
M A N N I N G

Paul B. Jensen
FOREWORD BY Cheng Zhao

Using Electron and NW.js

S A M P L E C H A P T E R

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

Cross-Platform Desktop Applications
Using Electron and NW.js

by Paul Jensen

 Chapter 11

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

vii

brief contents
PART 1 WELCOME TO NODE.JS DESKTOP APPLICATION

DEVELOPMENT ..1

1 ■ Introducing Electron and NW.js 3

2 ■ Laying the foundation for your first desktop application 31

3 ■ Building your first desktop application 54

4 ■ Shipping your first desktop application 75

PART 2 DIVING DEEPER ...89

5 ■ Using Node.js within NW.js and Electron 91

6 ■ Exploring NW.js and Electron’s internals 108

PART 3 MASTERING NODE.JS DESKTOP APPLICATION
DEVELOPMENT ..119

7 ■ Controlling how your desktop app is displayed 121

8 ■ Creating tray applications 143

9 ■ Creating application and context menus 153

10 ■ Dragging and dropping files and crafting the UI 176

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

BRIEF CONTENTSviii

11 ■ Using a webcam in your application 187

12 ■ Storing app data 199

13 ■ Copying and pasting contents from the clipboard 210

14 ■ Binding on keyboard shortcuts 219

15 ■ Making desktop notifications 234

PART 4 GETTING READY TO RELEASE......................................243

16 ■ Testing desktop apps 245

17 ■ Improving app performance with debugging 264

18 ■ Packaging the application for the wider world 291

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

187

Using a webcam in
your application

Not many years ago, webcams were external devices that you bought to plug into
your computer and used to chat with friends and family. Today, almost all laptops
come with webcams and microphones built in, making it easy for people to travel
and communicate with each other, as long as they have a good internet connection.
Back then, the only way you could access a webcam feed was via a desktop app, or
by using Adobe Flash. There wasn’t an easy way to do it over a web browser.

 But that changed. With the introduction of the HTML5 Media Capture API,
webcams could be accessible to web pages (with good security procedures in
place), and it is this capability that we’ll explore in this chapter. We’ll look at ways
to access and use these APIs to build a photo booth app.

11.1 Photo snapping with the HTML5 Media Capture API
When using Electron or NW.js to build your desktop app, you get the benefit of
Google Chrome’s extensive support for HTML5 APIs, one of which is the Media

This chapter covers
 Accessing the webcam on your computer

 Creating still images from live video

 Saving the still images to your computer

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

188 CHAPTER 11 Using a webcam in your application

Capture API. The HTML5 Media Capture API allows you to access the microphone
and video camera that are embedded in your computer, and the app you’ll build will
make use of this.

 Selfies are powerful—look at Snapchat’s IPO valuation ($22 billion as of February
2017). Build an app for selfies, people take selfies, other people view selfies, selfies
spawn more selfies, network effects kick in, and suddenly you’re a multibillion-dollar
startup. Who knew that there was so much money in selfies?

 That’s why you’ll build an app for selfies called Facebomb. Facebomb boils down
to open app, take photo, save photo to your computer. Simple, usable, and straight to the
point. Life is short, so rather that make you build the app from scratch, I’ve given you
an assembled app so you can investigate the particularly interesting bits.

 There are two code repositories for the app: one that uses Electron as the desk-
top app framework, and another that uses NW.js. You’ll find them under the names
Facebomb-NW.js and Facebomb-Electron in the book’s GitHub repository at http://
mng.bz/dST8 and http://mng.bz/TX1k.

 You can download whichever version of the app you’re interested in inspecting,
and run the installation instructions for it from the README.md file. Then, you can
run the app and see it in action.

11.1.1 Inspecting the NW.js version of the app

A lot of the code is pretty standard boilerplate code for an NW.js app. We’ll narrow
focus to the index.html and app.js files, which contain code unique to the app, start-
ing with the index.html file.

<html>
 <head>
 <title>Facebomb</title>
 <link href="app.css" rel="stylesheet" />
 <link rel="stylesheet" href="css/font-awesome.min.css">
 <script src="app.js"></script>
 </head>
 <body>
 <input type="file" nwsaveas="myfacebomb.png" id="saveFile">
 <canvas width="800" height="600"></canvas>
 <video autoplay></video>
 <div id="takePhoto" onclick="takePhoto()">
 <i class="fa fa-camera" aria-hidden="true"></i>
 </div>
 </body>
</html>

The HTML file contains the following:

 An input element that’s used for the file save. Inside it is a custom NW.js attri-
bute called nwsaveas that contains the default filename to save the file as.

Listing 11.1 The index.html file for the Facebomb NW.js app

Triggers the
Save File dialog

in NW.js

Captures
an image
from the
video

Video feed is streamed
into this element

Button that’s clicked to
trigger taking a photo

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

189Photo snapping with the HTML5 Media Capture API

 The canvas element is used to store the picture data of the photo snapshot you
take from the video feed.

 The video element will display the video feed from the webcam, which is the
source for the photo.

 The div element with the id takePhoto is the round button in the bottom right
of the app window that you’ll use to take the photo and save it as a file on the
computer. Inside it is a Font Awesome icon for the camera. The advantages of
using the camera icon in place of text are that icons use less screen space than
words and can be easier to visually process as a result, and if the icon is univer-
sally recognizable, you don’t need to consider implementing internationaliza-
tion. Not everyone speaks English—in fact, English is the third-most-commonly
spoken language after Mandarin Chinese and Spanish.

Most of this code is compatible with running inside a web browser. The notable ele-
ment unique to NW.js is the nwsaveas attribute (which brings up the Save As dialog
for the file) on the input element. To read more about this custom attribute, see the
docs at http://mng.bz/nU1c.

 That covers the index.html file. The app.js file is around 39 lines of code, so we’ll
look at it in chunks. We’ll start with the dependencies and the bindSavingPhoto
function.

'use strict';

const fs = require('fs');
let photoData;
let saveFile;
let video;

function bindSavingPhoto () {
 saveFile.addEventListener('change', function () {
 const filePath = this.value;
 fs.writeFile(filePath, photoData, 'base64', (err) => {
 if (err) {
 alert('There was a problem saving the photo:', err.message);
 }
 photoData = null;
 });
 });
}

Here, you require some dependencies, define a few empty variables, and then define
a function that’s used for binding on when a photo is saved. Inside that function, you
add an event listener on the input element for when its value changes. When it
changes, it’s because the Save As dialog has been triggered. When an action is taken to
save a photo under a given file name or to cancel it, you attempt to save the photo
data to the computer as a Base64-encoded image file. If the file write is successful,

Listing 11.2 The initial code in the app.js file for the Facebomb NW.js app

Function binds on
the input element
in the HTML

File path for photo
is set by value in
input element

Attempts to save
file to disk as
Base64-encoded
image

If error saving the file,
displays alert dialog
with error message

photoData variable
that held photo data
reset to null

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

190 CHAPTER 11 Using a webcam in your application

nothing else happens. But if there’s an error, you report it to the user in an alert dia-
log. Finally, you reset the photoData variable that was holding the photo snapshot.

 Next, we’ll look at the initialize function in the app.js file.

function initialize () {
 saveFile = window.document.querySelector('#saveFile');
 video = window.document.querySelector('video');

 let errorCallback = (error) => {
 console.log(
 'There was an error connecting to the video stream:', error
);
 };

 window.navigator.webkitGetUserMedia(
 {video: true},
(localMediaStream) => {
 video.src = window.URL.createObjectURL(localMediaStream);
 video.onloadedmetadata = bindSavingPhoto;
 }, errorCallback);
}

This bit of code does the key actions of requesting the video stream from the user’s
media capture device (be it a webcam built into their computer or an external video
device) and inserting that video stream into the video element in the app window. It
also attaches the bindSavingPhoto element to the video’s loadedmetadata event. This
event is triggered when the video stream starts to be fed into the video element (it
usually takes a second or two before the video stream kicks in).

 Once you’ve got the initialize function defined, you define the takePhoto func-
tion that’s triggered when the takePhoto div element is clicked in the app window.
The code for this is shown in the following listing.

function takePhoto () {
 let canvas = window.document.querySelector('canvas');
 canvas.getContext('2d').drawImage(video, 0, 0, 800, 600);
 photoData = canvas.toDataURL('image/png')
 .replace(/^data:image\/(png|jpg|jpeg);base64,/, '');
 saveFile.click();
}

window.onload = initialize;

Listing 11.3 The initialize function in the app.js file for the Facebomb NW.js app

Listing 11.4 The takePhoto function in the Facebomb NW.js app's app.js file

initialize function called
when app window
finishes loading

Creates error-
Callback function
to handle error
on creating video
stream

Media Capture API
request to access
video stream from
user’s computer

Attaches
video

stream
to video
element Binds on

saving photoIf you can’t access
video stream, then calls
the error callback

takePhoto function defined
for div element button that’s
clicked to take photo

canvas element captures
image snapshot from
video element

photoData variable
turns canvas
element into
Base64-encoded
set of data

Triggers Save As dialog
programmatically to
save photo to computer

Binds initialize function
to execute when app
window has loaded

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

191Photo snapping with the HTML5 Media Capture API

Here, the canvas element is used to capture an image snapshot from the video ele-
ment. You tell it to use a 2D context and to then draw an image from the video
element that begins at 0 pixels left and 0 pixels top, and then goes 800 pixels wide
and 600 pixels high. These dimensions mean that you capture the full picture of
the video.

 You then take the image that has been recorded in the canvas element and con-
vert the data format to one for a PNG image. To make the data suitable for saving as a
file to the computer, you have to remove a bit of the data that’s used to make the
image render as an inline image in a web browser. The string replace method uses a
regular expression to find that bit of data and strip it out.

 You programmatically trigger clicking the input element that displays the Save As
dialog to the user. This means that when the #takePhoto div element is clicked in the
app window, you’ll create an image snapshot from the video element at that point in
time and then trigger the Save As dialog so that the user can save the image to their
computer.

 With that function defined, the final bit of code left is to bind the initialize
function on when the app window has loaded. You do it this way because you want to
make sure the app window has finished loading the HTML—otherwise, it will attempt
to bind on DOM elements that haven’t yet been rendered in the app window, which
would cause an error.

 With all that code defined in the app.js file, there’s a bit of configuration in the
package.json file that ensures that the app window is set to 800 pixels wide and 600
pixels high and ensures that the app window cannot be resized or set into full-screen
mode. The next listing shows the code for the package.json file.

{
 "name": "facebomb",
 "version": "1.0.0",
 "main": "index.html",
 "window": {
 "toolbar": false,
 "width": 800,
 "height": 600,
 "resizable": false,
 "fullscreen": false
 },
 "dependencies": {
 "nw": "^0.15.2"
 },
 "scripts": {
 "start": "node_modules/.bin/nw ."
 }
}

Listing 11.5 The package.json file for the Facebomb NW.js app

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

192 CHAPTER 11 Using a webcam in your application

You also have an app.css file with some styling.

body {
 margin: 0;
 padding: 0;
 background: black;
 color: white;
 font-family: 'Helvetica', 'Arial', 'Sans';
 width: 800px;
 height: 600px;
}

#saveFile, canvas {
 display: none;
}

video {
 z-index: 1;
 position: absolute;
 width: 800px;
 height: 600px;
}

#takePhoto {
 z-index: 2;
 position: absolute;
 bottom: 5%;
 right: 5%;
 text-align: center;
 border: solid 2px white;
 box-shadow: 0px 0px 7px rgba(255,255,255,0.5);
 margin: 5px;
 border-radius: 3em;
 padding: 1em;
 background-color: rgba(0,0,0,0.2);
}

#takePhoto:hover {
 background: #FF5C5C;
 cursor: pointer;
}

Now, you can look at what the app would look like when it’s run. Figure 11.1 shows an
example of the app running on Windows 10.

Listing 11.6 The app.css file for the Facebomb NW.js app

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

193Photo snapping with the HTML5 Media Capture API

With the app, you can take a photo of yourself and the file is saved to the computer.
Nice and simple—but the key thing here is that it demonstrates how easy it is to build
an app that takes in the camera feed and can do all kinds of things with it.

 That shows how you can do it with NW.js, but what about Electron?

Figure 11.1 Facebomb in action (that’s me by the way—I could use a shave)

Why isn’t the app asking for permission to use the camera?
The HTML5 Media Capture API has a security policy of asking users if they want a
web page to be allowed to access their camera or microphone before the web app
can use them. This is to prevent malicious use of the camera or microphone to take
photos or record audio.

With Electron and NW.js, because the app is running on the user’s computer, the app
is trusted with access to the computer’s devices, so there’s no permission bar
appearing in the app. This means you can create apps that have direct access to the
camera and microphone, but as Peter Parker’s (Spider-Man’s) uncle said, “With great
power comes great responsibility.”

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

194 CHAPTER 11 Using a webcam in your application

11.1.2 Creating Facebomb with Electron

If you want to have the cake and eat it straightaway, you can grab the Facebomb-Electron
app from the book’s GitHub repository. I’ll walk you through the differences of Elec-
tron’s approach to implementing Facebomb. First, as expected, the entry point of the
app differs from NW.js—you have a main.js file that handles the responsibility of load-
ing the app window and applying constraints to it so it can’t be resized or enter full-
screen mode. Other differences with Electron are in how it implements the Save As
dialog, as well as the level of customization you can apply to the dialog.

 You’ll take a look first at the entry point of the app to see how the constraints are
applied to the app window. The following listing shows the code for the main.js file.

'use strict';

const electron = require('electron');
const app = electron.app;
const BrowserWindow = electron.BrowserWindow;

let mainWindow = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') app.quit();
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({
 useContentSize: true,
 width: 800,
 height: 600,
 resizable: false,
 fullscreen: false
 });
 mainWindow.loadURL(`file://${__dirname}/index.html`);
 mainWindow.on('closed', () => { mainWindow = null; });
});

This is pretty much standard boilerplate for an Electron app, but the key bit of inter-
est is the configuration object that’s passed into the initialization of the Browser-
Window instance.

 The first property passed in the configuration object is called useContentSize. It
ensures that the width and height properties of the app window are referring to the
content of the app window and not to the entire app window. If you don’t pass this
property (or explicitly set it to false), you’ll see scrollbars appear in the app window.
This is because Electron treats the width and height properties as referring to not

Listing 11.7 The main.js file for the Facebomb Electron app

Requires Electron;
loads app and browser
window dependencies

Creates empty
mainWindow variable to
hold app window reference

If all windows are closed
and you’re not running app
on Mac OS, quits app

Creates browser window with
width, height, resizable, and
full-screen properties

Gets main app window
to load index.html file
inside it

Adds event binding to reset mainWindow
variable when window is closed

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

195Photo snapping with the HTML5 Media Capture API

only the app window’s content size, but also the title bar at the top of the app window,
as well as any trim around the edges of the app window.

 If you didn’t pass this, you would otherwise have to tweak the width and height
properties to make sure that the app window didn’t have any scrollbars. This is the
kind of pixel pushing that you don’t want to have to deal with—plus, if your app is
running across multiple OSs, you would have to tweak these numbers for each build
you want to target. Not ideal. I recommend you always pass the useContentSize attri-
bute if you’re going to define width and height properties to your app windows. For
more on this attribute and other options that can be passed to the window configura-
tion, see http://electron.atom.io/docs/api/browser-window/.

 You also pass the options for disabling the ability to resize the window or make it
allow full-screen mode here. Whereas in NW.js these options are configured in the
package.json file, Electron passes the configuration at the point of creating the app
window. The advantage of this approach is that it’s easier to give separate app windows
different configurations rather than inherit the same configuration from the pack-
age.json file.

 Now, take a quick look at the index.html file.

<html>
 <head>
 <title>Facebomb</title>
 <link href="app.css" rel="stylesheet" />
 <link rel="stylesheet" href="css/font-awesome.min.css">
 <script src="app.js"></script>
 </head>
 <body>
 <canvas width="800" height="600"></canvas>
 <video autoplay></video>
 <div id="takePhoto" onclick="takePhoto()">
 <i class="fa fa-camera" aria-hidden="true"></i>
 </div>
 </body>
</html>

The index.html file that’s loaded for the app window is almost identical to the one
used in the NW.js variant. The only difference is that there’s no input element in the
Electron version, and that’s because it’s not needed. If you remember, the input ele-
ment was used for storing the filename for the photo, as well as containing the custom
attribute nwsaveas, which NW.js uses to bind a Save File dialog.

 Electron handles dialog windows differently than NW.js, and to see how differently,
you need to take a look at the app.js file. The app.js file is around 40 lines of code, so
we’ll scan through it bit by bit, starting with the dependencies and the alternative to
the bindSavingPhoto function.

Listing 11.8 The index.html file for the Facebomb Electron app

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

196 CHAPTER 11 Using a webcam in your application

'use strict';

const electron = require('electron');
const dialog = electron.remote.dialog;
const fs = require('fs');
let photoData;
let video;

function savePhoto (filePath) {
 if (filePath) {
 fs.writeFile(filePath, photoData, 'base64', (err) => {
 if (err) {
 alert(`There was a problem saving the photo: ${err.message}`);
 }
 photoData = null;
 });
 }
}

In the dependencies at the top of the app.js file, you require Electron and then use
the remote API to load Electron’s dialog module from a renderer process (the app.js
file). You then define a function called savePhoto. The purpose of this function is to
save the photo to disk when a file path is passed to it from Electron’s Save File dialog.
If it manages to successfully save the file to disk, you’re good, but if it encounters an
error, you alert the user. You also reset the photoData variable afterward.

 Let’s look at the initialize function in the app.js file.

function initialize () {
 video = window.document.querySelector('video');
 let errorCallback = (error) => {
 console.log(`There was an error connecting to the video stream:

${error.message}`);
 };

 window.navigator.webkitGetUserMedia({video: true}, (localMediaStream) => {
 video.src = window.URL.createObjectURL(localMediaStream);
 }, errorCallback);
}

This code is almost identical to the same-named function in the NW.js variant, but
with a slight difference: you don’t need to define a saveFile variable as there is no
input element in the HTML, and you don’t need to bind on the video’s loadedmeta-
data event triggering, because you pass the data and file in another location in the
app’s code.

Listing 11.9 The dependencies in the app.js file for the Facebomb Electron app

Listing 11.10 The app.js file’s initialize function for the Facebomb Electron app

Loads Electron and
requires dialog module
through remote API

savePhoto function
receives file path from
Save File dialog

Checks for file path
in case user clicked
Cancel on Save File
dialog

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

197Photo snapping with the HTML5 Media Capture API

 Finally, let’s take a look at the takePhoto function and the window.onload event
binding that makes up the rest of the app.js file.

function takePhoto () {
 let canvas = window.document.querySelector('canvas');
 canvas.getContext('2d').drawImage(video, 0, 0, 800, 600);
 photoData =

canvas.toDataURL('image/png').replace(/^data:image\/(png|jpg|jpeg);base6
4,/, '');

 dialog.showSaveDialog({
 title: "Save the photo",
 defaultPath: 'myfacebomb.png',
 buttonLabel: 'Save photo'
 }, savePhoto);
}

window.onload = initialize;

In this version of the app, the takePhoto function does a bit more work. It directly
triggers the rendering of the Save File dialog window. You set the title, default file
path, and Success button’s labels, and then pass the savePhoto function as the call-
back function that the dialog window will call once the user has either clicked Save
Photo or Cancel on the dialog window. When the savePhoto function is called, it will
receive the file path with the name of the file given by the user, or it will receive a null
value if the user cancelled. Last but not least, you bind the initialize function on
triggering when the window has loaded the HTML.

 Here, you can see that to bring about a dialog window for saving a file, you call
a function in Electron’s dialog module. The showSaveDialog function is one of a
number of functions you can call from the module. If you want to trigger other
behaviors, like a dialog for opening a file or displaying a message dialog with an
icon, the API methods and their arguments are available at http://electron.atom.io/
docs/api/dialog/.

 What does the Electron version of the app look like? It’s almost identical to the
NW.js version, as figure 11.2 shows.

 The key takeaway here is that you’ve been able to build an app with embedded
video and photo-saving features. Imagine the effort involved in trying to replicate the
same app in native frameworks! It’s fair to say that HTML5 Media Capture has taken
away a lot of the pain, so the ability to build desktop apps on top of that kind of work
is a massive timesaver.

Listing 11.11 The app.js file’s takePhoto function for the Facebomb Electron app

Calls dialog module to
create Save File dialog

Sets title of Save File
dialog window

Passes default
filename for the file

Sets label of success
action button to
“Save photo”

Passes savePhoto function
as callback to dialog, which
will pass final file path

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

198 CHAPTER 11 Using a webcam in your application

11.2 Summary
In this chapter, you created a photo booth–like app called Facebomb and explored
different implementations of it in NW.js and Electron. This discussion has introduced
you to the idea that you can leverage the HTML5 Media Capture API to access video
and use it in creative ways. Some of the key takeaways from the chapter include these:

 You don’t need to worry about asking for permission to access the webcam or
microphone when using HTML5 Media Capture APIs, because both Electron
and NW.js apps run locally on the user’s computer and are therefore trusted.

 You can use the video element to display the video feed in your app, and the
HTML5 canvas element to record an image from it to be saved to your computer.

That was fun. In chapter 12, we’ll turn our attention to ways of storing app data.

Figure 11.2 Facebomb Electron on Windows 10. Notice how the app looks exactly the same,
except for the app icon in the app title.

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

Paul B. Jensen

D
esktop application development has traditionally
required high-level programming languages and special-
ized frameworks. With Electron and NW.js, you can

apply your existing web dev skills to create desktop applica-
tions using only HTML, CSS, and JavaScript. And those
applications will work across Windows, Mac, and Linux,
radically reducing development and training time.

Cross-Platform Desktop Applications guides you step by step
through the development of desktop applications using
Electron and NW.js. This example-fi lled guide shows you how
to create your own fi le explorer, and then steps through some
of the APIs provided by the frameworks to work with the
camera, access the clipboard, make a game with keyboard
controls, and build a Twitter desktop notifi cation tool. You’ll
then learn how to test your applications, and debug and
package them as binaries for various OSs.

What’s Inside
● Create a selfi e app with the desktop camera
● Learn how to test Electron apps with Devtron
● Learn how to use Node.js with your application

Written for developers familiar with HTML, CSS, and
JavaScript.

Paul Jensen works at Starcount and lives in London, UK.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/cross-platform-desktop-applications

$49.99 / Can $65.99 [INCLUDING eBOOK]

Cross-Platform Desktop Applications

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“You will be shocked by
how easy it is to write

 a desktop app!”
—From the Foreword by Cheng

Zhao, Creator of Electron

“Write-once/run-anywhere
just became a real thing.”—Stephen Byrne, Dell

“The defi nitive guide
to two paradigm-shifting
JavaScript frameworks.

 Indispensable.”—Clive Harber, Distorted Thinking

“Packed full of examples
that will help you write

cross-platform desktop apps
 using JavaScript.”
—Jeff Smith, Ascension

SEE INSERT

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

