
SAMPLE CHAPTER

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

Functional Programming in Java

by Pierre-Yves Saumont

Chapter 4

Copyright 2017 Manning Publications

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

iii

brief contents

1 ■ What is functional programming? 1
2 ■ Using functions in Java 16
3 ■ Making Java more functional 57
4 ■ Recursion, corecursion, and memoization 94
5 ■ Data handling with lists 124
6 ■ Dealing with optional data 151
7 ■ Handling errors and exceptions 176
8 ■ Advanced list handling 203
9 ■ Working with laziness 230

10 ■ More data handling with trees 256
11 ■ Solving real problems with advanced trees 290
12 ■ Handling state mutation in a functional way 321
13 ■ Functional input/output 342
14 ■ Sharing mutable state with actors 370
15 ■ Solving common problems functionally 394

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

94

Recursion, corecursion,
and memoization

The previous chapter introduced powerful methods and functions, but some
shouldn’t be used in production because they can overflow the stack and crash the
application (or at least the thread in which they’re called). These “dangerous”
methods and functions are mainly explicitly recursive, but not always. You’ve seen
that composing functions can also overflow the stack, and this can occur even with
nonrecursive functions, although this isn’t common.

 In this chapter, you’ll learn how to turn stack-based functions into heap-based
functions. This is necessary because the stack is a limited memory area. For recur-
sive functions to be safe, you have to implement them in such a way that they use
the heap (the main memory area) instead of the limited stack space. To under-
stand the problem completely, you must first understand the difference between
recursion and corecursion.

This chapter covers
 Understanding recursion and corecursion

 Working with recursive functions

 Composing a huge number of functions

 Speeding up functions with memoization

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

95Understanding corecursion and recursion

4.1 Understanding corecursion and recursion
Corecursion is composing computing steps by using the output of one step as the input
of the next one, starting with the first step. Recursion is the same operation, but start-
ing with the last step. In recursion, you have to delay evaluation until you encounter a
base condition (corresponding to the first step of corecursion).

 Let’s say you have only two instructions in your programming language: incremen-
tation (adding 1 to a value) and decrementation (subtracting 1 from a value). As an
example, you’ll implement addition by composing these instructions.

4.1.1 Exploring corecursive and recursive addition examples

To add two numbers, x and y, you can do the following:

 If y = 0, return x.
 Otherwise, increment x, decrement y, and start again.

This can be written in Java as follows:

static int add(int x, int y) {
while(y > 0) {

x = ++x;
y = --y;

}
return x;

}

Here’s a simpler approach:

static int add(int x, int y) {
while(y-- > 0) {

x = ++x;
}
return x;

}

There’s no problem with using the parameters x and y directly, because in Java, all
parameters are passed by value. Also note that you use post-decrementation to sim-
plify coding. You could have used pre-decrementation by slightly changing the condi-
tion, thus switching from iterating from y to 1, to iterating from y - 1 to 0:

static int add(int x, int y) {
while(--y >= 0) {

x = ++x;
}
return x;

}

The recursive version is trickier, but still simple:

static int addRec(int x, int y) {
return y == 0

? x
: addRec(++x, --y);

}

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

96 CHAPTER 4 Recursion, corecursion, and memoization

Both approaches seem to work, but if you try the recursive version with big numbers,
you may have a surprise. Although this version,

addRec(10000, 3);

produces the expected result of 10,003, switching the parameters, like this,

addRec(3, 10000);

produces a StackOverflowException.

4.1.2 Implementing recursion in Java

To understand what’s happening, you must look at how Java handles method calls.
When a method is called, Java suspends what it’s currently doing and pushes the envi-
ronment on the stack to make a place for executing the called method. When this
method returns, Java pops the stack to restore the environment and resume program
execution. If you call one method after another, the stack always holds at most one of
these method call environments.

 But methods aren’t composed only by calling them one after the other. Methods
call methods. If method1 calls method2 as part of its implementation, Java again sus-
pends the method1 execution, pushes the current environment on the stack, and starts
executing method2. When method2 returns, Java pops the last pushed environment
from the stack and resumes execution (of method1 in this case). When method1 com-
pletes, Java again pops the last environment from the stack and resumes what it was
doing before calling this method.

 Method calls may be deeply nested, and this nesting depth does have a limit, which
is the size of the stack. In current situations, the limit is somewhere around a few thou-
sand levels, and it’s possible to increase this limit by configuring the stack size. But
because the same stack size is used for all threads, increasing the stack size generally
wastes space. The default stack size varies from 320 KB to 1024 KB, depending on the
version of Java and the system used. For a 64-bit Java 8 program with minimal stack
usage, the maximum number of nested method calls is about 7,000. Generally, you
won’t need more, except in specific cases. One such case is recursive method calls.

4.1.3 Using tail call elimination

Pushing the environment on the stack is typically necessary in order to resume com-
putation after the called method returns, but not always. When the call to a method is
the last thing the calling method does, there’s nothing to resume when the method
returns, so it should be OK to resume directly with the caller of the current method
instead of the current method itself. A method call occurring in the last position,
meaning it’s the last thing to do before returning, is called a tail call. Avoiding pushing
the environment to the stack to resume method processing after a tail call is an opti-
mization technique known as tail call elimination (TCE). Unfortunately, Java doesn’t
use TCE.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

97Understanding corecursion and recursion

 Tail call elimination is sometimes called tail call optimization (TCO). TCE is gener-
ally an optimization, and you can live without it. But when it comes to recursive func-
tion calls, TCE is no longer an optimization. It’s a necessary feature. That’s why TCE is
a better term than TCO when it comes to handling recursion.

4.1.4 Using tail recursive methods and functions

Most functional languages have TCE. But TCE isn’t enough to make every recursive
call possible. To be a candidate for TCE, the recursive call must be the last thing the
method has to do.

 Consider the following method, which is computing the sum of the elements of a
list:

static Integer sum(List<Integer> list) {
return list.isEmpty()

? 0
: head(list) + sum(tail(list));

}

This method uses the head and tail methods from chapter 3. The recursive call to
the sum method isn’t the last thing the method has to do. The four last things the
method does are as follows:

 Calls the head method
 Calls the tail method
 Calls the sum method
 Adds the result of head and the result of sum

Even if you had TCE, you wouldn’t be able to use this method with lists of 10,000 ele-
ments. But you can rewrite this method in order to put the call to sum in the tail position:

static Integer sum(List<Integer> list) {
return sumTail(list, 0);

}

static Integer sumTail(List<Integer> list, int acc) {
return list.isEmpty()

? acc
: sumTail(tail(list), acc + head(list));

}

Here, the sumTail method is tail recursive and can be optimized through TCE.

4.1.5 Abstracting recursion

So far, so good, but why bother with all this if Java doesn’t have TCE? Well, Java doesn’t
have it, but you can do without it. All you need to do is the following:

 Represent unevaluated method calls
 Store them in a stack-like structure until you encounter a terminal condition
 Evaluate the calls in “last in, first out” (LIFO) order

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

98 CHAPTER 4 Recursion, corecursion, and memoization

Most examples of recursive methods use the factorial function. Other examples use
the Fibonacci series. The factorial method presents no particular interest beside being
recursive. The Fibonacci series is more interesting, and we’ll come back to it later. To
start with, you’ll use the much simpler recursive addition method shown at the begin-
ning of this chapter.

 Recursive and corecursive functions are both functions where f(n) is a composi-
tion of f(n - 1), f(n - 2), f(n - 3), and so on, until a terminal condition is encoun-
tered (generally f(0) or f(1)). Remember that in traditional programming,
composing generally means composing the results of an evaluation. This means that
composing function f(a) and g(a) consists of evaluating g(a) and then using the
result as input to f. But it doesn’t have to be done that way. In chapter 2, you devel-
oped a compose method to compose functions, and a higherCompose function to do
the same thing. Neither evaluated the composed functions. They only produced
another function that could be applied later.

 Recursion and corecursion are similar, but there’s a difference. You create a list of
function calls instead of a list of functions. With corecursion, each step is terminal, so
it may be evaluated in order to get the result and use it as input for the next step. With
recursion, you start from the other end, so you have to put non-evaluated calls in the
list until you find a terminal condition, from which you can process the list in reverse
order. You stack the steps until the last one is found, and then you process the stack in
reverse order (last in, first out), again evaluating each step and using the result as the
input for the next (in fact, the previous) one.

 The problem is that Java uses the thread stack for both recursion and corecursion,
and its capacity is limited. Typically, the stack overflows after 6,000 to 7,000 steps.
What you have to do is create a function or a method returning a non-evaluated step.
To represent a step in the calculation, you’ll use an abstract class called TailCall
(because you want to represent a call to a method that appears in the tail position).

 This TailCall abstract class has two subclasses. One represents an intermediate
call, when the processing of one step is suspended to call the method again for evalu-
ating the next step. This is represented by a subclass named Suspend. It’s instantiated
with Supplier<TailCall>>, which represents the next recursive call. This way, instead
of putting all TailCalls in a list, you’ll construct a linked list by linking each tail call
to the next. The benefit of this approach is that such a linked list is a stack, offering
constant time insertion as well as constant time access to the last inserted element,
which is optimal for a LIFO structure.

 The second subclass represents the last call, which is supposed to return the result,
so you’ll call it Return. It won’t hold a link to the next TailCall, because there’s noth-
ing next, but it’ll hold the result. Here’s what you get:

public abstract class TailCall<T> {
public static class Return<T> extends TailCall<T> {

private final T t;
public Return(T t) {

this.t = t;

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

99Understanding corecursion and recursion

}
}

public static class Suspend<T> extends TailCall<T> {
private final Supplier<TailCall<T>> resume;
private Suspend(Supplier<TailCall<T>> resume) {

this.resume = resume;
}

}
}

To handle these classes, you’ll need some methods: one to return the result, one to
return the next call, and one helper method to determine whether a TailCall is a
Suspend or a Return. You could avoid this last method, but you’d have to use instanceof
to do the job, which is ugly. The three methods are as follows:

public abstract TailCall<T> resume();
public abstract T eval();
public abstract boolean isSuspend();

The resume method has no implementation in Return and will throw a runtime
exception. The user of your API shouldn’t be in a situation to call this method, so if it’s
eventually called, it’ll be a bug and you’ll stop the application. In the Suspend class,
this method will return the next TailCall.

 The eval method returns the result stored in the Return class. In the first version,
it’ll throw a runtime exception if called on the Suspend class.

 The isSuspend method returns true in Suspend, and false in Return. The follow-
ing listing shows this first version.

public abstract class TailCall<T> {

public abstract TailCall<T> resume();
public abstract T eval();
public abstract boolean isSuspend();

public static class Return<T> extends TailCall<T> {

private final T t;

public Return(T t) {
this.t = t;

}

@Override
public T eval() {

return t;
}

@Override
public boolean isSuspend() {

return false;
}

Listing 4.1 The TailCall interface and its two implementations

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

100 CHAPTER 4 Recursion, corecursion, and memoization

@Override
public TailCall<T> resume() {

throw new IllegalStateException("Return has no resume");
}

}

public static class Suspend<T> extends TailCall<T> {

private final Supplier<TailCall<T>> resume;

public Suspend(Supplier<TailCall<T>> resume) {
this.resume = resume;

}

@Override
public T eval() {

throw new IllegalStateException("Suspend has no value");
}

@Override
public boolean isSuspend() {

return true;
}

@Override
public TailCall<T> resume() {

return resume.get();
}

}
}

To make the recursive method add work with any number of steps (within the limits of
available memory!), you have a few changes to make. Starting with your original
method,

static int add(int x, int y) {
return y == 0

? x
: add(++x, --y) ;

}

you need to make the modifications shown in the following listing.

static TailCall<Integer> add(int x, int y) {
return y == 0

? new TailCall.Return<>(x)
: new TailCall.Suspend<>(() -> add(x + 1, y - 1));

}

This method returns a TailCall<Integer> instead of an intB. This return value
may be a Return<Integer> if you’ve reached a terminal condition C, or a Suspend

Listing 4.2 The modified recursive method

In nonterminal condition,
a Suspend is returned

In terminal condition,
a Return is returned

Method
returns
a TailCallB

C
D

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

101Understanding corecursion and recursion

<Integer> if you haven’t D. The Return is instantiated with the result of the compu-
tation (which is x, because y is 0), and the Suspend is instantiated with a Supplier
<TailCall<Integer>>, which is the next step of the computation in terms of execu-
tion sequence, or the previous in terms of calling sequence. It’s important to under-
stand that Return corresponds to the last step in terms of the method call, but to the
first step in terms of evaluation. Also note that we’ve slightly changed the evaluation,
replacing ++x and --y with x + 1 and y – 1. This is necessary because we’re using a
closure, which works only if closed-over variables are effectively final. This is cheating,
but not too much. We could have created and called two methods, dec and inc, using
the original operators.

 This method returns a chain of TailCall instances, all being Suspend instances
except the last one, which is a Return.

 So far, so good, but this method isn’t a drop-in replacement for the original one.
Not a big deal! The original method was used as follows:

System.out.println(add(x, y))

You can use the new method like this:

TailCall<Integer> tailCall = add(3, 100000000);
while(tailCall.isSuspend()) {

tailCall = tailCall.resume();
}
System.out.println(tailCall.eval());

Doesn’t it look nice? If you feel frustrated, I understand. You thought you would just
use a new method in place of the old one in a transparent manner. You seem to be far
from this. But you can make things much better with a little effort.

4.1.6 Using a drop-in replacement for stack-based recursive methods

In the beginning of the previous section, I said that the user of your recursive API
would have no opportunity to mess with the TailCall instances by calling resume on a
Return or eval on a Suspend. This is easy to achieve by putting the evaluation code in
the eval method of the Suspend class:

public static class Suspend<T> extends TailCall<T> {

...

@Override
public T eval() {

TailCall<T> tailRec = this;
while(tailRec.isSuspend()) {

tailRec = tailRec.resume();
}
return tailRec.eval();

}

Now you can get the result of the recursive call in a much simpler and safer way:

add(3, 100000000).eval()

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

102 CHAPTER 4 Recursion, corecursion, and memoization

But this isn’t what you want. You want to get rid of this call to the eval method. This
can be done with a helper method:

public static int add(int x, int y) {
return addRec(x, y).eval();

}

private static TailCall<Integer> addRec(int x, int y) {
return y == 0

? ret(x)
: sus(() -> addRec(x + 1, y - 1));

}

Now you can call the add method exactly as the original one. You can make your
recursive API easier to use by providing static factory methods to instantiate Return
and Suspend, which also allows you to make the Return and Suspend internal sub-
classes private:

public static <T> Return<T> ret(T t) {
return new Return<>(t);

}

public static <T> Suspend<T> sus(Supplier<TailCall<T>> s) {
return new Suspend<>(s);

}

The following listing shows the complete TailCall class. It adds a private no-args con-
structor to prevent extension by other classes.

public abstract class TailCall<T> {

public abstract TailCall<T> resume();
public abstract T eval();
public abstract boolean isSuspend();

private TailCall() {}

private static class Return<T> extends TailCall<T> {

private final T t;

private Return(T t) {
this.t = t;

}

@Override
public T eval() {

return t;
}

@Override
public boolean isSuspend() {

return false;
}

Listing 4.3 The complete TailCall class

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

103Working with recursive functions

@Override
public TailCall<T> resume() {

throw new IllegalStateException("Return has no resume");
}

}

private static class Suspend<T> extends TailCall<T> {

private final Supplier<TailCall<T>> resume;

private Suspend(Supplier<TailCall<T>> resume) {
this.resume = resume;

}

@Override
public T eval() {

TailCall<T> tailRec = this;
while(tailRec.isSuspend()) {

tailRec = tailRec.resume();
}
return tailRec.eval();

}

@Override
public boolean isSuspend() {

return true;
}

@Override
public TailCall<T> resume() {

return resume.get();
}

}

public static <T> Return<T> ret(T t) {
return new Return<>(t);

}

public static <T> Suspend<T> sus(Supplier<TailCall<T>> s) {
return new Suspend<>(s);

}
}

Now that you have a stack-safe tail recursive method, can you do the same thing with a
function?

4.2 Working with recursive functions
In theory, recursive functions shouldn’t be more difficult to create than methods, if
functions are implemented as methods in an anonymous class. But lambdas aren’t
implemented as methods in anonymous classes.

 The first problem is that, in theory, lambdas can’t be recursive. But this is theory.
In fact, you learned a trick to work around this problem in chapter 2. A statically
defined recursive add function looks like this:

static Function<Integer, Function<Integer, TailCall<Integer>>> add =
a -> b -> b == 0

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

104 CHAPTER 4 Recursion, corecursion, and memoization

? ret(a)
: sus(() -> ContainingClass.add.apply(a + 1).apply(b - 1));

Here, ContainingClass stands for the name of the class in which the function is
defined. Or you may prefer an instance function instead of a static one:

Function<Integer, Function<Integer, TailCall<Integer>>> add =
a -> b -> b == 0

? ret(a)
: sus(() -> this.add.apply(a + 1).apply(b - 1));

But here, you have the same problem you had with the add method. You must call
eval on the result. You could use the same trick, with a helper method alongside the
recursive implementation. But you should make the whole thing self-contained. In
other languages, such as Scala, you can define helper functions locally, inside the
main function. Can you do the same in Java?

4.2.1 Using locally defined functions

Defining a function inside a function isn’t directly possible in Java. But a function writ-
ten as a lambda is a class. Can you define a local function in that class? In fact, you
can’t. You can’t use a static function, because a local class can’t have static members,
and anyway, they have no name. Can you use an instance function? No, because you
need a reference to this. And one of the differences between lambdas and anony-
mous classes is the this reference. Instead of referring to the anonymous class
instance, the this reference used in a lambda refers to the enclosing instance.

 The solution is to declare a local class containing an instance function, as shown in
the following listing.

static Function<Integer, Function<Integer, Integer>> add = x -> y -> {
class AddHelper {

Function<Integer, Function<Integer, TailCall<Integer>>> addHelper =
a -> b -> b == 0

? ret(a)
: sus(() -> this.addHelper.apply(a + 1).apply(b – 1));

}
return new AddHelper().addHelper.apply(x).apply(y).eval();

};

This function may be used as a normal function:

add.apply(3).apply(100000000)

4.2.2 Making functions tail recursive

Previously, I said that a simple recursive functional method computing the sum of ele-
ments in a list couldn’t be handled safely because it isn’t tail recursive:

Listing 4.4 A standalone tail recursive function

The this reference refers
to the AddHelper class.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

105Working with recursive functions

static Integer sum(List<Integer> list) {
return list.isEmpty()

? 0
: head(list) + sum(tail(list));

}

You saw that you had to transform the method as follows:

static Integer sum(List<Integer> list) {
return sumTail(list, 0);

}

static Integer sumTail(List<Integer> list, int acc) {
return list.isEmpty()

? acc
: sumTail(tail(list), acc + head(list));

}

The principle is quite simple, although it’s sometimes tricky to apply. It consists of
using an accumulator holding the result of the computation. This accumulator is
added to the parameters of the method. Then the function is transformed into a
helper method called by the original one with the initial value of the accumulator. It’s
important to make this process nearly instinctive, because you’ll have to use it each
time you want to write a recursive method or function.

 It may be OK to change a method into two methods. After all, methods don’t
travel, so you only have to make the main method public and the helper method (the
one doing the job) private. The same is true for functions, because the call to the
helper function by the main function is a closure. The main reason to prefer a locally
defined helper function over a private helper method is to avoid name clashes.

 A current practice in languages that allow locally defined functions is to call all
helper functions with a single name, such as go or process. This can’t be done with
nonlocal functions (unless you have only one function in each class). In the previous
example, the helper function for sum was called sumTail. Another current practice is
to call the helper function with the same name as the main function with an
appended underscore, such as sum_. Whatever system you choose, it’s useful to be
consistent. In the rest of this book, I’ll use the underscore to denote tail recursive
helper functions.

4.2.3 Doubly recursive functions: the Fibonacci example

No book about recursive functions can avoid the Fibonacci series function. Although
it’s totally useless to most of us, it’s ubiquitous and fun. Let’s start with the require-
ments, in case you’ve never met this function.

 The Fibonacci series is a suite of numbers, and each number is the sum of the two
previous ones. This is a recursive definition. You need a terminal condition, so the full
requirements are as follows:

 f (0) = 0 f (1) = 1 f (n) = f (n – 1) + f (n – 2)

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

106 CHAPTER 4 Recursion, corecursion, and memoization

This isn’t the original Fibonacci series, in which the first two numbers are equal to 1.
Each number is supposed to be a function of its position in the series, and that posi-
tion starts at 1. In computing, you generally prefer to start at 0. Anyway, this doesn’t
change the problem.

 Why is this function so interesting? Instead of answering this question right now,
let’s try a naive implementation:

public static int fibonacci(int number) {
if (number == 0 || number == 1) {

return number;
}
return fibonacci(number - 1) + fibonacci(number - 2);

}

Now let’s write a simple program to test this method:

public static void main(String args[]) {
int n = 10;
for(int i = 0; i <= n; i++){

System.out.print(fibonacci(i) +" ");
}

}

If you run this test program, you’ll get the first 10 (or 9, according to the original defi-
nition) Fibonacci numbers:

0 1 1 2 3 5 8 13 21 34 55

Based on what you know about naive recursion in Java, you may think that this method
will succeed in calculating f(n) for n, up to 6,000 to 7,000 before overflowing the stack.
Well, let’s check it. Replace int n = 10 with int n = 6000 and see what happens. Launch
the program and take a coffee break. When you return, you’ll realize that the program
is still running. It will have reached somewhere around 1,836,311,903 (your mileage
may vary—you could get a negative number!), but it’ll never finish. No stack overflow,
no exception—just hanging in the wild. What’s happening?

 The problem is that each call to the function creates two recursive calls. So to cal-
culate f(n), you need 2n recursive calls. Let’s say your method needs 10 nanoseconds
to execute. (Just guessing, but you’ll see soon that it doesn’t change anything.) Calcu-
lating f(5000) will take 25000 × 10 nanoseconds. Do you have any idea how long this is?
This program will never terminate because it would need longer than the expected
duration of the solar system (if not the universe!).

 To make a usable Fibonacci function, you have to change it to use a single tail
recursive call. There’s also another problem: the results are so big that you’ll soon get
an arithmetic overflow, resulting in negative numbers.

EXERCISE 4.1
Create a tail recursive version of the Fibonacci functional method.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

107Working with recursive functions

HINT

The accumulator solution is the way to go. But there are two recursive calls, so you’ll
need two accumulators.

SOLUTION 4.1
Let’s first write the signature of the helper method. It’ll take two BigInteger instances
as accumulators, and one for the original argument, and it’ll return a BigInteger:

private static BigInteger fib_(BigInteger acc1, BigInteger acc2,
BigInteger x) {

You must deal with the terminal conditions. If the argument is 0, you return 0:

private static BigInteger fib_(BigInteger acc1, BigInteger acc2,
BigInteger x) {

if (x.equals(BigInteger.ZERO)) {
return BigInteger.ZERO;

If the argument is 1, you return the sum of the two accumulators:

private static BigInteger fib_(BigInteger acc1, BigInteger acc2,
BigInteger x) {

if (x.equals(BigInteger.ZERO)) {
return BigInteger.ZERO;

} else if (x.equals(BigInteger.ONE)) {
return acc1.add(acc2);

Eventually, you have to deal with recursion. You must do the following:

 Take accumulator 2 and make it accumulator 1.
 Create a new accumulator 2 by adding the two previous accumulators.
 Subtract 1 from the argument.
 Recursively call the function with the three computed values as its arguments.

Here’s the transcription in code:

private static BigInteger fib_(BigInteger acc1, BigInteger acc2,
BigInteger x) {

if (x.equals(BigInteger.ZERO)) {
return BigInteger.ZERO;

} else if (x.equals(BigInteger.ONE)) {
return acc1.add(acc2);

} else {
return fib_(acc2, acc1.add(acc2), x.subtract(BigInteger.ONE));

}
}

The last thing to do is to create the main method that calls this helper method with
the initial values of the accumulators:

public static BigInteger fib(int x) {
return fib_(BigInteger.ONE, BigInteger.ZERO, BigInteger.valueOf(x));

}

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

108 CHAPTER 4 Recursion, corecursion, and memoization

This is only one possible implementation. You may organize accumulators, initial val-
ues, and conditions in a slightly different manner, as long as it works. Now you can call
fib(5000), and it’ll give you the result in a couple of nanoseconds. Well, it’ll take a
few dozen milliseconds, but only because printing to the console is a slow operation.
We’ll come back to this shortly.

 The result is impressive, whether it’s the result of the computation (1,045 digits!)
or the increase in speed due to the transformation of a dual recursive call into a single
one. But you still can’t use the method with values higher than 7,500.

EXERCISE 4.2
Turn this method into a stack-safe recursive one.

SOLUTION 4.2
This should be easy. The following code shows the needed changes:

BigInteger fib(int x) {
return fib_(BigInteger.ONE, BigInteger.ZERO,

BigInteger.valueOf(x)).eval();
}

TailCall<BigInteger> fib_(BigInteger acc1, BigInteger acc2, BigInteger x) {
if (x.equals(BigInteger.ZERO)) {

return ret(BigInteger.ZERO);
} else if (x.equals(BigInteger.ONE)) {

return ret(acc1.add(acc2));
} else {

return sus(() -> fib_(acc2, acc1.add(acc2), x.subtract(BigInteger.ONE)));
}

}

You may now compute fib(10000) and count the digits in the result!

4.2.4 Making the list methods stack-safe and recursive

In the previous chapter, you developed functional methods to work on lists. Some of
these methods were naively recursive, so they couldn’t be used in production. It’s time
to fix this.

EXERCISE 4.3
Create a stack-safe recursive version of the foldLeft method.

SOLUTION 4.3
The naively recursive version of the foldLeft method was tail recursive:

public static <T, U> U foldLeft(List<T> ts, U identity,
Function<U, Function<T, U>> f) {

return ts.isEmpty()
? identity
: foldLeft(tail(ts), f.apply(identity).apply(head(ts)), f);

}

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

109Working with recursive functions

 Turning it into a fully recursive method is easy:

public static <T, U> U foldLeft(List<T> ts, U identity,
Function<U, Function<T, U>> f) {

return foldLeft_(ts, identity, f).eval();
}

private static <T, U> TailCall<U> foldLeft_(List<T> ts, U identity,
Function<U, Function<T, U>> f) {

return ts.isEmpty()
? ret(identity)
: sus(() -> foldLeft_(tail(ts),

f.apply(identity).apply(head(ts)), f));
}

EXERCISE 4.4
Create a fully recursive version of the recursive range method.

HINT

Beware of the direction of list construction (append or prepend).

SOLUTION 4.4
The range method isn’t tail recursive:

public static List<Integer> range(Integer start, Integer end) {
return end <= start

? list()
: prepend(start, range(start + 1, end));

}

You have to first create a tail recursive version, using an accumulator. Here, you need
to return a list, so the accumulator will be a list, and you’ll start with an empty list. But
you must build the list in reverse order:

public static List<Integer> range(List<Integer> acc,
Integer start, Integer end) {

return end <= start
? acc
: range(append(acc, start), start + 1, end);

}

Then you must turn this method into a main method and a helper method by using
true recursion:

public static List<Integer> range(Integer start, Integer end) {
return range_(list(), start, end).eval();

}

private static TailCall<List<Integer>> range_(List<Integer> acc,
Integer start, Integer end) {

return end <= start
? ret(acc)
: sus(() -> range_(append(acc, start), start + 1, end));

}

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

110 CHAPTER 4 Recursion, corecursion, and memoization

The fact that you had to reverse the operation is important. Can you see why? If not,
try the next exercise.

EXERCISE 4.5 (HARD)
Create a stack-safe recursive version of the foldRight method.

SOLUTION 4.5
The stack-based recursive version of the foldRight method is as follows:

public static <T, U> U foldRight(List<T> ts, U identity,
Function<T, Function<U, U>> f) {

return ts.isEmpty()
? identity
: f.apply(head(ts)).apply(foldRight(tail(ts), identity, f));

}

This method isn’t tail recursive, so let’s first create a tail recursive version. You might
end up with this:

public static <T, U> U foldRight(U acc, List<T> ts, U identity,
Function<T, Function<U, U>> f) {

return ts.isEmpty()
? acc
: foldRight(f.apply(head(ts)).apply(acc), tail(ts), identity, f);

}

Unfortunately, this doesn’t work! Can you see why? If not, test this version and com-
pare the result with the standard version. You can compare the two versions by using
the test designed in the previous chapter:

public static String addIS(Integer i, String s) {
return "(" + i + " + " + s + ")";

}

List<Integer> list = list(1, 2, 3, 4, 5);
System.out.println(foldRight(list, "0", x -> y -> addIS(x, y)));
System.out.println(foldRightTail("0", list, "0", x -> y -> addIS(x, y)));

You’ll get the following result:

(1 + (2 + (3 + (4 + (5 + 0)))))
(5 + (4 + (3 + (2 + (1 + 0)))))

This shows that the list is processed in reverse order. One easy solution is to reverse
the list in the main method before calling the helper method. If you apply this trick
while making the method stack-safe and recursive, you’ll get this:

public static <T, U> U foldRight(List<T> ts, U identity,
Function<T, Function<U, U>> f) {

return foldRight_(identity, reverse(ts), f).eval();
}

private static <T, U> TailCall<U> foldRight_(U acc, List<T> ts,
Function<T, Function<U, U>> f) {

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

111Composing a huge number of functions

return ts.isEmpty()
? ret(acc)
: sus(() -> foldRight_(f.apply(head(ts)).apply(acc), tail(ts), f));

}

In chapter 5, you’ll develop the process of reversing the list by implementing fold-
Left in terms of foldRight, and foldRight in terms of foldLeft. But this shows that
the recursive implementation of foldRight won’t be optimal because reverse is an
O(n) operation: the time needed to execute it is proportional to the number of ele-
ments in the list, because you must traverse the list. By using reverse, you double this
time by traversing the list twice. The conclusion is that when considering using fold-
Right, you should do one of the following:

 Not care about performance
 Change the function (if possible) and use foldLeft
 Use foldRight only with small lists
 Use an imperative implementation

4.3 Composing a huge number of functions
In chapter 2, you saw that you’ll overflow the stack if you try to compose a huge num-
ber of functions. The reason is the same as for recursion: because composing func-
tions results in methods calling methods.

 Having to compose more than 7,000 functions may be something you don’t expect
to do soon. On the other hand, there’s no reason not to make it possible. If it’s possi-
ble, someone will eventually find something useful to do with it. And if it’s not useful,
someone will certainly find something fun to do with it.

EXERCISE 4.6
Write a function, composeAll, taking as its argument a list of functions from T to T and
returning the result of composing all the functions in the list.

SOLUTION 4.6
To get the result you want, you can use a right fold, taking as its arguments the list of
functions, the identity function (obtained by a call to the statically imported Function
.identity() method), and the compose method written in chapter 2:

static <T> Function<T, T> composeAll(List<Function<T, T>> list) {
return foldRight(list, identity(), x -> y -> x.compose(y));

}

To test this method, you can statically import all the methods from your Collection-
Utilities class (developed in chapter 3) and write the following:

Function<Integer, Integer> add = y -> y + 1;
System.out.println(composeAll(map(range(0, 500), x -> add)).apply(0));

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

112 CHAPTER 4 Recursion, corecursion, and memoization

If you don’t feel comfortable with this kind of code, it’s equivalent to, but much more
readable than, this:

List<Function<Integer, Integer>> list = new ArrayList<>();
for (int i = 0; i < 500; i++) {

list.add(x -> x + 1);
}

int result = composeAll(list).apply(0);
System.out.println(result);

Running this code displays 500, as it’s the result of composing 500 functions incre-
menting their argument by 1. What happens if you replace 500 with 10,000? You’ll get
a StackOverflowException. The reason should be obvious.

 By the way, on the machine I used for this test, the program breaks for a list of
2,856 functions.

EXERCISE 4.7
Fix this problem so you can compose an (almost) unlimited number of functions.

SOLUTION 4.7
The solution to this problem is simple. Instead of composing the functions by nesting
them, you have to compose their results, always staying at the higher level. This means
that between each call to a function, you’ll return to the original caller. If this isn’t
clear, imagine the imperative way to do this:

T y = identity;

for (Function<T, T> f : list) {
y = f.apply(y);

}

Here, identity means the identity element of the given function. This isn’t compos-
ing functions, but composing function applications. At the end of the loop, you’ll get
a T and not a Function<T, T>. But this is easy to fix. You create a function from T to T,
which has the following implementation:

static <T> Function<T, T> composeAll(List<Function<T, T>> list) {
return x -> {

T y = x;
for (Function<T, T> f : list) {

y = f.apply(y);
}
return y;

};
}

You can’t use x directly, because it would create a closure, so it should be effectively
final. That’s why you make a copy of it. This code works fine, except for two things.

A copy of x is made; you
can’t modify x because it
must be effectively final.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

113Composing a huge number of functions

The first is that it doesn’t look functional. This can be fixed easily by using a fold. It
can be either a left fold or a right fold:

<T> Function<T, T> composeAllViaFoldLeft(List<Function<T, T>> list) {
return x -> foldLeft(list, x, a -> b -> b.apply(a));

}

<T> Function<T, T> composeAllViaFoldRight(List<Function<T, T>> list) {
return x -> foldRight(list, x, a -> a::apply);

}

You’re using a method reference for the composeAllViaFoldRight implementation.
This is equivalent to the following:

<T> Function<T, T> composeAllViaFoldRight(List<Function<T, T>> list) {
return x -> FoldRight.foldRight(list, x, a -> b -> a.apply(b));

}

If you have trouble understanding how it works, think about the analogy with sum.
When you defined sum, the list was a list of integers. The initial value (x here) was 0; a
and b were the two parameters to add; and the addition was defined as a + b. Here,
the list is a list of functions; the initial value is the identity function; a and b are func-
tions; and the implementation is defined as b.apply(a) or a.apply(b). In the fold-
Left version, b is the function coming from the list, and a is the current result. In the
foldRight version, a is the function coming from the list, and b is the current result.

 To see this in action, refer to the unit tests in the code available from the book’s
site (https://github.com/fpinjava/fpinjava).

EXERCISE 4.8
The code has two problems, and you fixed only one. Can you see another problem
and fix it?

HINT

The second problem isn’t visible in the result because the functions you’re composing
are specific. They are, in fact, a single function from integer to integer. The order in
which they’re composed is irrelevant. Try to use the composeAll method with the fol-
lowing function list:

Function<String, String> f1 = x -> "(a" + x + ")";
Function<String, String> f2 = x -> "{b" + x + "}";
Function<String, String> f3 = x -> "[c" + x + "]";
System.out.println(composeAllViaFoldLeft(list(f1, f2, f3)).apply("x"));
System.out.println(composeAllViaFoldRight(list(f1, f2, f3)).apply("x"));

SOLUTION 4.8
We’ve implemented andThenAll rather than composeAll! To get the correct result,
you first have to reverse the list:

<T> Function<T, T> composeAllViaFoldLeft(List<Function<T, T>> list) {
return x -> foldLeft(reverse(list), x, a -> b -> b.apply(a));

}

www.itbook.store/books/9781617292736

https://github.com/fpinjava/fpinjava
https://itbook.store/books/9781617292736

114 CHAPTER 4 Recursion, corecursion, and memoization

<T> Function<T, T> composeAllViaFoldRight(List<Function<T, T>> list) {
return x -> foldRight(list, x, a -> a::apply);

}

<T> Function<T, T> andThenAllViaFoldLeft(List<Function<T, T>> list) {
return x -> foldLeft(list, x, a -> b -> b.apply(a));

}

<T> Function<T, T> andThenAllViaFoldRight(List<Function<T, T>> list) {
return x -> foldRight(reverse(list), x, a -> a::apply);

}

4.4 Using memoization
In section 4.2.3, you implemented a function to display a series of Fibonacci numbers.
One problem with this implementation of the Fibonacci series is that you want to
print the string representing the series up to f(n), which means you have to compute
f(1), f(2), and so on, until f(n). But to compute f(n), you have to recursively com-
pute the function for all preceding values. Eventually, to create the series up to n,
you’ll have computed f(1) n times, f(2) n – 1 times, and so on. The total number of
computations will then be the sum of the integers 1 to n. Can you do better? Could
you possibly keep the computed values in memory so you don’t have to compute them
again if they’re needed several times?

4.4.1 Memoization in imperative programming

In imperative programming, you wouldn’t even have this problem, because the obvi-
ous way to proceed would be as follows:

public static void main(String args[]) {
System.out.println(fibo(10));

}

public static String fibo(int limit) {
switch(limit) {

case 0:
return "0";

case 1:
return "0, 1";

case 2:
return "0, 1, 1";

default:
BigInteger fibo1 = BigInteger.ONE;
BigInteger fibo2 = BigInteger.ONE;
BigInteger fibonacci;
StringBuilder builder = new StringBuilder("0, 1, 1");
for (int i = 3; i <= limit; i++) {

fibonacci = fibo1.add(fibo2);
builder.append(", ").append(fibonacci);
fibo1 = fibo2;
fibo2 = fibonacci;

}
return builder.toString();

}
}

Stores f(n – 1) for
the next pass

Stores f(n) for the
next pass

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

115Using memoization

Although this program concentrates most of the problems that FP is supposed to
avoid or to solve, it works and is much more efficient than your functional version.
The reason is memoization.

 Memoization is a technique that keeps in memory the result of a computation so it
can be returned immediately if you have to redo the same computation in the future.
Applied to functions, memoization makes the functions memorize the results of previ-
ous calls, so they can return the results much faster if they’re called again with the
same arguments.

 This might seem incompatible with functional principles, because a memoized
function maintains a state. But it isn’t, because the result of the function is the same
when it’s called with the same argument. (You could even argue that it’s more the
same, because it isn’t computed again!) The side effect of storing the results must not
be visible from outside the function.

 In imperative programming, this might not even be noticed. Maintaining state is
the universal way of computing results, so memoization isn’t even noticed.

4.4.2 Memoization in recursive functions

Recursive functions often use memoization implicitly. In your example of the recur-
sive Fibonacci function, you wanted to return the series, so you calculated each num-
ber in the series, leading to unnecessary recalculations. A simple solution is to rewrite
the function in order to directly return the string representing the series.

EXERCISE 4.9
Write a stack-safe tail recursive function taking an integer n as its argument and
returning a string representing the values of the Fibonacci numbers from 0 to n, sepa-
rated by a comma and a space.

HINT

One solution is to use StringBuilder as the accumulator. StringBuilder isn’t a func-
tional structure because it’s mutable, but this mutation won’t be visible from the out-
side. Another solution is to return a list of numbers and then transform it into a
String. This solution is easier, because you can abstract the problem of the separators
by first returning a list and then writing a function to turn the list into a comma-
separated string.

SOLUTION 4.9
The following listing shows the solution using List as the accumulator.

public static String fibo(int number) {
List<BigInteger> list = fibo_(list(BigInteger.ZERO),

BigInteger.ONE, BigInteger.ZERO, BigInteger.valueOf(number)).eval();
return makeString(list, ", ");

}

Listing 4.5 Recursive Fibonacci with implicit memoization

Calls the fibo_ helper method to get
the list of Fibonacci numbers

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

116 CHAPTER 4 Recursion, corecursion, and memoization

private static <T> TailCall<List<BigInteger>> fibo_(List<BigInteger> acc,
BigInteger acc1, BigInteger acc2, BigInteger x) {

return x.equals(BigInteger.ZERO)
? ret(acc)
: x.equals(BigInteger.ONE)

? ret(append(acc, acc1.add(acc2)))
: sus(() -> fibo_(append(acc, acc1.add(acc2)),

acc2, acc1.add(acc2), x.subtract(BigInteger.ONE)));
}

public static <T> String makeString(List<T> list, String separator) {
return list.isEmpty()

? ""
: tail(list).isEmpty()

? head(list).toString()
: head(list) + foldLeft(tail(list), "",

x -> y -> x + separator + y);
}

RECURSION OR CORECURSION?
This example demonstrates the use of implicit memoization. Don’t conclude that this
is the best way to solve the problem. Many problems are much easier to solve when
twisted. So let’s twist this one.

 Instead of a suite of numbers, you could see the Fibonacci series as a suite of pairs
(tuples). Instead of trying to generate this,

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

you could try to produce this:

(0, 1), (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), (8, 13), (13, 21), ...

In this series, each tuple can be constructed from the previous one. The second ele-
ment of tuple n becomes the first element of tuple n + 1. The second element of
tuple n + 1 is equal to the sum of the two elements of tuple n. In Java, you can write a
function for this:

x -> new Tuple<>(x._2, x._1.add(x._2));

You can now replace the recursive method with a corecursive one:

public static String fiboCorecursive(int number) {
Tuple<BigInteger, BigInteger> seed =

new Tuple<>(BigInteger.ZERO, BigInteger.ONE);
Function<Tuple<BigInteger, BigInteger>,Tuple<BigInteger, BigInteger>> f =

x -> new Tuple<>(x._2, x._1.add(x._2));
List<BigInteger> list = map(List.iterate(seed, f, number + 1), x -> x._1);
return makeString(list, ", ");

}

Formats the list into a comma-
separated string through a call

to the makeString method

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

117Using memoization

The iterate method takes a seed, a function, and a number n, and creates a list of
length n by applying the function to each element to compute the next one. Here’s its
signature:

public static List iterate(B seed, Function<B, B> f, int n)

This method is available in the fpinjava-common module.

4.4.3 Automatic memoization

Memoization isn’t mainly used for recursive functions. It can be used to speed up any
function. Think about how you perform multiplication. If you need to multiply 234 by
686, you’ll probably need a pen and some paper, or a calculator. But if you’re asked to
multiply 9 by 7, you can answer immediately, without doing any computation. This is
because you use a memoized multiplication. A memoized function works the same
way, although it needs to make the computation only once to retain the result.

 Imagine you have a functional method doubleValue that multiplies its argument
by 2:

Integer doubleValue(Integer x) {
return x * 2;

}

You could memoize this method by storing the result into a map:

Map<Integer, Integer> cache = new ConcurrentHashMap<>();
Integer doubleValue(Integer x) {

if (cache.containsKey(x)) {
return cache.get(x);

} else {
Integer result = x * 2;
cache.put(x, result) ;
return result;

}
}

In Java 8, this can be made much shorter:

Map<Integer, Integer> cache = new ConcurrentHashMap<>();

Integer doubleValue(Integer x) {
return cache.computeIfAbsent(x, y -> y * 2);

}

If you prefer using functions (which is likely, given the subject of this book), you can
apply the same principle:

Function<Integer, Integer> doubleValue =
 x -> cache.computeIfAbsent(x, y -> y * 2);

Map is used to
store the results

Looks in the map to see if the
result has already been computedIf found,

returns
the result If not found, computes the result

Puts the result in the map
Returns the result

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

118 CHAPTER 4 Recursion, corecursion, and memoization

But two problems arise:

 You have to repeat this modification for all functions you want to memoize.
 The map you use is exposed to the outside.

The second problem is easy to address. You can put the method or the function in a
separate class, including the map, with private access. Here’s an example in the case of
a method:

public class Doubler {

private static Map<Integer, Integer> cache = new ConcurrentHashMap<>();

public static Integer doubleValue(Integer x) {
return cache.computeIfAbsent(x, y -> y * 2);

}
}

You can then instantiate that class and use it each time you want to compute a value:

Integer y = Doubler.doubleValue(x);

With this solution, the map is no longer accessible from the outside. You can’t do the
same for functions, because functions can’t have static members. One possibility is to
pass the map to the function as an additional argument. This can be done through a
closure:

class Doubler {
private static Map<Integer, Integer> cache = new ConcurrentHashMap<>();

public static Function<Integer, Integer> doubleValue =
x -> cache.computeIfAbsent(x, y -> y * 2);

}

You can use this function as follows:

Integer y = Doubler.doubleValue.apply(x);

This gives no advantage compared to the method solution. But you can also use this
function in more idiomatic examples, such as this:

map(range(1, 10), Doubler.doubleValue);

This is equivalent to using the method version with the following syntax:

map(range(1, 10), Doubler::doubleValue);

THE REQUIREMENTS

What you need is a way to do the following:

Function<Integer, Integer> f = x -> x * 2;
Function<Integer, Integer> g = Memoizer.memoize(f);

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

119Using memoization

Then you can use the memoized function as a drop-in replacement for the original
one. All values returned by function g will be calculated through the original function
f the first time, and returned from the cache for all subsequent accesses. By contrast,
if you create a third function,

Function<Integer, Integer> f = x -> x * 2;
Function<Integer, Integer> g = Memoizer.memoize(f);
Function<Integer, Integer> h = Memoizer.memoize(f);

the values cached by g won’t be returned by h; g and h will use separate caches.

IMPLEMENTATION

The Memoizer class is simple and is shown in the following listing.

public class Memoizer<T, U> {

private final Map<T, U> cache = new ConcurrentHashMap<>();

private Memoizer() {}

public static <T, U> Function<T, U> memoize(Function<T, U> function) {
return new Memoizer<T, U>().doMemoize(function);

}

private Function<T, U> doMemoize(Function<T, U> function) {
return input -> cache.computeIfAbsent(input, function::apply);

}
}

The following listing shows how this class can be used. The program simulates a long
computation to show the result of memoizing the function.

private static Integer longCalculation(Integer x) {
try {

Thread.sleep(1_000);
} catch (InterruptedException ignored) {}
return x * 2;

}

private static Function<Integer, Integer> f =
MemoizerDemo::longCalculation;

private static Function<Integer, Integer> g = Memoizer.memoize(f);

public static void automaticMemoizationExample() {
long startTime = System.currentTimeMillis();
Integer result1 = g.apply(1);
long time1 = System.currentTimeMillis() - startTime;
startTime = System.currentTimeMillis();

Listing 4.6 The Memoizer class

Listing 4.7 Demonstrating the memoizer

The memoized method returns a memoized
version of its function argument.

The doMemoize method handles the
computation, calling the original

function if necessary.

Simulates a long
computation

The function
to memoize

The memoized
function

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

120 CHAPTER 4 Recursion, corecursion, and memoization

Integer result2 = g.apply(1);
long time2 = System.currentTimeMillis() - startTime;
System.out.println(result1);
System.out.println(result2);
System.out.println(time1);
System.out.println(time2);

}

Running the automaticMemoizationExample method on my computer produces the
following result:

2
2
1000
0

Note that the exact result will depend on the speed of your computer.
 You can now make memoized functions out of ordinary ones by calling a single

method, but to use this technique in production, you’d have to handle potential
memory problems. This code is acceptable if the number of possible inputs is low, so
you can keep all results in memory without causing memory overflow. Otherwise, you
can use soft references or weak references to store memoized values.

MEMOIZATION OF “MULTIARGUMENT” FUNCTIONS

As I said before, there’s no such thing in this world as a function with several argu-
ments. Functions are applications of one set (the source set) to another set (the target
set). They can’t have several arguments. Functions that appear to have several argu-
ments are one of these:

 Functions of tuples
 Functions returning functions returning functions ... returning a result

In either case, you’re concerned only with functions of one argument, so you can eas-
ily use your Memoizer class.

 Using functions of tuples is probably the simplest choice. You could use the Tuple
class written in previous chapters, but to store tuples in maps, you’d have to imple-
ment equals and hashcode. Besides this, you’d have to define tuples for two elements
(pairs), tuples for three elements, and so on. Who knows where to stop?

 The second option is much easier. You have to use the curried version of the func-
tions, as you did in previous chapters. Memoizing curried functions is easy, although
you can’t use the same simple form as previously. You have to memoize each function:

Function<Integer, Function<Integer, Integer>> mhc =
Memoizer.memoize(x ->

Memoizer.memoize(y -> x + y));

You can use the same technique to memoize a function of three arguments:

Function<Integer, Function<Integer, Function<Integer, Integer>>> f3 =
x -> y -> z -> x + y - z;

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

121Using memoization

Function<Integer, Function<Integer, Function<Integer, Integer>>> f3m =
Memoizer.memoize(x ->

Memoizer.memoize(y ->
Memoizer.memoize(z -> x + y - z));

The following listing shows an example of using this memoized function of three
arguments.

Function<Integer, Function<Integer, Function<Integer, Integer>>> f3m =
Memoizer.memoize(x ->

Memoizer.memoize(y ->
Memoizer.memoize(z ->

longCalculation(x) + longCalculation(y) - longCalculation(z))));

public void automaticMemoizationExample2() {
long startTime = System.currentTimeMillis();
Integer result1 = f3m.apply(2).apply(3).apply(4);
long time1 = System.currentTimeMillis() - startTime;
startTime = System.currentTimeMillis();
Integer result2 = f3m.apply(2).apply(3).apply(4);
long time2 = System.currentTimeMillis() - startTime;
System.out.println(result1);
System.out.println(result2);
System.out.println(time1);
System.out.println(time2);

}

This program produces the following output:

2
2
3002
0

This shows that the first access to the longCalculation method has taken 3,000 milli-
seconds, and the second has returned immediately.

 On the other hand, using a function of a tuple may seem easier after you have the
Tuple class defined. The following listing shows an example of Tuple3.

public class Tuple3<T, U, V> {

public final T _1;
public final U _2;
public final V _3;

public Tuple3(T t, U u, V v) {
_1 = Objects.requireNonNull(t);
_2 = Objects.requireNonNull(u);
_3 = Objects.requireNonNull(v);

}

Listing 4.8 Testing a memoized function of three arguments for performance

Listing 4.9 An implementation of Tuple3

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

122 CHAPTER 4 Recursion, corecursion, and memoization

@Override
public boolean equals(Object o) {

if (!(o instanceof Tuple3)) return false;
else {

Tuple3 that = (Tuple3) o;
return _1.equals(that._1) && _2.equals(that._2)

&& _3.equals(that._3);
}

}

@Override
public int hashCode() {

final int prime = 31;
int result = 1;
result = prime * result + _1.hashCode();
result = prime * result + _2.hashCode();
result = prime * result + _3.hashCode();
return result;

}
}

The following listing shows an example of testing a memoized function taking Tuple3
as its argument.

Function<Tuple3<Integer, Integer, Integer>, Integer> ft =
x -> longCalculation(x._1)

+ longCalculation(x._2)
- longCalculation(x._3);

Function<Tuple3<Integer, Integer, Integer>, Integer> ftm =
Memoizer.memoize(ft);

public void automaticMemoizationExample3() {
long startTime = System.currentTimeMillis();
Integer result1 = ftm.apply(new Tuple3<>(2, 3, 4));
long time1 = System.currentTimeMillis() - startTime;
startTime = System.currentTimeMillis();
Integer result2 = ftm.apply(new Tuple3<>(2, 3, 4));
long time2 = System.currentTimeMillis() - startTime;
System.out.println(result1);
System.out.println(result2);
System.out.println(time1);
System.out.println(time2);

}

ARE MEMOIZED FUNCTIONS PURE?
Memoizing is about maintaining state between function calls. A memoized function is
a function whose behavior is dependent on the current state. But it’ll always return
the same value for the same argument. Only the time needed to return the value will
be different. So the memoized function is still a pure function if the original function
is pure.

Listing 4.10 A memoized function of Tuple3

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

123Summary

 A variation in time may be a problem. A function like the original Fibonacci func-
tion needing many years to complete may be called nonterminating, so an increase in
time may create a problem. On the other hand, making a function faster shouldn’t be
a problem. If it is, there’s a much bigger problem somewhere else!

4.5 Summary
 A recursive function is a function that’s defined by referencing itself.
 In Java, recursive methods push the current computation state onto the stack

before recursively calling themselves.
 The Java default stack size is limited. It can be configured to a larger size, but

this generally wastes space because all threads use the same stack size.
 Tail recursive functions are functions in which the recursive call is in the last

(tail) position.
 In some languages, recursive functions are optimized using tail call elimination

(TCE).
 Java doesn’t implement TCE, but it’s possible to emulate it.
 Lambdas may be made recursive.
 Memoization allows functions to remember their computed values in order to

speed up later accesses.
 Memoization can be made automatic.

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

www.itbook.store/books/9781617292736

https://itbook.store/books/9781617292736

	cover
	Copyright
	BriefContents
	SampleCh04
	coverBack

