBOutlet, @IBAction, and the line of code
to change the text of the label

Figure 5.10 The working buttonDemo
app after you clicked My Button should
change the label text to “I did it!”

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

48 CHAPTER 5 Capturing users’ actions: adding buttons

5.2 Changing how the label appears
In this section, you’re going to change some attributes of the label. We use the term
attribute to describe information about something (such as a label). A label has proper-
ties, or descriptors of that label. Think back to the pen we talked about in chapter 3.
Remember, the underlying definition of a pen was a class, and the pen in your hand
was the object. Thinking about that class (the pen definition), what things can be
changed on a pen without changing the fact that it’s a pen?

 You could change the type of pen to ballpoint, felt tip, or fountain. You could
change the color of the ink to red, blue, or purple, so the ink color can change and
yet it is still a pen. We could say that the color of the ink is a property of the pen. In
other words, all pens must conform to the property of having an ink color. What if you
tried to make the ink into lead? Well, that breaks the definition of a pen and makes it
a pencil. Lead does not conform to the property of the pen. The color of the ink is a
pen property, and the available colors that you can make the ink are attributes of that
individual pen.

 Think about the label you added to the My Button app. What was the font? What
was the color? How big was the label? Those are all properties of the label. One property
of the label is color. Color is a property of label, and red may be attributed to that
property. You can do the same thing with the font. The font of the label is a property,
and Comic Sans may be the attribute. Again, you can do the same thing with the type

Click the Connections
Inspector button

cSelect the object that you
incorrectly connected.

b

Delete the incorrect connection.dDelete the incorrect code.e

Figure 5.11 If you accidentally connected the objects to the code incorrectly, you need to delete the
connection (wire) and the code following these steps.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

49Changing how the label appears

of pen. The type is a property of pen, and an attribute could be ballpoint. These are
key terms in the coding world.

5.2.1 Step 5: Change how the label looks, and run the app to test it

Now you’ll change some properties of the label you added in the last section:

1 Click once on the label in your storyboard. With the label still highlighted, look
at the right side of the Xcode screen.

2 If it isn’t selected already, click the icon that looks like a fat arrowhead pointing
down—this is your Attributes Inspector panel. It should look like figure 5.12.

These are the options for changing the properties of the label. You can change these
settings now. Click the little up arrows next to Font System 17.0. Notice that the size of
the font on your label increases as you click the up and down buttons. As you do this,
you’re changing the attribute for the font property:

 If you make the font too large, some of the letters on the label disappear and
are replaced with ellipses (. . .). You can fix this easily by grabbing the corner of
the label and dragging it out until your label is completely visible again. Grab

Figure 5.12 Select the label on the storyboard, and
the Attributes Inspector will show the options
available to change how the label looks. Click the
Color attribute to change the color of the label.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

50 CHAPTER 5 Capturing users’ actions: adding buttons

the squares on the right side of the label and drag to the right. Voilà! You can
see the entire label again.

 Set the Font to System Font 20. Make sure your label is fully visible.

Now you’ll change the color property of the label too, because you can:

1 Click the Colors selector right above the Font selector. A color wheel window
will open, like the one in figure 5.13.

2 Pick a color you like by clicking inside the circle of colors. When you click the
circle, the small box in the lower-left corner changes color to show you what
you selected. You can continue to click different colors until you find the one
you like.

3 Once you have it, close the panel. The label on your storyboard should now be
the color you selected, and the Utilities panel should also show the color. I
selected red for the attribute in figure 5.14.

Run the app again, and check that your label looks good in the Simulator. Take a little
time and click through the label attributes on the Utilities panel to see what happens
to the label. There are a lot of things you can do to make the label look different. If
something changes and you can’t figure out how to change it back, delete the label by
selecting it on your storyboard and pressing the Delete key. Then add another label
by following step 2 again.

Figure 5.13 The color wheel opens after you
click on the text label so you can change the
color. Click any color in the wheel.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

51Summary

5.3 Summary
This chapter covered a lot. You created an app with a label and a button, and you
made the words on the button change when you clicked it.

 You learned about outlets, but I didn’t explain them in depth. Chapter 6 covers
them, but for now, think of them as ways for the code to “talk to” the UI elements. The
example we used was how our game-show host Vanna knew which puzzle to turn the
letters around for.

 You learned about actions, which are the way the user interface directs the flow of
your code or tells the code to do something differently. In the code example, the
“action” was for the user to tap the button and the code to then do something. In our
real-world example, it was when the game show contestant yelled out a letter for
Vanna. Chapter 6 covers this concept as well. You also learned about changing the
attributes of a label, such as the font and the color.

Figure 5.14 Change the label Color property to red by choosing red on the color wheel.

Concepts to remember
 Outlets let you access something on the user interface (the UI) by providing a

reference to it (like Vanna being able to touch the letters on the game board
and turn them around).

 Actions tell the code what should happen when a user interacts with a control
object (like your button) on the UI.

 The most important thing to take away from this chapter is a high-level under-
standing of outlets, actions, and attributes. Chapter 6 talks more about out-
lets and actions, so stay tuned. You’ll use these concepts for almost every
app you build from here on.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

52 CHAPTER 5 Capturing users’ actions: adding buttons

 The next chapter further explains the concepts from this chapter. This chapter
taught you the basics of wiring up your user controls (buttons and labels) to your
code. You’ll use these actions throughout the rest of this book, so make sure you
understand how to do it.

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

www.itbook.store/books/9781617292651

https://itbook.store/books/9781617292651

