
SAMPLE CHAPTER

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

Functional Programming in Java
by Pierre-Yves Saumont

Chapter 1

Copyright 2017 Manning Publications

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

iii

brief contents

1 ■ What is functional programming? 1
2 ■ Using functions in Java 16
3 ■ Making Java more functional 57
4 ■ Recursion, corecursion, and memoization 94
5 ■ Data handling with lists 124
6 ■ Dealing with optional data 151
7 ■ Handling errors and exceptions 176
8 ■ Advanced list handling 203
9 ■ Working with laziness 230

10 ■ More data handling with trees 256
11 ■ Solving real problems with advanced trees 290
12 ■ Handling state mutation in a functional way 321
13 ■ Functional input/output 342
14 ■ Sharing mutable state with actors 370
15 ■ Solving common problems functionally 394

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

1

What is
functional programming?

Not everybody agrees on a definition for functional programming (FP). In general
terms, functional programming is a programming paradigm, and it’s about pro-
gramming with functions. But this doesn’t explain the most important aspect: how
FP is different from other paradigms, and what makes it a (potentially) better way
to write programs. In his article “Why Functional Programming Matters,” pub-
lished in 1990, John Hughes writes the following:

This chapter covers
 The benefits of functional programming

 Problems with side effects

 How referential transparency makes programs
safer

 Reasoning about programs with the substitution
model

 Making the most of abstraction

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

2 CHAPTER 1 What is functional programming?

Functional programs contain no assignment statements, so variables, once
given a value, never change. More generally, functional programs contain no
side effects at all. A function call can have no effect other than to compute its
result. This eliminates a major source of bugs, and also makes the order of
execution irrelevant—since no side effect can change an expression’s value, it
can be evaluated at any time. This relieves the programmer of the burden of
prescribing the flow of control. Since expressions can be evaluated at any time,
one can freely replace variables by their values and vice versa—that is, programs
are “referentially transparent.” This freedom helps make functional programs
more tractable mathematically than their conventional counterparts.1

In the rest of this chapter, I’ll briefly present concepts such as referential transparency
and the substitution model, as well as other concepts that together are the essence of
functional programming. You’ll apply these concepts over and over in the coming
chapters.

1.1 What is functional programming?
It’s often as important to understand what something is not, as to agree about what it
is. If functional programming is a programming paradigm, there clearly must be
other programming paradigms that FP differs from. Contrary to what some might
think, functional programming isn’t the opposite of object-oriented programming
(OOP). Some functional programming languages are object-oriented; some are not.

 Functional programming is sometimes considered to be a set of techniques that
supplement or replace techniques found in other programming paradigms, such as

 First-class functions
 Anonymous functions
 Closures
 Currying
 Lazy evaluation
 Parametric polymorphism
 Algebraic data types

Although it is true that most functional languages do use a number of these tech-
niques, you may find, for each of them, examples of functional programming lan-
guages that don’t, as well as non-functional languages that do. As you’ll see when
studying each of these techniques in this book, it’s not the language that makes pro-
gramming functional. It’s the way you write the code. But some languages are more
functional-friendly than others.

 What functional programming may be opposed to is the imperative programming
paradigm. In imperative programming style, programs are composed from elements
that “do” something. “Doing” something generally implies an initial state, a transition,

1 John Hughes, “Why Functional Programming Matters,” from D. Turner, ed., Research Topics in Functional Pro-
gramming (Addison-Wesley, 1990), 17–42, www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf.

www.itbook.store/books/9781617292736

www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
https://itbook.store/books/9781617292736

3What is functional programming?

and an end state. This is sometimes called state mutation. Traditional imperative-style
programs are often described as a series of mutations, separated with condition test-
ing. For example, an addition program for adding two positive values a and b might
be represented by the following pseudo code:

 if b == 0, return a

 else increment a and decrement b

 start again with the new a and b

In this pseudo code, you can recognize the traditional instructions of most imperative
languages: testing conditions, mutating variables, branching, and returning a value.
This code may be represented graphically by a flow chart, such as figure 1.1.

 On the other hand, functional programs are composed of elements that “are”
something—they don’t “do” something. The addition of a and b doesn’t “make” a
result. The addition of 2 and 3, for example, doesn’t make 5. It is 5.

 The difference might not seem important, but it is. The main consequence is that
each time you encounter 2 + 3, you can replace it with 5. Can you do the same thing in
an imperative program? Well, sometimes you can. But sometimes you can’t without
changing the program’s outcome. If the expression you want to replace has no other
effect than returning the result, you can safely replace it with its result. But how can
you be sure that it has no other effect? In the addition example, you clearly see that
the two variables a and b have been destroyed by the program. This is an effect of the
program, besides returning the result, so it’s called a side effect. (This would be differ-
ent if the computation were occurring inside a Java method, because the variables a
and b would be passed by value, and the change would then be local and not visible
from outside the method.)

b == 0 ?

Add 1 to a

Remove 1 from b

Return a

No

Yes

Figure 1.1 A flow chart representing an
imperative program as a process that occurs in
time. Various things are transformed and states
are mutated until the result is obtained.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

4 CHAPTER 1 What is functional programming?

One major difference between imperative programming and FP is that in FP there are
no side effects. This means, among other things,

 No mutation of variables
 No printing to the console or to any device
 No writing to files, databases, networks, or whatever
 No exception throwing

When I say “no side effects,” I mean no observable side effects. Functional programs
are built by composing functions that take an argument and return a value, and that’s
it. You don’t care about what’s happening inside the functions, because, in theory,
nothing is happening ever. But in practice, programs are written for computers that
aren’t functional at all. All computers are based on the same imperative paradigm; so
functions are black boxes that

 Take an argument (a single one, as you’ll see later)
 Do mysterious things inside, such as mutating variables and a lot of imperative-

style stuff, but with no effect observable from outside
 Return a (single) value

This is theory. In practice, it’s impossible for a function to have no side effects at all. A
function will return a value at some time, and this time may vary. This is a side effect.
It might create an out-of-memory error, or a stack-overflow error, and crash the appli-
cation, which is a somewhat observable side effect. And it will cause writing to mem-
ory, registering mutations, thread launching, context switching, and other sorts of
things that are indeed effects observable from outside.

 So functional programming is writing programs with no intentional side effects, by
which I mean side effects that are part of the expected outcome of the program.
There should also be as few non-intentional side effects as possible.

1.2 Writing useful programs with no side effects
You may wonder how you can possibly write useful programs if they have no side
effects. Obviously, you can’t. Functional programming is not about writing programs
that have no observable results. It’s about writing programs that have no observable
results other than returning a value. But if this is all the program does, it won’t be very
useful. In the end, functional programs have to have an observable effect, such as dis-
playing the result on a screen, writing it to a file or database, or sending it over a net-
work. This interaction with the outside world won’t occur in the middle of a
computation, but only when you finish the computation. In other words, side effects
will be delayed and applied separately.

 Take the example of the addition in figure 1.1. Although it’s described in impera-
tive style, it might yet be functional, depending on how it’s implemented. Imagine this
program is implemented in Java as follows:

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

5Writing useful programs with no side effects

public static int add(int a, int b) {
while (b > 0) {

a++;
b--;

}
return a;

}

This program is fully functional. It takes an argument, which is the pair of integers a
and b, it returns a value, and it has absolutely no other observable effect. That it
mutates variables doesn’t contradict the requirements, because arguments in Java are
passed by value, so the mutations of the arguments aren’t visible from outside. You
can then choose to apply an effect, such as displaying the result or using the result for
another computation.

 Note that although the result might not be correct (in case of an arithmetic over-
flow), that’s not in contradiction with having no side effects. If values a and b are too
big, the program will silently overflow and return an erroneous result, but this is still
functional. On the other hand, the following program is not functional:

public static int div(int a, int b) {
return a / b;

}

Although this program doesn’t mutate any variables, it throws an exception if b is
equal to 0. Throwing an exception is a side effect. In contrast, the following imple-
mentation, although a bit stupid, is functional:

public static int div(int a, int b) {
return (int) (a / (float) b);

}

This implementation won’t throw an exception if b is equal to 0, but it will return a
special result. It’s up to you to decide whether it’s OK or not for your function to
return this specific result to mean that the divisor was 0. (It’s probably not!)

 Throwing an exception might be an intentional or unintentional side effect, but
it’s always a side effect. Often, though, in imperative programming, side effects are
wanted. The simplest form might look like this:

public static void add(int a, int b) {
while (b > 0) {

a++;
b--;

}
System.out.println(a);

}

This program doesn’t return a value, but it prints the result to the console. This is a
desired side effect.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

6 CHAPTER 1 What is functional programming?

 Note that the program could alternatively both return a value and have some
intentional side effects, as in the following example:

public static int add(int a, int b) {
log(String.format("Adding %s and %s", a, b));
while (b > 0) {

a++;
b--;

}
log(String.format("Returning %s", a));
return a;

}

This program isn’t functional because it uses side effects for logging.

1.3 How referential transparency makes programs safer
Having no side effects (and thus not mutating anything in the external world) isn’t
enough for a program to be functional. Functional programs must also not be
affected by the external world. In other words, the output of a functional program
must depend only on its argument. This means functional code may not read data
from the console, a file, a remote URL, a database, or even from the system. Code that
doesn’t mutate or depend on the external world is said to be referentially transparent.

 Referentially transparent code has several properties that might be of some inter-
est to programmers:

 It’s self-contained. It doesn’t depend on any external device to work. You can
use it in any context—all you have to do is provide a valid argument.

 It’s deterministic, which means it will always return the same value for the same
argument. With referentially transparent code, you won’t be surprised. It might
return a wrong result, but at least, for the same argument, this result will never
change.

 It will never throw any kind of Exception. It might throw errors, such as OOME
(out-of-memory error) or SOE (stack-overflow error), but these errors mean
that the code has a bug, which is not a situation you, as a programmer, or the
users of your API, are supposed to handle (besides crashing the application and
eventually fixing the bug).

 It won’t create conditions causing other code to unexpectedly fail. For exam-
ple, it won’t mutate arguments or some other external data, causing the caller
to find itself with stale data or concurrent access exceptions.

 It won’t hang because some external device (whether database, file system, or
network) is unavailable, too slow, or simply broken.

Figure 1.2 illustrates the difference between a referentially transparent program and
one that’s not referentially transparent.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

7The benefits of functional programming

1.4 The benefits of functional programming
From what I’ve just said, you can likely guess the many benefits of functional pro-
gramming:

 Functional programs are easier to reason about because they’re deterministic.
One specific input will always give the same output. In many cases, you might be
able to prove your program correct rather than extensively testing it and still
being uncertain whether it will break under unexpected conditions.

 Functional programs are easier to test. Because there are no side effects, you
don’t need mocks, which are generally required to isolate the programs under
test from the outside.

Objects Database

Program Output (result)Input (argument)

Keyboard

File

Exception

Objects Database

Program Output (result)Input (argument)

Keyboard

File

Screen

A program that isn’t referentially transparent may read data from or write it to elements in the
outside world, log to file, mutate external objects, read from keyboard, print to screen, and so on.
Its result is unpredictable.

A referentially transparent program doesn't interfere with the outside world apart from taking
an argument as input and outputting a result. Its result only depends on its argument.

Screen

Figure 1.2 Comparing a program that’s referentially transparent to one that’s not

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

8 CHAPTER 1 What is functional programming?

 Functional programs are more modular because they’re built from functions
that have only input and output; there are no side effects to handle, no excep-
tions to catch, no context mutation to deal with, no shared mutable state, and
no concurrent modifications.

 Functional programming makes composition and recombination much easier.
To write a functional program, you have to start by writing the various base func-
tions you need and then combine these base functions into higher-level ones,
repeating the process until you have a single function corresponding to the pro-
gram you want to build. As all these functions are referentially transparent, they
can then be reused to build other programs without any modifications.

Functional programs are inherently thread-safe because they avoid mutation of
shared state. Once again, this doesn’t mean that all data has to be immutable. Only
shared data must be. But functional programmers will soon realize that immutable
data is always safer, even if the mutation is not visible externally.

1.5 Using the substitution model to
reason about programs
Remember that a function doesn’t do anything. It only has a value, which is only depen-
dent on its argument. As a consequence, it’s always possible to replace a function call,
or any referentially transparent expression, with its value, as shown in figure 1.3.

When applied to functions, the substitution model allows you to replace any function
call with its return value. Consider the following code:

public static void main(String[] args) {
int x = add(mult(2, 3), mult(4, 5));

}
public static int add(int a, int b) {

log(String.format("Returning %s as the result of %s + %s", a + b, a, b));
return a + b;

}
public static int mult(int a, int b) {

return a * b;
}

The expression 3 x 2 may be replaced with its value:

The expression 4 x 5 may be replaced with its value: = 26

= 26

= 263 x 2 +

+

+

4 x 5

4 x 5

6 20

Figure 1.3 Replacing referentially transparent expressions with their values doesn’t change
the overall meaning.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

9Applying functional principles to a simple example

public static void log(String m) {
System.out.println(m);

}

Replacing mult(2, 3) and mult(4, 5) with their respective return values doesn’t
change the signification of the program:

int x = add(6, 20);

In contrast, replacing the call to the add function with its return value changes the sig-
nification of the program, because the log method will no longer be called, and no
logging will happen. This might be important or not; in any case, it changes the result
of the program.

1.6 Applying functional principles to a simple example
As an example of converting an imperative program into a functional one, we’ll con-
sider a very simple program representing the purchase of a donut with a credit card.

public class DonutShop {

public static Donut buyDonut(CreditCard creditCard) {
Donut donut = new Donut();
creditCard.charge(Donut.price);
return donut;

}
}

In this code, the charging of the credit card is a side effect B. Charging a credit card
probably consists of calling the bank, verifying that the credit card is valid and autho-
rized, and registering the transaction. The function returns the donut C.

 The problem with this kind of code is that it’s difficult to test. Running the program
for testing would involve contacting the bank and registering the transaction using
some sort of mock account. Or you’d need to create a mock credit card to register the
effect of calling the charge method and to verify the state of the mock after the test.

 If you want to be able to test your program without contacting the bank or using a
mock, you should remove the side effect. Because you still want to charge the credit
card, the only solution is to add a representation of this operation to the return value.
Your buyDonut method will have to return both the donut and this representation of
the payment.

 To represent the payment, you can use a Payment class.

public class Payment {

public final CreditCard creditCard;
public final int amount;

Listing 1.1 A Java program with side effects

Listing 1.2 The Payment class

B Charges the credit card as a side effect
C Returns the donut

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

10 CHAPTER 1 What is functional programming?

public Payment(CreditCard creditCard, int amount) {
this.creditCard = creditCard;
this.amount = amount;

}
}

This class contains the necessary data to represent the payment, which consists of a
credit card and the amount to charge. Because the buyDonut method must return both
a Donut and a Payment, you could create a specific class for this, such as Purchase:

public class Purchase {

public Donut donut;
public Payment payment;

public Purchase(Donut donut, Payment payment) {
this.donut = donut;
this.payment = payment;

}
}

You’ll often need such a class to hold two (or more) values, because functional pro-
gramming replaces side effects with returning a representation of these effects.

 Rather than creating a specific Purchase class, you’ll use a generic one that you’ll
call Tuple. This class will be parameterized by the two types it will contain (Donut and
Payment). The following listing shows its implementation, as well as the way it’s used in
the DonutShop class.

public class Tuple<T, U> {

public final T _1;
public final U _2;

public Tuple(T t, U u) {
this._1 = t;
this._2 = u;

}
}
public class DonutShop {

public static Tuple<Donut, Payment> buyDonut(CreditCard creditCard) {
Donut donut = new Donut();
Payment payment = new Payment(creditCard, Donut.price);
return new Tuple<>(donut, payment);

}
}

Note that you’re no longer concerned (at this stage) with how the credit card will
actually be charged. This adds some freedom to the way you build your application.
You could still process the payment immediately, or you could store it for later pro-
cessing. You could even combine stored payments for the same card and process them

Listing 1.3 The Tuple class

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

11Applying functional principles to a simple example

in a single operation. This would allow you to save money by minimizing the bank fees
for the credit card service.

 The combine method in the following listing allows you to combine payments.
Note that if the credit cards don’t match, an exception is thrown. This doesn’t contra-
dict what I said about functional programs not throwing exceptions. Here, trying to
combine two payments with two different credit cards is considered a bug, so it should
crash the application. (This isn’t very realistic. You’ll have to wait until chapter 7 to
learn how to deal with such situations without throwing exceptions.)

package com.fpinjava.introduction.listing01_04;

public class Payment {

public final CreditCard creditCard;
public final int amount;

public Payment(CreditCard creditCard, int amount) {
this.creditCard = creditCard;
this.amount = amount;

}

public Payment combine(Payment payment) {
if (creditCard.equals(payment.creditCard)) {

return new Payment(creditCard, amount + payment.amount);
} else {

throw new IllegalStateException("Cards don't match.");
}

}
}

Of course, the combine method wouldn’t be very efficient for buying several donuts at
once. For this use case, you could simply replace the buyDonut method with buy-
Donuts(int n, CreditCard creditCard), as shown in the following listing. This
method returns a Tuple<List<Donut>, Payment>.

package com.fpinjava.introduction.listing01_05;

import static com.fpinjava.common.List.fill;
import com.fpinjava.common.List;
import com.fpinjava.common.Tuple;

public class DonutShop {

public static Tuple<Donut, Payment> buyDonut(final CreditCard cCard) {
return new Tuple<>(new Donut(), new Payment(cCard, Donut.price));

}

public static Tuple<List<Donut>, Payment> buyDonuts(final int quantity,
final CreditCard cCard) {

return new Tuple<>(fill(quantity, () -> new Donut()),
new Payment(cCard, Donut.price * quantity));

Listing 1.4 Composing multiple payments into a single one

Listing 1.5 Buying multiple donuts at once

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

12 CHAPTER 1 What is functional programming?

}
}

Note that this method doesn’t use the standard java.util.List class because that
class doesn’t offer some of the functional methods you’ll need. In chapter 3, you’ll see
how to use the java.util.List class in a functional way by writing a small functional
library. Then, in chapter 5, you’ll develop a completely new functional List. It’s this
list that’s used here. This combine method is somewhat equivalent to the following,
which uses the standard Java list:

public static Tuple<List<Donut>, Payment> buyDonuts(final int quantity,
final CreditCard cCard) {

return new Tuple<>(Collections.nCopies(quantity, new Donut()),
new Payment(cCard, Donut.price * quantity));

}

As you’ll soon need additional functional methods, you won’t be using the Java list.
For the time being, you just need to know that the static List<A> fill(int n,
Supplier<A> s) method creates a list of n instances of A by using a special object,
Supplier<A>. As its name indicates, a Supplier<A> is an object that supplies an A
when its get() method is called. Using a Supplier<A> instead of an A allows for lazy
evaluation, which you’ll learn about in the next chapters. For now, you may think of it
as a way to manipulate an A without effectively creating it until it’s needed.

 Now, your program can be tested without using a mock. For example, here’s a test
for the method buyDonuts:

@Test
public void testBuyDonuts() {

CreditCard creditCard = new CreditCard();
Tuple<List<Donut>, Payment> purchase = DonutShop.buyDonuts(5, creditCard);
assertEquals(Donut.price * 5, purchase._2.amount);
assertEquals(creditCard, purchase._2.creditCard);

}

Another benefit of making your program functional is that it’s more easily compos-
able. If the same person made several purchases with your initial program, you’d have
to contact the bank (and pay the corresponding fee) each time. With the new func-
tional version, you can choose to charge the card immediately for each purchase or to
group all payments made with the same card and charge it only once for the total.

 To group payments, you’ll need to use additional methods from your functional
List class (you don’t need to understand how these methods work for now; you’ll
study them in detail in chapters 5 and 8):

public Map<B, List<A>> groupBy(Function<A, B> f)

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

13Applying functional principles to a simple example

This instance method of the List class takes a function from A to B and returns a map
of key and value pairs, with keys being of type B and values of type List<A>. In other
words, it groups payments by credit cards:

List<A> values()

This is an instance method of Map that returns a list of all the values in the map:

 List map(Function<A, B> f)

This is an instance method of List that takes a function from A to B and applies it to
all elements of a list of A, giving a list of B:

Tuple<List<A1>, List<A2>> unzip(Function<A, Tuple<A1, A2>> f)

This is a method of the List class that takes as its argument a function from A to a
tuple of values. For example, it might be a function that takes an email address and
returns the name and the domain as a tuple. The unzip method, in that case, would
return a tuple of a list of names and a list of domains.

A reduce(Function<A, Function<A, A>> f)

This method of List uses an operation to reduce the list to a single value. This opera-
tion is represented by Function<A, Function<A, A>> f. This notation may look a bit
weird, but you’ll learn what it means in chapter 2. It could be, for example, an addi-
tion. In such a case, it would simply mean a function such as f(a, b) = a + b.

 Using these methods, you can now create a new method that groups payments by
credit card.

package com.fpinjava.introduction.listing01_06;

import com.fpinjava.common.List;

public class Payment {

public final CreditCard creditCard;
public final int amount;

public Payment(CreditCard creditCard, int amount) {
this.creditCard = creditCard;
this.amount = amount;

}

public Payment combine(Payment payment) {
if (creditCard.equals(payment.creditCard)) {

return new Payment(creditCard, amount + payment.amount);
} else {

throw new IllegalStateException("Cards don't match.");
}

}

Listing 1.6 Grouping payments by credit card

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

14 CHAPTER 1 What is functional programming?

public static List<Payment> groupByCard(List<Payment> payments) {
return payments

.groupBy(x -> x.creditCard)

.values()

.map(x -> x.reduce(c1 -> c2 -> c1.combine(c2)));
}

}

Note that you could use a method reference in the last line of the groupByCard
method, but I chose the lambda notation because it’s probably (much) easier to read.
If you prefer method references, you can replace this line with the following one:

.map(x -> x.reduce(c1 -> c1::combine));

In listing 1.6, the portion after c1 -> is a function taking a single parameter and pass-
ing that parameter to c1.combine(). And that’s exactly what c1::combine is—it’s a
function taking a single parameter. Method references are often easier to read than
lambdas, but not always!

1.7 Pushing abstraction to the limit
As you’ve seen, functional programming consists in writing programs by composing
pure functions, which means functions without side effects. These functions may be
represented by methods, or they may be first-class functions, such as the arguments of
methods groupBy, map, or reduce, in the previous example. First-class functions are
simply functions represented in such a way that, unlike methods, they can be manipu-
lated by the program. In most cases, they’re used as arguments to other functions, or
to methods. You’ll learn in chapter 2 how this is done.

 But the most important notion here is abstraction. Look at the reduce method. It
takes as its argument an operation, and uses it to reduce a list to a single value. Here,
the operation has two operands of the same type. Except for this, it could be any oper-
ation. Consider a list of integers. You could write a sum method to compute the sum of
the elements; you could write a product method to compute the product of the ele-
ments; or you could write a min or a max method to compute the minimum or the
maximum of the list. But you could also use the reduce method for all these computa-
tions. This is abstraction. You abstract the part that is common to all operations in the
reduce method, and you pass the variable part (the operation) as an argument.

 But you could go further. The reduce method is a particular case of a more gen-
eral method that might produce a result of a different type than the elements of the
list. For example, it could be applied to a list of characters to produce a String. You’d
need to start from a given value (probably an empty string). In chapters 3 and 5, you’ll
learn how to develop this method (called fold). Also note that the reduce method

Changes a List<Payment> into a
Map<CreditCard, List<Payment>>
where each list contains all payments
for a particular credit card

Reduces each List<Payment> into a
single Payment, leading to the overall

result of a List<Payment>

Changes the Map<CreditCard,
List<Payment>> into a
List<List<Payment>>

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

15Summary

won’t work on an empty list. Think of a list of integers—if you want to compute the
sum, you need to have an element to start with. If the list is empty, what should you
return? Of course, you know that the result should be 0, but this only works for a sum.
It doesn’t work for a product.

 Also consider the groupByCard method. It looks like a business method that can
only be used to group payments by credit cards. But it’s not! You could use this
method to group the elements of any list by any of their properties, so this method
should be abstracted and put inside the List class in such a way that it could be
reused easily.

 A very important part of functional programming consists in pushing abstraction
to the limit. In the rest of this book, you’ll learn how to abstract many things so you
never have to define them again. You will, for example, learn how to abstract loops so
you won’t have to write loops ever again. And you’ll learn how to abstract paralleliza-
tion in a way that will allow you to switch from serial to parallel processing just by
selecting a method in the List class.

1.8 Summary
 Functional programming is programming with functions, returning values, and

having no side effects.
 Functional programs are easy to reason about and easy to test.
 Functional programming offers a high level of abstraction and reusability.
 Functional programs are more robust than their imperative counterparts.
 Functional programs are safer in multithreading environments because they

avoid shared mutable state.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

	cover
	Copyright
	BriefContents
	SampleCh01
	coverBack

