
M A N N I N G

Paul B. Jensen
FOREWORD BY Cheng Zhao

Using Electron and NW.js

S A M P L E C H A P T E R

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

Cross-Platform Desktop Applications
Using Electron and NW.js

by Paul Jensen

 Chapter 6

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

vii

brief contents
PART 1 WELCOME TO NODE.JS DESKTOP APPLICATION

DEVELOPMENT ..1

1 ■ Introducing Electron and NW.js 3

2 ■ Laying the foundation for your first desktop application 31

3 ■ Building your first desktop application 54

4 ■ Shipping your first desktop application 75

PART 2 DIVING DEEPER ...89

5 ■ Using Node.js within NW.js and Electron 91

6 ■ Exploring NW.js and Electron’s internals 108

PART 3 MASTERING NODE.JS DESKTOP APPLICATION
DEVELOPMENT ..119

7 ■ Controlling how your desktop app is displayed 121

8 ■ Creating tray applications 143

9 ■ Creating application and context menus 153

10 ■ Dragging and dropping files and crafting the UI 176

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

BRIEF CONTENTSviii

11 ■ Using a webcam in your application 187

12 ■ Storing app data 199

13 ■ Copying and pasting contents from the clipboard 210

14 ■ Binding on keyboard shortcuts 219

15 ■ Making desktop notifications 234

PART 4 GETTING READY TO RELEASE......................................243

16 ■ Testing desktop apps 245

17 ■ Improving app performance with debugging 264

18 ■ Packaging the application for the wider world 291

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

108

Exploring NW.js
and Electron’s internals

Although NW.js and Electron consist of the same software components, and Cheng
Zhao has influenced the development of both, the two frameworks have evolved
different approaches to how they function under the hood. Analyzing how they
operate internally will help you understand what’s going on when you’re running
an app and demystify the software.

 In this chapter, we’ll look at how NW.js and Electron function internally. We’ll
take a look at NW.js first to see how it combines Node.js with Chromium (because
that was the first Node.js desktop app framework) and then explore how Electron
took a different approach to combining those software components. Following that,
we’ll look at the frameworks’ different approaches to context and state. I’ll then

This chapter covers
 Understanding how NW.js and Electron combine

Node.js and Chromium

 Developing with Electron’s multi-process
approach

 Building with NW.js’s shared-context approach

 Sharing state by passing messages

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

109How does NW.js work under the hood?

elaborate a bit on Electron’s use of message passing to transmit data as state between
the processes in a desktop app.

 We’ll also look at some resources for further reading. The goal is that you’ll be in a
good position to understand how the two frameworks differ in their internal architec-
ture and the implications this has on building desktop apps with them.

6.1 How does NW.js work under the hood?
From a developer’s view, NW.js is a combination of a programming framework
(Node.js) with Chromium’s browser engine through their common use of V8. V8 is a
JavaScript engine created by Google for its web browser, Google Chrome. It’s written
in C++ and was designed with the goal of speeding up the execution of JavaScript in
the web browser.

 When Node.js was released in 2009, a year after Google Chrome, it combined a
multiplatform support library called libuv with the V8 engine and provided a way to
write asynchronous server-side programs in JavaScript. Because both Node.js and
Chromium use V8 to execute their JavaScript, it provided a way to combine the two
pieces of software, which Roger Wang came to understand and figure out. Figure 6.1
shows how those components are combined.

Looking at figure 6.1, you can see that Node.js is used in the back end to handle work-
ing with the OS, and that Blink (Chromium’s rendering engine) is used to handle
rendering the front-end part of the app, the bit that users see. Between them, both
Node.js and Blink use V8 as the component that handles executing JavaScript, and it’s

Node.js

npm

Operating

system

bindings

Shared

context

V8

Blink rendering engine

index.html

app.css

app.js

Figure 6.1 Overview of NW.js’s component architecture in relation to loading an app

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

110 CHAPTER 6 Exploring NW.js and Electron’s internals

this bit that’s crucial in getting Node.js and Chromium to work together. There are
three things necessary for Node.js and Chromium to work together:

 Make Node.js and Chromium use the same instance of V8
 Integrate the main event loop
 Bridge the JavaScript context between Node and Chromium

6.1.1 Using the same instance of V8

Both Node.js and Chromium use V8 to handle executing JavaScript. Getting them to
work together requires that a couple of things happen in order. The first thing NW.js
does is load Node.js and Chromium so that both of them have their JavaScript con-
texts loaded in the V8 engine. Node’s JavaScript context will expose global objects and
functions such as module, process, and require, to name a few. Chromium’s Java-
Script context will expose global objects and functions like window, document, and
console. This is illustrated in figure 6.2 and involves some overlap because both Node
and Chromium have a console object.

 When this is done, the JavaScript context for Node.js can be copied into the
JavaScript context for Chromium.

 Although that sounds quite easy, the reality is that there’s a bit more glue involved
for Node.js and Chromium to work together—the main event loop used by both has
to be integrated.

NW.js and its forked dependencies
NW.js, a combination of Node.js and the WebKit browser engine, used to be known
as node-webkit. Recently, both components were forked: Google created a fork of
WebKit called Blink, and in October 2014 a fork of Node.js called IO.js emerged. They
were created for different reasons, but as projects that received more regular
updates and features, NW.js opted to switch to using them.

As node-webkit no longer used Node.js and WebKit (but IO.js and Blink instead), it
was suggested that the project should be renamed; hence, the project was renamed
to NW.js.

In May 2015, the IO.js project agreed to work with the Node.js foundation to merge
IO.js back into Node.js. NW.js has switched back to using Node.js since.

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

111How does NW.js work under the hood?

6.1.2 Integrating the main event loop

As discussed in section 5.1.3, Node.js uses the event loop programming pattern to
handle executing code in a non-blocking, asynchronous fashion. Chromium also uses
the event loop pattern to handle the asynchronous execution of its code.

 But Node.js and Chromium use different software libraries (Node.js uses libuv, and
Chromium uses its own custom C++ libraries, known as MessageLoop and Message-
Pump). To get Node.js and Chromium to work together, their event loops have to be
integrated, as illustrated in figure 6.3.

 When the JavaScript context for Node.js is copied into Chromium’s JavaScript con-
text, Chromium’s event loop is adjusted to use a custom version of the MessagePump
class, built on top of libuv, and in this way, they’re able to work together.

Node.js’ JavaScript context

process

module

require

console

Buffer

Blink’s JavaScript context

example.js

Legend of global objects

window

module

process Buffer

document

require

console

When NW.js loads,

Node.js’ global objects

are copied from their

JavaScript context into

the context of the Blink

rendering engine, so

that they exist in one

place.

When a JavaScript file (example.js)

runs, it has access to all the objects in

Blink’s JavaScript context, including

the sever-side objects from Node.js

var fs = require('fs');

document.write('');

fs.readdir('/home', function(err, files){
files.foreach(function (file){
document.write(''+file+')

});
});

document.write('');

Native object

Shared object

Copied object

c

b

Figure 6.2 How NW.js handles copying the JavaScript context for Node.js into Chromium’s JavaScript context

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

112 CHAPTER 6 Exploring NW.js and Electron’s internals

6.1.3 Bridging the JavaScript context between Node and Chromium

The next step to completing the integration of Node with Chromium is to integrate
Node’s start function with Chromium’s rendering process. Node.js kicks off with a
start function that handles executing code. To get Node.js to work with Chromium,
the start function has to be split into parts so that it can execute in line with Chro-
mium’s rendering process. This is a bit of custom code within NW.js that’s used to
monkey-patch the start function in Node.

 Once this is done, Node is able to work inside of Chromium. This is how NW.js is
able to make Node.js operate in the same place as the front-end code that’s handled
by Chromium.

 That rounds up a bit about how NW.js operates under the hood. In the next sec-
tion, we’ll explore the different approach taken by Electron.

6.2 How does Electron work under the hood?
Electron’s approach shares some similarities in terms of the components used to pro-
vide the desktop framework, but differs in how it combines them. It’s best to start by
looking at the components that make up Electron. To see an up-to-date source code
directory, take a look at http://mng.bz/ZQ2J.

 Figure 6.4 shows a representation of that architecture at a less-detailed level. Elec-
tron’s architecture emphasizes a clean separation between the Chromium source code
and the app. The benefits of this are that it makes it easier to upgrade the Chromium
component, and it also means that compiling Electron from the source code becomes
that much simpler.

Node.js event loop Chromium event loop

libuv MessagePump MessageLoop

Figure 6.3 NW.js integrates the event loops of Node.js and Chromium by
making Chromium use a custom version of MessagePump, built on top of
libuv.

Electron

Atom

App Browser Renderer

Chromium source code

Common
Figure 6.4 Electron’s
source code architecture.
This diagram shows the
main blocks of components
that make up Electron.

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

113How does Electron work under the hood?

The Atom component is the C++ source code for the shell. It has four distinct parts
(covered in section 6.2.2). Finally, there’s Chromium’s source code, which the Atom
shell uses to combine Chromium with Node.js.

 How does Electron manage to combine Chromium with Node.js if it doesn’t rely
on patching Chrome to combine the event loops for Chromium and Node.js?

6.2.1 Introducing libchromiumcontent

Electron uses a single shared library called libchromiumcontent to load Chromium’s
content module, which includes Blink and V8. Chromium’s content module is respon-
sible for rendering a page in a sandboxed browser. You can find this library on GitHub
at https://github.com/electron/libchromiumcontent.

 You use the Chromium content module to handle rendering web pages for the app
windows. This way, there’s a defined API for handling the interaction between the Chro-
mium component and the rest of Electron’s components.

6.2.2 Electron’s components

Electron’s code components are organized inside Electron’s Atom folder into these
sections:

 App
 Browser
 Renderer
 Common

We’ll look at what each of those folders contains in a bit more detail.

APP

The App folder is a collection of files written in C++11 and Objective-C++ that handles
code that needs to load at the start of Electron, such as loading Node.js, loading Chro-
mium’s content module, and accessing libuv.

BROWSER

The Browser folder contains files that handle interacting with the front-end part of
the app, such as initializing the JavaScript engine, interacting with the UI, and bind-
ing modules that are specific to each OS.

RENDERER

The Renderer folder contains files for code that runs in Electron’s renderer processes.
In Electron, each app window runs as a separate process, because Google Chrome runs
each tab as a separate process, so that if a tab loads a heavy web page and becomes
unresponsive, that tab can be isolated and closed without killing the browser and the
rest of the tabs with it.

 Later in this book, we’ll look at how Electron handles running code in a main pro-
cess, and how app windows have their own renderer processes that run separately.

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

114 CHAPTER 6 Exploring NW.js and Electron’s internals

COMMON

The Common folder contains utility code that’s used by both the main and renderer
processes for running the app. It also includes code that handles integrating the mes-
saging for Node.js’ event loop into Chromium’s event loop.

 Now you have an idea of how Electron’s architecture is organized. In the next sec-
tion, we’ll look at how Electron handles rendering app windows in a process that’s
separate from the main app process.

6.2.3 How Electron handles running the app

Electron handles running apps differently than NW.js. In NW.js, the back-end and
front-end parts of the desktop app share state by having the Node.js and Chromium
event loops integrated and by having the JavaScript context copied from Node.js into
Chromium. One of the consequences of this approach is that the app windows of an
NW.js app end up sharing the same reference to the JavaScript state.

 With Electron, any sharing of state from the back-end part of the app to the front-
end part and vice versa has to go through the ipcMain and ipcRenderer modules. This
way, the JavaScript contexts of the main process and the renderer process are kept
separate, but data can be transmitted between the processes in an explicit fashion.

 The ipcMain and ipcRenderer modules are event emitters that handle interpro-
cess communication between the back end of the app (ipcMain), and the front-end
app windows (ipcRenderer), as shown in figure 6.5.

This way, you have greater control over what state exists in each app window as well as
how the main app interacts with the app windows.

 Regardless of which desktop framework you choose to build your app with, keep
in mind how you want data to be accessed and altered within your app. Depending
on what your app does, you may find that one framework is better suited to your
needs than the other, and in cases where you’re working with those desktop app
frameworks already, you’ll want to keep in mind how NW.js and Electron handle
JavaScript contexts.

 Now let’s take a closer look at how Electron and NW.js make use of Node.js.

Application

ipcmain

Application window

ipcRenderer

Application window

ipcRenderer

Figure 6.5 How Electron passes
state via messaging to and from the
app windows. In Electron, each app
window has its own JavaScript state,
and communicating state to and from
the main app process happens via
interprocess communication.

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

115How does Node.js work with NW.js and Electron?

6.3 How does Node.js work with NW.js and Electron?
Node.js interacts with the hybrid desktop environments of NW.js and Electron simi-
larly to server-side apps. But to understand the few differences, we’ll look at the way
Node.js is integrated into NW.js.

6.3.1 Where Node.js fits into NW.js

NW.js’s architecture consists of a number of components, Node.js being one of them.
NW.js uses Node.js to access the computer’s file system and other resources that would
otherwise not be available due to web browser security. It also provides a way to access
a large number of libraries through npm (figure 6.6).

NW.js makes Node.js available through the context of the embedded web browser,
which means you can script JavaScript files that access both Node.js’s API and API
methods related to the browser’s JavaScript namespace—such as the WebSocket
class, for example. In earlier examples in the book, you’ve written code that has
accessed Node.js’s file system API in the same file that also accesses the DOM in the
screen.

 This is possible through the way that NW.js has merged the JavaScript namespaces
of Node.js and the Blink rendering engine, as well as merged the main event loops of
both, allowing them to operate and interact in a shared context.

6.3.2 Drawbacks of using Node.js in NW.js

Because of how NW.js merges the JavaScript contexts of the Blink rendering engine
and Node.js, you should be aware of some of the consequences that come with this
approach. I’ll describe what those things are and how you can handle them so that
they don’t trip you up.

THE NODE.JS CONTEXT IS ACCESSIBLE TO ALL WINDOWS

I’ve talked about Node.js and Blink sharing the same JavaScript context, but how does
that work in the context of an NW.js app where there are multiple windows?

 In Blink, each window has its own JavaScript context, because each window loads a
web page with its own JavaScript files and DOM. The code in one window will operate

Node.js

V8

Blink

Visual rendering

of app in Blink

browser component

Access to computer

resources in Node.js

npm

Figure 6.6 How Node.js is used within NW.js for desktop apps

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

116 CHAPTER 6 Exploring NW.js and Electron’s internals

in the context of that window only, and not have its context leak into another win-
dow—otherwise, this would cause issues with maintaining state in the windows as well
as security issues. You should expect the state that exists in one window to be isolated
to that window and not leak.

 That said, NW.js introduces a way to share state between windows via the way
that Node.js’s namespace is loaded into the namespace of Blink to create a shared
JavaScript context. Even though each window has its own JavaScript namespace,
they all share the same Node.js instance and its namespace. This means there’s a
way to share state between windows through code that operates on Node.js’s
namespace properties (such as the API methods), including via the require func-
tion that’s used to load libraries. Should you need to share data between windows
in your desktop app, you’ll be able to do this by attaching data to the global object
in your code.

COMMON API METHODS IN CHROMIUM AND NODE.JS
You may know that both Node.js and Blink have API methods with the same name and
that work in the same way (for example, console, setTimeout, encodeURIComponent).
How are these handled? In some cases, Blink’s implementation is used, and in other
cases, Node.js’s implementation is used. NW.js opts to use Blink’s implementation of
console, and for setTimeout, the implementation used depends on whether the file
is loaded from a Node.js module or from the desktop app. This is worth keeping in
mind when you’re using those functions, because although they’re consistent in their
implementations of inputs and outputs, there might be a slight difference in speed
of execution.

6.3.3 How Node.js is used within Electron

Electron uses Node.js along with Chromium, but rather than combining the event
loops of Node.js and Chromium together, Electron uses Node.js’s node_bindings fea-
ture. This way, the Chromium and Node.js components can be updated easily without
the need for custom modification of the source code and subsequent compiling.

 Electron handles the JavaScript contexts of Node.js and Chromium by keeping the
back-end code’s JavaScript state separate from that of the front-end app window’s
state. This isolation of the JavaScript state is one of the ways Electron is different from
NW.js. That said, Node.js modules can be referenced and used from the front-end
code as well, with the caveat that those Node.js modules are operating in a separate
process to the back end. This is why data sharing between the back end and app win-
dows is handled via inter-process communication, or message passing.

 If you’re interested in learning more about this approach, check out this site from
GitHub’s Jessica Lord: http://jlord.us/essential-electron/#stay-in-touch.

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

117Summary

6.4 Summary
In this chapter, we’ve exposed some differences between NW.js and Electron by explor-
ing how their software components work under the hood. Some of the key takeaways
from the chapter include the following:

 In NW.js, Node.js and Blink share JavaScript contexts, which you can use for
sharing data between multiple windows.

 This sharing of JavaScript state means that multiple app windows for the same
NW.js app can share the same state.

 NW.js uses a compiled version of Chromium with custom bindings, whereas
Electron uses an API in Chromium to integrate Node.js with Chromium.

 Electron has separate JavaScript contexts between the front end and the
back end.

 When you want to share state between the front end and back end in Electron
apps, you need to use message passing via the ipcMain and ipcRenderer APIs.

In the next chapter, we’ll look at how to use the various APIs of NW.js and Electron to
build desktop apps—specifically, at the way in which you can craft an app’s look and
feel. It will be more visual, and hopefully more fun.

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

Paul B. Jensen

D
esktop application development has traditionally
required high-level programming languages and special-
ized frameworks. With Electron and NW.js, you can

apply your existing web dev skills to create desktop applica-
tions using only HTML, CSS, and JavaScript. And those
applications will work across Windows, Mac, and Linux,
radically reducing development and training time.

Cross-Platform Desktop Applications guides you step by step
through the development of desktop applications using
Electron and NW.js. This example-fi lled guide shows you how
to create your own fi le explorer, and then steps through some
of the APIs provided by the frameworks to work with the
camera, access the clipboard, make a game with keyboard
controls, and build a Twitter desktop notifi cation tool. You’ll
then learn how to test your applications, and debug and
package them as binaries for various OSs.

What’s Inside
● Create a selfi e app with the desktop camera
● Learn how to test Electron apps with Devtron
● Learn how to use Node.js with your application

Written for developers familiar with HTML, CSS, and
JavaScript.

Paul Jensen works at Starcount and lives in London, UK.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/cross-platform-desktop-applications

$49.99 / Can $65.99 [INCLUDING eBOOK]

Cross-Platform Desktop Applications

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“You will be shocked by
how easy it is to write

 a desktop app!”
—From the Foreword by Cheng

Zhao, Creator of Electron

“Write-once/run-anywhere
just became a real thing.”—Stephen Byrne, Dell

“The defi nitive guide
to two paradigm-shifting
JavaScript frameworks.

 Indispensable.”—Clive Harber, Distorted Thinking

“Packed full of examples
that will help you write

cross-platform desktop apps
 using JavaScript.”
—Jeff Smith, Ascension

SEE INSERT

www.itbook.store/books/9781617292842

https://itbook.store/books/9781617292842

