
M A N N I N G

Andreas Wittig
Michael Wittig
FOREWORD BY Ben Whaley

SAMPLE CHAPTER

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

Amazon Web Services
in Action

by Michael Wittig
and Andreas Wittig

Chapter 13

Copyright 2016 Manning Publications

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

brief contents

PART 1 GETTING STARTED ..1

1 ■ What is Amazon Web Services? 3

2 ■ A simple example: WordPress in five minutes 34

PART 2 BUILDING VIRTUAL INFRASTRUCTURE WITH SERVERS

AND NETWORKING...51

3 ■	 Using virtual servers: EC2 53

4 ■	 Programming your infrastructure: the command line,

 SDKs, and CloudFormation 91

5 ■	 Automating deployment: CloudFormation, Elastic

 Beanstalk, and OpsWorks 124

6 ■	 Securing your system: IAM, security groups, and VPC 152

PART 3 STORING DATA IN THE CLOUD ...183

7 ■	 Storing your objects: S3 and Glacier 185

8 ■	 Storing your data on hard drives: EBS and instance

 store 204

v

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

vi BRIEF CONTENTS

9 ■ Using a relational database service: RDS 225

10 ■ Programming for the NoSQL database service:

 DynamoDB 253

PART 4 ARCHITECTING ON AWS..279

11 ■	 Achieving high availability: availability zones, auto-scaling,

 and CloudWatch 281

12 ■	 Decoupling your infrastructure: ELB and SQS 310

13 ■	 Designing for fault-tolerance 331

14 ■	 Scaling up and down: auto-scaling and CloudWatch 363

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

Designing
 for fault-tolerance

This chapter covers
■	 What fault-tolerance is and why you need it
■	 Using redundancy to remove single point of failures
■	 Retrying on failure
■	 Using idempotent operations to achieve retry on

failure
■	 AWS service guarantees

Failure is inevitable for hard disks, networks, power, and so on. Fault-tolerance deals
with that problem. A fault-tolerant system is built for failure. If a failure occurs, the
system isn’t interrupted, and it continues to handle requests. If your system has a sin
gle point of failure, it’s not fault-tolerant. You can achieve fault-tolerance by intro
ducing redundancy into your system and by decoupling the parts of your system in
such a way that one side doesn’t rely on the uptime of the other.

 The most convenient way to make your system fault-tolerant is to compose the sys
tem of fault-tolerant blocks. If all blocks are fault-tolerant, the system is fault-tolerant

331

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

332	 CHAPTER 13 Designing for fault-tolerance

as well. Many AWS services are fault-tolerant by default. If possible, use them. Otherwise
you’ll need to deal with the consequences.

 Unfortunately, one important service isn’t fault-tolerant by default: EC2 instances. A
virtual server isn’t fault-tolerant. This means a system that uses EC2 isn’t fault-tolerant by
default. But AWS provides the building blocks to deal with that issue. The solution con
sists of auto-scaling groups, Elastic Load Balancing (ELB), and SQS.

 It’s important to differentiate among services that guarantee the following:

■	 Nothing (single point of failure)—No requests are served in case of failure.
■	 High availability—In case of failure, it takes some time until requests are served

as before.
■	 Fault-tolerance—In case of failure, requests are served as before without any

availability issues.

Following are the guarantees of the AWS services covered in this book in detail. Single point
of failure (SPOF) means this service will fail if, for example, a hardware failure occurs:

■	 Amazon Elastic Compute Cloud (EC2) instance—A single EC2 instance can fail for
many reasons: hardware failure, network problems, availability-zone problems,
and so on. Use auto-scaling groups to have a fleet of EC2 instances serve
requests in a redundant way to achieve high availability or fault-tolerance.

■	 Amazon Relational Database Service (RDS) single instance—A single RDS instance
can fail for many reasons: hardware failure, network problems, availability zone
problems, and so on. Use Multi-AZ mode to achieve high availability.

Highly available (HA) means that when a failure occurs the service won’t be available
for a short time but will come back automatically:

■	 Elastic Network Interface (ENI)—A network interface is bound to an AZ (availability
zone), so if this AZ goes down, your network interface is down.

■	 Amazon Virtual Private Cloud (VPC) subnet—A VPC subnet is bound to an AZ, so if
this AZ goes down, your subnet is down. Use multiple subnets in different AZs to
remove the dependency on a single AZ.

■	 Amazon Elastic Block Store (EBS) volume—An EBS volume is bound to an AZ, so if this
AZ goes down, your volume is unavailable (your data won’t be lost). You can create
EBS snapshots from time to time so you can recreate an EBS volume in another AZ.

■	 Amazon Relational Database Service (RDS) Multi-AZ instance—When running in
Multi-AZ mode, a short downtime (one minute) is expected if an issue occurs with
the master instance while changing DNS records to switch to the standby instance.

Fault-tolerant means that if a failure occurs, you won’t notice it:

■	 Elastic Load Balancing (ELB), deployed to at least two AZs
■	 Amazon EC2 Security Group
■	 Amazon Virtual Private Cloud (VPC) with an ACL and a route table
■	 Elastic IP Address (EIP)
■	 Amazon Simple Storage Service (S3)

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

333 Using redundant EC2 instances to increase availability

■	 Amazon Elastic Block Store (EBS) snapshot
■	 Amazon DynamoDB
■	 Amazon CloudWatch
■	 Auto-scaling group
■	 Amazon Simple Queue Service (SQS)
■	 AWS Elastic Beanstalk
■	 AWS OpsWorks
■	 AWS CloudFormation
■	 AWS Identity and Access Management (IAM, not bound to a single region; if you

create an IAM user, that user is available in all regions)

Why should you care about fault-tolerance? Because in the end, a fault-tolerant system
provides the highest quality to your end users. No matter what happens in your system,
the user is never affected and can continue to consume content, buy stuff, or have con
versations with friends. A few years ago it was expensive to achieve fault-tolerance, but
in AWS, providing fault-tolerant systems is an affordable standard.

Chapter requirements
To fully understand this chapter, you need to have read and understood the following
concepts:

■	 EC2 (chapter 3)
■	 Auto-scaling (chapter 11)
■	 Elastic Load Balancing (chapter 12)
■ SQS (chapter 12)

The example makes intensive use of the following:

■	 Elastic Beanstalk (chapter 5)
■	 DynamoDB (chapter 10)
■	 Express, a Node.js web application framework

In this chapter, you’ll learn everything you need to design a fault-tolerant web applica
tion based on EC2 instances (which aren’t fault-tolerant by default).

13.1 Using redundant EC2 instances to increase availability
Unfortunately, EC2 instances aren’t fault-tolerant. Under your virtual server is a host
system. These are a few reasons your virtual server might suffer from a crash caused by
the host system:

■	 If the host hardware fails, it can no longer host the virtual server on top of it.
■	 If the network connection to/from the host is interrupted, the virtual server

loses the ability to communicate via network as well.
■	 If the host system is disconnected from a power supply, the virtual server also

goes down.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

334	 CHAPTER 13 Designing for fault-tolerance

But the software running on top of the virtual server may also cause a crash:

■	 If your software has a memory leak, you’ll run out of memory. It may take a day,
a month, a year, or more, but eventually it will happen.

■	 If your software writes to disk and never deletes its data, you’ll run out of disk
space sooner or later.

■	 Your application may not handle edge cases properly and instead just crashes.

Regardless of whether the host system or your software is the cause of a crash, a single
EC2 instance is a single point of failure. If you rely on a single EC2 instance, your sys
tem will blow up—the only question is when.

13.1.1 Redundancy can remove a single point of failure

Imagine a production line that makes fluffy cloud pies. Producing a fluffy cloud pie
requires several production steps (simplified!):

1 Produce a pie crust.

2 Cool the pie crust.

3 Put the fluffy cloud mass on top of the pie crust.

4 Cool the fluffy cloud pie.

5 Package the fluffy cloud pie.

The current setup is a single production line. The big problem with this setup is that
whenever one of the steps crashes, the entire production line must be stopped. Fig
ure 13.1 illustrates the problem when the second step (cooling the pie crust)
crashes. The following steps no longer work, either, because they don’t receive cool
pie crusts.

 Why not have multiple production lines? Instead of one line, suppose we have
three. If one of the lines fails, the other two can still produce fluffy cloud pies for all
the hungry customers in the world. Figure 13.2 shows the improvements; the only
downside is that we need three times as many machines.

Production line 1

Produce a Put fluffy cloud mass Package the
pie crust. Cool down. on top of the pie crust. Cool down. fluffy cloud pie.

Cool-down machine
is broken.

X
Complete chain
is broken.

Figure 13.1 A single point of failure affects not only itself, but the entire system.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

335 Using redundant EC2 instances to increase availability

Production line 1

Produce a
pie crust.

Put fluffy cloud mass
on top of the pie crust.

Package the
fluffy cloud pie.Cool down. Cool down.

Production line 2

X
Cool-down machine Complete chain
is broken. is broken.

Production line 3

Figure 13.2 Redundancy eliminates single points of failure and makes the system more stable.

The example can be transferred to EC2 instances as well. Instead of having only one
EC2 instance, you can have three of them running your software. If one of those
instances crashes, the other two are still able to serve incoming requests. You can also
minimize the cost impact of one versus three instances: instead of one large EC2
instance, you can choose three small ones. The problem that arises with a dynamic
server pool is, how can you communicate with the instances? The answer is decoupling :
put a load balancer between your EC2 instances and the requestor or a message
queue. Read on to learn how this works.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

336	 CHAPTER 13 Designing for fault-tolerance

13.1.2 Redundancy requires decoupling

Figure 13.3 shows how EC2 instances can be made fault-tolerant by using redundancy
and synchronous decoupling. If one of the EC2 instances crashes, ELB stops to route
requests to the crashed instances. The auto-scaling group replaces the crashed EC2
instance within minutes, and ELB begins to route requests to the new instance.

10.0.0.0/16

10.0.1.0/24 10.0.2.0/24

Web servers in
availability zone B

Web servers in
availability zone A

Load balancer

Internet

Auto-scaling group Figure 13.3 Fault-tol
erant EC2 servers with
an auto-scaling group
and ELB

Take a second look at figure 13.3 and see what parts are redundant:

■	 Availability zones—Two are used. If one AZ goes down, we still have EC2 instances
running in the other AZ.

■	 Subnets—A subnet is tightly coupled to an AZ. Therefore we need one subnet in
each AZ, and subnets are also redundant.

■	 EC2 instances—We have multi-redundancy for EC2 instances. We have multiple
instances in a single subnet (AZ), and we have instances in two subnets (AZs).

Figure 13.4 shows a fault-tolerant system built with EC2 that uses the power of redun
dancy and asynchronous decoupling to process messages from an SQS queue.

Queue
10.0.0.0/16

Worker servers in
availability zone B

Worker servers in
availability zone A

10.0.1.0/24 10.0.2.0/24

Auto-scaling group
Figure 13.4 Fault-tolerant

EC2 servers with an auto-

scaling group and SQS

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

337 Considerations for making your code fault-tolerant

In both figures, the load balancer/SQS queue appears only once. This doesn’t mean
ELB or SQS is a single point of failure; on the contrary, ELB and SQS are fault-tolerant
by default.

13.2 Considerations for making your code fault-tolerant
If you want fault-tolerance, you must achieve it within your code. You can design fault-
tolerance into your code by following two suggestions presented in this section.

13.2.1 Let it crash, but also retry

The Erlang programming language is famous for the concept of “let it crash.” That
simply means whenever the program doesn’t know what to do, it crashes, and some
one needs to deal with the crash. Most often people overlook the fact that Erlang is
also famous for retrying. Letting it crash without retrying isn’t useful—if you can’t
recover from a crashed situation, your system will be down, which is the opposite of
what you want.

 You can apply the “let it crash” concept (some people call it “fail-fast”) to synchro
nous and asynchronous decoupled scenarios. In a synchronous decoupled scenario,
the sender of a request must implement the retry logic. If no response is returned
within a certain amount of time, or an error is returned, the sender retries by sending
the same request again. In an asynchronous decoupled scenario, things are easier. If a
message is consumed but not acknowledged within a certain amount of time, it goes
back to the queue. The next consumer then grabs the message and processes it again.
Retrying is built into asynchronous systems by default.

 “Let it crash” isn’t useful in all situations. If the program wants to respond to
tell the sender that the request contained invalid content, this isn’t a reason for
letting the server crash: the result will stay the same no matter how often you retry.
But if the server can’t reach the database, it makes a lot of sense to retry. Within a
few seconds the database may be available again and able to successfully process the
retried request.

 Retrying isn’t that easy. Imagine that you want to retry the creation of a blog post.
With every retry, a new entry in the database is created, containing the same data as
before. You end up with many duplicates in the database. Preventing this involves a
powerful concept that’s introduced next: idempotent retry.

13.2.2 Idempotent retry makes fault-tolerance possible

How can you prevent a blog post from being added to the database multiple times
because of a retry? A naïve approach would be to use the title as primary key. If the
primary key is already used, you can assume that the post is already in the database
and skip the step of inserting it into the database. Now the insertion of blog posts is
idempotent, which means no matter how often a certain action is applied, the outcome
must be the same. In the current example, the outcome is a database entry.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

338	 CHAPTER 13 Designing for fault-tolerance

 Let’s try it with a more complicated example. Inserting a blog post is more compli
cated in reality, and the process looks something like this:

1 Create a blog post entry in the database.
2 Invalidate the cache because data has changed.
3 Post the link to the blog’s Twitter feed.

Let’s take a close look at each step.

1. CREATING A BLOG POST ENTRY IN THE DATABASE

We covered this step earlier by using the title as
a primary key. But this time, let’s use a univer
sally unique identifier (UUID) instead of the
title as the primary key. A UUID like 550e8400
e29b-11d4-a716-446655440000 is a random ID
that’s generated by the client. Because of the
nature of a UUID, it’s unlikely that two equal No

UUIDs will be generated. If the client wants to
create a blog post, it must send a request to the
ELB containing the UUID, title, and text. The
ELB routes the request to one of the back-end
servers. The back-end server checks whether
the primary key already exists. If not, a new
record is added to the database. If it exists, the
insertion continues. Figure 13.5 shows the flow.

Create
database

entry

Blog post with UUID
should be saved in

database.

Is the UUID already
in the database?

Yes

Creating a blog post is a good example of an Figure 13.5 Idempotent database insert:

idempotent operation that’s guaranteed by creating a blog post entry in the database
only if it doesn’t already existcode. You can also use your database to handle

this problem. Just send an insert to your database. Three things can happen:

■	 Your database inserts the data. The step is successfully completed.
■	 Your database responds with an error that the primary key is already in use. The

step is successfully completed.
■ Your database responds with a different error. The step crashes.

Think twice about the best way of implementing idempotence!

2. INVALIDATING THE CACHE

This step sends an invalidation message to a caching layer. You don’t need to worry
about idempotency too much here: it doesn’t hurt if the cache is invalidated more
often than needed. If the cache is invalidated, then the next time a request hits the
cache, the cache won’t contain data, and the original source (in this case, the data
base) will be queried for the result. The result is then put in the cache for subsequent
requests. If you invalidate the cache multiple times because of a retry, the worst thing
that can happen is that you may need to make a few more calls to your database.
That’s easy.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

339 Considerations for making your code fault-tolerant

3. POSTING TO THE BLOG’S TWITTER FEED

To make this step idempotent, you need to use some tricks because you interact with a
third party that doesn’t support idempotent operations. Unfortunately, no solution
will guarantee that you post exactly one status update to Twitter. You can guarantee
the creation is at least one (one or more than one) status update, or at most one (one
or none) status update. An easy approach could be to ask the Twitter API for the latest
status updates; if one of them matches the status update that you want to post, you
skip the step because it’s already done.

 But Twitter is an eventually consistent system: there’s no guarantee that you’ll see a
status update immediately after you post it. You can end up having your status update
posted multiple times. Another approach would be to save in a database whether you
already posted the blog post status update. But imagine saving to the database that
you posted to Twitter and then making the request to the Twitter API—but at that
moment, the system crashes. Your database will say that the Twitter status update was
posted, but in reality it wasn’t. You need to make a choice: tolerate a missing status
update, or tolerate multiple status updates. Hint: it’s a business decision. Figure 13.6
shows the flow of both solutions.

 Now it’s time for a practical example! You’ll design, implement, and deploy a dis
tributed, fault-tolerant web application on AWS. This example will demonstrate how
distributed systems work and will combine most of the knowledge in this book.

Share Twitter
status update.

Solution 1

Ask Twitter if
the status update
is already there

Ask database if
post was already
shared via Twitter

Yes

No

Create
status
update

Share Twitter
status update.

Yes

No

Create
status
update

Update
database

Solution 2

Figure 13.6 Idempotent Twitter status update: only share a status update if it hasn’t already been done.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

340 CHAPTER 13 Designing for fault-tolerance

13.3 Architecting a fault-tolerant web application: Imagery
Before you begin the architecture and design of the fault-tolerant Imagery applica
tion, we’ll talk briefly about what the application should do in the end. A user should
be able to upload an image. This image is then transformed with a sepia filter so that it
looks old. The user can then view the sepia image. Figure 13.7 shows the process.

File Browse...

Imagery upload

Upload

ResponseRequest

User uploads A filter is applied to the image.
an image. The resulting image is uploaded

and can be accessed from
the internet.

Figure 13.7 The user uploads an image to Imagery, where a filter is applied.

The problem with the process shown in figure 13.7 is that it’s synchronous. If the
server dies during request and response, the user’s image won’t be processed.
Another problem arises when many users want to use the Imagery app: the system
becomes busy and may slow down or stop working. Therefore the process should be
turned into an asynchronous one. Chapter 12 introduced the idea of asynchronous
decoupling by using a SQS message queue, as shown in figure 13.8.

 When designing an asynchronous process, it’s important to keep track of the pro
cess. You need some kind of identifier for it. When a user wants to upload an image,
the user creates a process first. This process creation returns a unique ID. With that ID,
the user is able to upload an image. If the image upload is finished, the server begins
to process the image in the background. The user can look up the process at any time

Message Message
producers Queue tail Queue head consumers

Figure 13.8 Producers send messages to a message queue, and consumers
read messages.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

341 Architecting a fault-tolerant web application: Imagery

with the process ID. While the image is being processed, the user can’t see the sepia
image. But as soon as the image is processed, the lookup process returns the sepia
image. Figure 13.9 shows the asynchronous process.

 Now that you have an asynchronous process, it’s time to map that process to AWS
services. Keep in mind that most services on AWS are fault-tolerant by default, so it
makes sense to pick them whenever possible. Figure 13.10 shows one way of doing it.

 To make things as easy as possible, all the actions will be accessible via a REST API,
which will be provided by EC2 instances. In the end, EC2 instances will provide the
process and make calls to all the AWS services shown in figure 13.10.

 You’ll use many AWS services to implement the Imagery application. Most of them
are fault-tolerant by default, but EC2 isn’t. You’ll deal with that problem using an
idempotent image-state machine, as introduced in the next section.

User needs to
User creates User uploads an wait until image User finally can
an image process image to the process is processed access the sepia
and gets back an ID. identified by the ID. asynchronously. image by the ID.

User

Worker

1. Create 2. Upload

3. Process

Create

Upload

5. View4. Wait

A worker picks up the job to
process the image by applying
the sepia filter to it.

Figure 13.9 The user asynchronously uploads an image to Imagery, where a filter is applied.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

342

User creates
a process with
a unique ID.
Process is stored
in DynamoDB.

CHAPTER 13 Designing for fault-tolerance

With the process ID, the user
uploads an image to S3. The S3 DynamoDB contains
key is persisted to DynamoDB the current state of
together with the new process the process. Wait
state "uploaded". A SQS message until state switches
is produced to trigger processing. to “processed”.

S3 contains
the sepia image.
DynamoDB knows
the S3 key.

User

Worker

1. Create 2. Upload

3. Process

5. View4. Wait

SQS

S3DynamoDB

EC2

S3 S3

SQS

DynamoDB DynamoDB

DynamoDB DynamoDB

SQS message is consumed by an EC2 instance. The raw message
is downloaded from S3 and processed, and the sepia image is
uploaded to S3. The process in DynamoDB is updated with the
new state "processed" and the S3 key of the sepia image.

Figure 13.10 Combining AWS services to implement the asynchronous Imagery process

Example is 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. As long as you don’t
run the examples longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and there are
no other things going on in your AWS account. Try to complete the chapter within a
few days, because you’ll clean up your account at the end of the chapter.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

343 Architecting a fault-tolerant web application: Imagery

AWS Lambda and Amazon API Gateway are coming
AWS is working on a service called Lambda. With Lambda, you can upload a code
function to AWS and then execute that function on AWS. You no longer need to pro
vide your own EC2 instances; you only have to worry about the code. AWS Lambda
is made for short-running processes (up to 60 seconds), so you can’t create a web
server with Lambda. But AWS will offer many integration hooks: for example, each
time an object is added to S3, AWS can trigger a Lambda function; or a Lambda
function is triggered when a new message arrives on SQS. Unfortunately, AWS
Lambda isn’t available in all regions at the time of writing, so we decided not to in
clude this service.

Amazon API Gateway gives you the ability to run a REST API without having to run any
EC2 instances. You can specify that whenever a GET /some/resource request is re
ceived, it will trigger a Lambda function. The combination of Lambda and Amazon API
Gateway lets you build powerful services without a single EC2 instance that you must
maintain. Unfortunately, Amazon API Gateway isn’t available in all regions at the time
of writing.

13.3.1 The idempotent image-state machine

An idempotent image-state machine sounds complicated. We’ll take some time to
explain it because it’s the heart of the Imagery application. Let’s look at what a state
machine is and what idempotent means in this context.

THE FINITE STATE MACHINE

A state machine has at least one start state and one end state (we’re talking about
finite state machines). Between the start and the end state, the state machine can have
many other states. The machine also defines transitions between states. For example,
a state machine with three states could look like this:

(A) -> (B) -> (C).

This means

■ State A is the start state.
■ There is a transition possible from state A to B.
■ There is a transition possible from state B to C.
■ State C is the end state.

But there’s no transition possible between (A) -> (C) or (B) -> (A). The Imagery state
machine could look like this:

(Created) -> (Uploaded) -> (Processed)

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

344 CHAPTER 13 Designing for fault-tolerance

Once a new process (state machine) is created, the only transition possible is to
Uploaded. To make this transition happen, you need the S3 key of the uploaded raw
image. The transition between Created -> Uploaded can be defined by the function
uploaded(s3Key). Basically, the same is true for the transition Uploaded -> Processed.
This transition can be done with the S3 key of the sepia image: processed(s3Key).

 Don’t be confused because the upload and the image filter processing don’t
appear in the state machine. These are the basic actions that happen, but we’re only
interested in the results; we don’t track the progress of the actions. The process isn’t
aware that 10% of the data has been uploaded or that 30% of the image processing is
done. It only cares whether the actions are 100% done. You can probably imagine a
bunch of other states that could be implemented but that we’re skipping for the pur
pose of simplicity in this example; Resized and Shared are just two examples.

IDEMPOTENT STATE TRANSITIONS

An idempotent state transition must have the same result no matter how often the tran
sition takes place. If you know that your state transitions are idempotent, you can do a
simple trick: in case of a failure during transitioning, you retry the entire state transition.

 Let’s look at the two state transitions you need to implement. The first transition
Created -> Uploaded can be implemented like this (pseudo code):

uploaded(s3Key) {

process = DynamoDB.getItem(processId)

if (process.state !== "Created") {

throw new Error("transition not allowed")

}

DynamoDB.updateItem(processId, {"state": "Uploaded", "rawS3Key": s3Key})

SQS.sendMessage({"processId": processId, "action": "process"});

}

The problem with this implementation is that it’s not idempotent. Imagine that
SQS.sendMessage fails. The state transition will fail, so you retry. But the second call to
uploaded(s3Key) will throw a “transition not allowed” error because DynamoDB
.updateItem was successful during the first call.

 To fix that, you need to change the if statement to make the function idempotent:

uploaded(s3Key) {

process = DynamoDB.getItem(processId)

if (process.state !== "Created" && process.state !== "Uploaded") {

throw new Error("transition not allowed")

}

DynamoDB.updateItem(processId, {"state": "Uploaded", "rawS3Key": s3Key})

SQS.sendMessage({"processId": processId, "action": "process"});

}

If you retry now, you’ll make multiple updates to DynamoDB, which doesn’t hurt. And
you may send multiple SQS messages, which also doesn’t hurt, because the SQS mes
sage consumer must be idempotent as well. The same applies to the transition
Uploaded -> Processed.

 Next, you’ll begin to implement the Imagery server.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

345 Architecting a fault-tolerant web application: Imagery

13.3.2 Implementing a fault-tolerant web service

We’ll split the Imagery application into two parts: a server and a worker. The server is
responsible for providing the REST API to the user, and the worker handles consum
ing SQS messages and processing images.

Where is the code located?
As usual, you’ll find the code in the book’s code repository on GitHub: https://
github.com/AWSinAction/code. Imagery is located in /chapter13/.

The server will support the following routes:

■	 POST /image—A new image process is created when executing this route.
■	 GET /image/:id—This route returns the state of the process specified with the

path parameter :id.
■	 POST /image/:id/upload—This route offers a file upload for the process speci

fied with the path parameter :id.

To implement the server, you’ll again use Node.js and the Express web application
framework. You’ll only use Express framework a little, so you won’t be bothered by it.

SETTING UP THE SERVER PROJECT

As always, you need some boilerplate code to load dependencies, initial AWS end
points, and things like that, as shown in the next listing.

Listing 13.1 Initializing the Imagery server (server/server.js)

var express = require('express');

var bodyParser = require('body-parser');

var AWS = require('aws-sdk');

var uuid = require('node-uuid');

var multiparty = require('multiparty');

Creates
an SQS

endpoint

Creates an
Express

application

var db = new AWS.DynamoDB({

"region": "us-east-1"

});

var sqs = new AWS.SQS({

"region": "us-east-1"

});

var s3 = new AWS.S3({

"region": "us-east-1"

});

var app = express();

app.use(bodyParser.json());

[...]

Creates an S3
endpoint

Tells Express to parse
the request bodies

Loads Node.js modules
(dependencies)

Creates a DynamoDB
endpoint

www.itbook.store/books/9781617292880

https://github.com/AWSinAction/code
https://github.com/AWSinAction/code
https://itbook.store/books/9781617292880

346 CHAPTER 13 Designing for fault-tolerance

app.listen(process.env.PORT || 8080, function() {

console.log("Server started. Open http://localhost:"

+ (process.env.PORT || 8080) + " with browser.");

});

Starts Express on the port defined by the

environment variable PORT, or defaults to 8080

Don’t worry too much about the boilerplate code; the interesting parts will follow.

CREATING A NEW IMAGERY PROCESS

To provide a REST API to create image processes, a fleet of EC2 instances will run
Node.js code behind a load balancer. The image processes will be stored in Dyna
moDB. Figure 13.11 shows the flow of a request to create a new image process.

User sends a POST / image
request. User gets a Node.js code Add an item to
process ID in return. is executed. DynamoDB table.

User ELB EC2 DynamoDB

Instances running in

auto-scaling group

ELB distributes

request to one of

the EC2 instances.

Figure 13.11 Creating a new image process in Imagery

You’ll now add a route to the Express application to handle POST /image requests, as
shown in the next listing.

Listing 13.2 Imagery server: POST /image creates an image process

app.post('/image', function(request, response) {

var id = uuid.v4();
 Registers the routeCreates a

with Expressdb.putItem({
unique ID for
Invokes the putItem"Item": {
 the process
operation on DynamoDB"id": {

"S": id
 The id attribute
},
will be the primary

Use the version for optimistic"version": {
 key in DynamoDB.
locking (explained in the"N": "0"

following sidebar).},

www.itbook.store/books/9781617292880

http://localhost
https://itbook.store/books/9781617292880

347 Architecting a fault-tolerant web application: Imagery

The process is now in
the created state:
this attribute will

change when state
transitions happen.

"state": {

"S": "created"
 The DynamoDB table

will be created later}

in the chapter.},

"TableName": "imagery-image",

"ConditionExpression": "attribute_not_exists(id)"

}, function(err, data) {

Prevents the item from being

throw err;
 replaced if it already exists.
} else {

Responds
with the }

response.json({"id": id, "state": "created"});

process ID });
});

A new process can now be created.

Optimistic locking
To prevent multiple updates to a DynamoDB item, you can use a trick called optimistic
locking. When you want to update an item, you must tell which version you want to
update. If that version doesn’t match the current version of the item in the database,
your update will be rejected.

Imagine the following scenario. An item is created in version 0. Process A looks up
that item (version 0). Process B also looks up that item (version 0). Now process A
wants to make a change by invoking the updateItem operation on DynamoDB. There
fore process A specifies that the expected version is 0. DynamoDB will allow that
modification because the version matches; but DynamoDB will also change the
item’s version to 1 because an update was performed. Now process B wants to make
a modification and sends a request to DynamoDB with the expected item version 0.
DynamoDB will reject that modification because the expected version doesn’t match
the version DynamoDB knows of, which is 1.

To solve the problem for process B, you can use the same trick introduced earlier:
retry. Process B will again look up the item, now in version 1, and can (you hope)
make the change.

There’s one problem with optimistic locking: if many modifications happen in parallel,
a lot of overhead is created because of many retries. But this is only a problem if you
expect a lot of concurrent writes to a single item, which can be solved by changing
the data model. That’s not the case in the Imagery application. Only a few writes are
expected to happen for a single item: optimistic locking is a perfect fit to make sure
you don’t have two writes where one overrides changes made by another.

The opposite of optimistic locking is pessimistic locking. A pessimistic lock strategy
can be implemented by using a semaphore. Before you change data, you need to lock
the semaphore. If the semaphore is already locked, you wait until the semaphore be
comes free again.

The next route you need to implement is to look up the current state of a process.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

348 CHAPTER 13 Designing for fault-tolerance

User sends a GET Node.js code Get an item from
/image/:id request is executed. DynamoDB table.

User ELB EC2 DynamoDB

Instances running in

auto-scaling group

ELB distributes

request to one of

the EC2 instances

Figure 13.12 Looking up an image process in Imagery to return its state

LOOKING UP AN IMAGERY PROCESS

You’ll now add a route to the Express application to handle GET /image/:id requests.
Figure 13.12 shows the request flow.

Express will take care of the path parameter :id by providing it within request
.params.id. The implementation needs to get an item from DynamoDB based on the
path parameter ID.

Listing 13.3 Imagery server: GET /image/:id looks up an image process

function mapImage(item) {

return {

"id": item.id.S,

"version": parseInt(item.version.N, 10),

Helper function to map
a DynamoDB result to a
JavaSscript object

"state": item.state.S,

"rawS3Key": [...]

"processedS3Key": [...]

"processedImage": [...]

};

};

function getImage(id, cb) {

db.getItem({

"Key": {

"id": {

"S": id

}

},

"TableName": "imagery-image"

}, function(err, data) {

if (err) {

Invokes the
getItem operation
on DynamoDB

id is the primary
hash key.

www.itbook.store/books/9781617292880

http:params.id
https://itbook.store/books/9781617292880

349 Architecting a fault-tolerant web application: Imagery

cb(err);

} else {

if (data.Item) {

cb(null, mapImage(data.Item));

} else {

cb(new Error("image not found"));

}

}

});
 Registers the
route with
Express

}

app.get('/image/:id', function(request, response) {

getImage(request.params.id, function(err, image) {

if (err) {

throw err;

} else {

response.json(image);
 Responds with the
}
 image process

});

});

The only thing missing is the upload part, which comes next.

UPLOADING AN IMAGE

Uploading an image via POST request requires several steps:

1 Upload the raw image to S3.

2 Modify the item in DynamoDB.

3 Send an SQS message to trigger processing.

Figure 13.13 shows this flow.

User sends a POST Process state
/image/:id/upload Node.js code is updated in
request. is executed. DynamoDB.

User ELB EC2 S3 DynamoDB SQS
Instances running in
auto-scaling group

ELB distributes Raw image is A SQS message
request to one of stored on S3. is sent to trigger
the EC2 instances. image processing

by a worker.

Figure 13.13 Uploading a raw image to Imagery and triggering image processing

www.itbook.store/books/9781617292880

http:getImage(request.params.id
https://itbook.store/books/9781617292880

350 CHAPTER 13 Designing for fault-tolerance

The following listing shows the implementation of these steps.

Listing 13.4 Imagery server: POST /image/:id/upload uploads an image

Creates a key for the S3 object
Invokes function uploadImage(image, part, response) {

putObject var rawS3Key = 'upload/' + image.id + '-' + Date.now();

on S3 s3.putObject({

"Bucket": process.env.ImageBucket,

"Key": rawS3Key,
 The S3 bucket name is passed in

as an environment variable (the"Body": part,
 body is the
uploaded

stream of data.

Updates the
state, version,

and raw S3 key

bucket will be created later in"ContentLength": part.byteCount

the chapter).}, function(err, data) {

if (err) {

throw err;

} else {

db.updateItem({
 Invokes updateItem

"Key": {
 on DynamoDB
"id": {

"S": image.id

}

},

"UpdateExpression": "SET #s=:newState,

➥ version=:newVersion, rawS3Key=:rawS3Key",

"ConditionExpression": "attribute_exists(id)

➥ AND version=:oldVersion
➥ AND #s IN (:stateCreated, :stateUploaded)",

"ExpressionAttributeNames": {
 Updates only when item

"#s": "state"
 exists. Version equals the
},
 expected version, and state
"ExpressionAttributeValues": {
 is one of those allowed.

":newState": {

"S": "uploaded"

},

":oldVersion": {

"N": image.version.toString()

},

":newVersion": {

"N": (image.version + 1).toString()

},

":rawS3Key": {

"S": rawS3Key

},

":stateCreated": {

"S": "created"

},

":stateUploaded": {

"S": "uploaded"

}

},

"ReturnValues": "ALL_NEW",

"TableName": "imagery-image"

}, function(err, data) {

if (err) {

www.itbook.store/books/9781617292880

http:image.id
http:image.id
https://itbook.store/books/9781617292880

351 Architecting a fault-tolerant web application: Imagery

throw err;
 Invokes sendMessage
} else {
 on SQS

sqs.sendMessage({

"MessageBody": JSON.stringify({

Message contains "imageId": image.id,

the process ID "desiredState": "processed"

 }),

Magic lines
to handle

uploads

"QueueUrl": process.env.ImageQueue,
 The queue URL is
}, function(err) {
 passed in as an

if (err) {
 environment
throw err;
 variable.

} else {

response.json(lib.mapImage(data.Attributes));

}

});

}

});

}

});
 Registers the route

}
 with Express

app.post('/image/:id/upload', function(request, response) {

getImage(request.params.id, function(err, image) {

if (err) {

throw err;

} else {

var form = new multiparty.Form();

form.on('part', function(part) {

uploadImage(image, part, response);

});

form.parse(request);

}

});

});

The server side is finished. Next you’ll continue to implement the processing part in
the Imagery worker. After that, you can deploy the application.

13.3.3 Implementing a fault-tolerant worker to consume SQS messages

The Imagery worker does the asynchronous stuff in the background: processing
images into sepia images while applying a filter. The worker handles consuming SQS
messages and processing images. Fortunately, consuming SQS messages is a common
task that’s solved by Elastic Beanstalk, which you’ll use later to deploy the application.
Elastic Beanstalk can be configured to listen to SQS messages and execute an HTTP
POST request for every message. In the end, the worker implements a REST API that’s
invoked by Elastic Beanstalk. To implement the worker, you’ll again use Node.js and
the Express framework.

SETTING UP THE SERVER PROJECT

As always, you need some boilerplate code to load dependencies, initial AWS end
points, and so on, as shown in the following listing.

www.itbook.store/books/9781617292880

http:getImage(request.params.id
http:image.id
https://itbook.store/books/9781617292880

352 CHAPTER 13 Designing for fault-tolerance

Listing 13.5 Initializing the Imagery worker (worker/worker.js)

var express = require('express');

var bodyParser = require('body-parser');
 Loads Node.js modules

(dependencies)var AWS = require('aws-sdk');

var assert = require('assert-plus');

var Caman = require('caman').Caman;

var fs = require('fs');

Creates a DynamoDB
endpointvar db = new AWS.DynamoDB({

"region": "us-east-1"

Creates an S3});

endpointvar s3 = new AWS.S3({

"region": "us-east-1"

});

Creates an Express
applicationvar app = express();

Registers a route forapp.use(bodyParser.json());

health checks that
returns an empty objectapp.get('/', function(request, response) {

response.json({});

});

Starts Express on a port defined
[...]
 by the environment variable

PORT, or defaults to 8080
app.listen(process.env.PORT || 8080, function() {

console.log("Worker started on port " + (process.env.PORT || 8080));

});

The Node.js module caman is used to create sepia images. You’ll wire that up next.

HANDLING SQS MESSAGES AND PROCESSING THE IMAGE

The SQS message to trigger the raw image processing is handled in the worker. Once a
message is received, the worker starts to download the raw image from S3, applies the
sepia filter, and uploads the processed image back to S3. After that, the process state
in DynamoDB is modified. Figure 13.14 shows the steps.

Raw image

Node.js code
is executed. Process state

is updated in
DynamoDB.

is downloaded
from S3.

S3

SQS EC2 S3 DynamoDB

Instances running in

auto-scaling group

Figure 13.14
Processing a raw im-A SQS message is sent to Sepia image is age to upload a se-trigger image processing stored on S3.

by a worker. pia image to S3

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

353 Architecting a fault-tolerant web application: Imagery

Instead of receiving messages directly from SQS, you’ll take a shortcut. Elastic Beanstalk,
the deployment tool you’ll use, provides a feature that consumes messages from a queue
and invokes a HTTP POST request for every message. You configure the POST request to be
made to the resource /sqs. The following listing shows the implementation.

Listing 13.6 Imagery worker: POST /sqs handles SQS messages

The implementation of processImage
isn’t shown here; you can find it in
the book’s source folder.

function processImage(image, cb) {

var processedS3Key = 'processed/' + image.id + '-' + Date.now() + '.png';

// download raw image from S3

// process image

// upload sepia image to S3

cb(null, processedS3Key);

}

function processed(image, request, response) {

processImage(image, function(err, processedS3Key) {

if (err) {

throw err;
} else {

db.updateItem({

Invokes the updateItem
operation on DynamoDB

"Key": {
"id": {

"S": image.id
}

},
Updates the state, version,
and processed S3 key

"UpdateExpression": "SET #s=:newState,

➥ version=:newVersion, processedS3Key=:processedS3Key",
"ConditionExpression": "attribute_exists(id)

➥ AND version=:oldVersion
➥ AND #s IN (:stateUploaded, :stateProcessed)",
"ExpressionAttributeNames": {

"#s": "state"

},

"ExpressionAttributeValues": {

":newState": {

"S": "processed"

},

":oldVersion": {

"N": image.version.toString()

},

":newVersion": {

"N": (image.version + 1).toString()

},

":processedS3Key": {

"S": processedS3Key

},

":stateUploaded": {

"S": "uploaded"

},

Updates only when an
item exists, version
equals the expected
version, and state is
one of those allowed

www.itbook.store/books/9781617292880

http:image.id
https://itbook.store/books/9781617292880

354 CHAPTER 13 Designing for fault-tolerance

":stateProcessed": {

"S": "processed"

}

},

"ReturnValues": "ALL_NEW",

"TableName": "imagery-image"

}, function(err, data) {

if (err) {

throw err;

Responds with the} else {

process’s new stateresponse.json(lib.mapImage(data.Attributes));

}

});

}

});

}

Registers the route
with Expressapp.post('/sqs', function(request, response) {

assert.string(request.body.imageId, "imageId");

assert.string(request.body.desiredState, "desiredState");

getImage(request.body.imageId, function(err, image) {

if (err) {

The implementation of getImage isthrow err;

the same as on the server.} else {

if (request.body.desiredState === 'processed') {

processed(image, request, response);
 Invokes the processed function if

} else {
 the SQS message’s desiredState
throw new Error("unsupported desiredState");
 equals “processed”.

}

}

});

});

If the POST /sqs route responds with a 2XX HTTP status code, Elastic Beanstalk consid
ers the message delivery successful and deletes the message from the queue. Other
wise the message is redelivered.

Now you can process the SQS message to process the raw image and upload a sepia
image to S3. The next step is to deploy all that code to AWS in a fault-tolerant way.

13.3.4 Deploying the application

As mentioned previously, you’ll use Elastic Beanstalk to deploy the server and the
worker. You’ll use CloudFormation to do so. This may sounds strange because you use
an automation tool to use another automation tool. But CloudFormation does a bit
more than deploy two Elastic Beanstalk applications. It defines the following:

■ S3 bucket for raw and processed images
■ DynamoDB table imagery-image
■ SQS queue and dead-letter queue
■ IAM roles for the server and worker EC2 instances
■ Elastic Beanstalk application for the server and worker

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

355 Architecting a fault-tolerant web application: Imagery

It takes quite a while to create that CloudFormation stack; that’s why you should do so
now. After you’ve created the stack, we’ll look at the template. After that, the stack
should be ready to use.

 To help you deploy Imagery, we created a CloudFormation template located at https:
//s3.amazonaws.com/awsinaction/chapter13/template.json. Create a stack based on
that template. The stack output EndpointURL returns the URL that can be accessed from
your browser to use Imagery. Here’s how to create the stack from the terminal:

$ aws cloudformation create-stack --stack-name imagery \

--template-url https://s3.amazonaws.com/\

awsinaction/chapter13/template.json \

--capabilities CAPABILITY_IAM

Now let’s look at the CloudFormation template.

DEPLOYING S3, DYNAMODB, AND SQS

The following CloudFormation snippet describes the S3 bucket, DynamoDB table,
and SQS queue.

Listing 13.7 Imagery CloudFormation template: S3, DynamoDB, and SQS

{

"AWSTemplateFormatVersion": "2010-09-09",

"Description": "AWS in Action: chapter 13",

"Parameters": {

"KeyName": {

"Description": "Key Pair name",

"Type": "AWS::EC2::KeyPair::KeyName",

"Default": "mykey"

}

S3 bucket for uploaded and},

processed images, with web"Resources": {

hosting enabled"Bucket": {

"Type": "AWS::S3::Bucket",

The bucket name contains"Properties": {

the account ID to make the"BucketName": {"Fn::Join": ["-",

name unique. ["imagery", {"Ref": "AWS::AccountId"}]]},

"WebsiteConfiguration": {

"ErrorDocument": "error.html",

"IndexDocument": "index.html"

}

DynamoDB table}

containing the},

image processes"Table": {

"Type": "AWS::DynamoDB::Table",

"Properties": {

"AttributeDefinitions": [{

"AttributeName": "id",

"AttributeType": "S"

The id attribute}],

is used as the"KeySchema": [{

primary hash key. "AttributeName": "id",

"KeyType": "HASH"

www.itbook.store/books/9781617292880

https://s3.amazonaws.com/awsinaction/chapter13/template.json
https://s3.amazonaws.com/awsinaction/chapter13/template.json
http:https://s3.amazonaws.com
https://itbook.store/books/9781617292880

356 CHAPTER 13 Designing for fault-tolerance

}],

"ProvisionedThroughput": {

"ReadCapacityUnits": 1,

"WriteCapacityUnits": 1

},

"TableName": "imagery-image"

}

},

"SQSDLQueue": {

"Type": "AWS::SQS::Queue",

"Properties": {

"QueueName": "message-dlq"

}

},

"SQSQueue": {

"Type": "AWS::SQS::Queue",

"Properties": {

"QueueName": "message",

SQS queue that receives
messages that can’t be
processed

SQS queue to trigger
image processing

"RedrivePolicy": {
 If a message is received more
"deadLetterTargetArn": {"Fn::GetAtt":
 than 10 times, it’s moved to

 ["SQSDLQueue", "Arn"]},
 the dead-letter queue.
"maxReceiveCount": 10

}

}

},

[...]

Visit the output with
},
 your browser to use
"Outputs": {
 Imagery.
"EndpointURL": {

"Value": {"Fn::GetAtt": ["EBServerEnvironment", "EndpointURL"]},

"Description": "Load Balancer URL"

}

}

}

The concept of a dead-letter queue needs a short introduction here as well. If a single
SQS message can’t be processed, the message becomes visible again on the queue for
other workers. This is called a retry. But if for some reason every retry fails (maybe you
have a bug in your code), the message will reside in the queue forever and may waste
a lot of resources because of many retries. To avoid this, you can configure a dead-letter
queue (DLQ). If a message is retried more than a specific number of times, it’s removed
from the original queue and forwarded to the DLQ. The difference is that no worker lis
tens for messages on the DLQ. But you should create a CloudWatch alarm that triggers
if the DLQ contains more than zero messages because you need to investigate this prob
lem manually by looking at the message in the DLQ.

 Now that the basic resources have been designed, let’s move on to the more spe
cific resources.

IAM ROLES FOR SERVER AND WORKER EC2 INSTANCES

Remember that it’s important to only grant the privileges that are needed. All server
instances must be able to do the following:

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

357 Architecting a fault-tolerant web application: Imagery

■	 sqs:SendMessage to the SQS queue created in the template to trigger image
processing

■	 s3:PutObject to the S3 bucket created in the template to upload a file to S3
(you can further limit writes to the upload/ key prefix)

■	 dynamodb:GetItem, dynamodb:PutItem, and dynamodb:UpdateItem to the
DynamoDB table created in the template

■	 cloudwatch:PutMetricData, which is an Elastic Beanstalk requirement
■ s3:Get*, s3:List*, and s3:PutObject, which is an Elastic Beanstalk requirement

All worker instances must be able to do the following:

■	 sqs:ChangeMessageVisibility, sqs:DeleteMessage, and sqs:ReceiveMessage
to the SQS queue created in the template

■	 s3:PutObject to the S3 bucket created in the template to upload a file to S3
(you can further limit writes to the processed/ key prefix)

■	 dynamodb:GetItem and dynamodb:UpdateItem to the DynamoDB table created
in the template

■	 cloudwatch:PutMetricData, which is an Elastic Beanstalk requirement
■	 s3:Get*, s3:List*, and s3:PutObject, which is an Elastic Beanstalk requirement

If you don’t feel comfortable with IAM roles, take a look at the book’s code repository
on GitHub at https://github.com/AWSinAction/code. The template with IAM roles
can be found in /chapter13/template.json.

 Now it’s time to design the Elastic Beanstalk applications.

ELASTIC BEANSTALK FOR THE SERVER

Let’s have a short refresher on Elastic Beanstalk, which we touched on in section 5.3.
An Elastic Beanstalk consists of these elements:

■	 An application is a logical container. It contains versions, environments, and con
figurations. To use AWS Elastic Beanstalk in a region, you have to create an
application first.

■	 A version contains a specific version of your application. To create a new version,
you have to upload your executables (packed into an archive) to S3. A version is
basically a pointer to this archive of executables.

■	 A configuration template contains your default configuration. You can manage the
configuration of your application (such as the port your application listens on)
as well as the configuration of the environment (such as the size of the virtual
server) with your custom configuration template.

■	 An environment is the place where AWS Elastic Beanstalk executes your
application. It consists of a version and the configuration. You can run multiple
environments for one application by using the versions and configurations
multiple times.

Figure 13.15 shows the parts of an Elastic Beanstalk application.

www.itbook.store/books/9781617292880

https://github.com/AWSinAction/code
https://itbook.store/books/9781617292880

358 CHAPTER 13 Designing for fault-tolerance

Logical Specific version Runtime environment Configure application
container of application for your application and environment

Application

Environment:
Version 0.3, config A

Environment:
Version 0.3, config B

Version 0.3

Version 0.2

Configuration:
Template A

Configuration:
Template B

Environment:
Version 0.2, config A

Figure 13.15 An AWS Elastic Beanstalk application consists of versions, configurations, and en
vironments.

Now that you’ve refreshed your memory, let’s look at the Elastic Beanstalk application
that deploys the Imagery server.

Listing 13.8 Imagery CloudFormation template: Elastic Beanstalk for the server

Describes
the server

application
container

Minimum of
two EC2

instances for
fault-tolerance

Passes a value
 from the Key-

Name parameter

"EBServerApplication": {

"Type": "AWS::ElasticBeanstalk::Application",

"Properties": {

"ApplicationName": "imagery-server",

"Description": "Imagery server: AWS in Action: chapter 13"

}

},

"EBServerConfigurationTemplate": {

"Type": "AWS::ElasticBeanstalk::ConfigurationTemplate",

"Properties": {

"ApplicationName": {"Ref": "EBServerApplication"},

"Description": "Imagery server: AWS in Action: chapter 13",

"SolutionStackName":

 "64bit Amazon Linux 2015.03 v1.4.6 running Node.js",
 Uses Amazon
"OptionSettings": [{
 Linux 2015.03

"Namespace": "aws:autoscaling:asg",
 running Node.js
"OptionName": "MinSize",
 0.12.6
"Value": "2"

}, {

"Namespace": "aws:autoscaling:launchconfiguration",

"OptionName": "EC2KeyName",

"Value": {"Ref": "KeyName"}

}, {

"Namespace": "aws:autoscaling:launchconfiguration",

"OptionName": "IamInstanceProfile",

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

359 Architecting a fault-tolerant web application: Imagery

Links to the IAM
instance profile

created in the
previous section

"Value": {"Ref": "ServerInstanceProfile"}

}, {

"Namespace": "aws:elasticbeanstalk:container:nodejs",

"OptionName": "NodeCommand",

"Value": "node server.js"
 Start command

}, {

Passes the SQS
queue into an
environment

variable

Passes the S3
bucket into an

environment
variable

"Namespace": "aws:elasticbeanstalk:application:environment",

"OptionName": "ImageQueue",

"Value": {"Ref": "SQSQueue"}

}, {

"Namespace": "aws:elasticbeanstalk:application:environment",

"OptionName": "ImageBucket",

"Value": {"Ref": "Bucket"}

}, {

"Namespace": "aws:elasticbeanstalk:container:nodejs:staticfiles",

"OptionName": "/public",

"Value": "/public"
 Serves all files

}]
 from /public
}
 as static files

},

"EBServerApplicationVersion": {

"Type": "AWS::ElasticBeanstalk::ApplicationVersion",

"Properties": {

"ApplicationName": {"Ref": "EBServerApplication"},

"Description": "Imagery server: AWS in Action: chapter 13",

"SourceBundle": {

"S3Bucket": "awsinaction",

"S3Key": "chapter13/build/server.zip"
 Loads code from the

}
 book’s S3 bucket
}

},

"EBServerEnvironment": {

"Type": "AWS::ElasticBeanstalk::Environment",

"Properties": {

"ApplicationName": {"Ref": "EBServerApplication"},

"Description": "Imagery server: AWS in Action: chapter 13",

"TemplateName": {"Ref": "EBServerConfigurationTemplate"},

"VersionLabel": {"Ref": "EBServerApplicationVersion"}

}

}

Under the hood, Elastic Beanstalk uses an ELB to distribute the traffic to the EC2
instances that are also managed by Elastic Beanstalk. You only need to worry about the
configuration of Elastic Beanstalk and the code.

ELASTIC BEANSTALK FOR THE WORKER

The worker Elastic Beanstalk application is similar to the server. The differences are
highlighted in the following listing.

Listing 13.9 Imagery CloudFormation template: Elastic Beanstalk for the worker

"EBWorkerApplication": {

Describes the worker"Type": "AWS::ElasticBeanstalk::Application",

application container

"Properties": {

www.itbook.store/books/9781617292880

http:server.js
https://itbook.store/books/9781617292880

360 CHAPTER 13 Designing for fault-tolerance

"ApplicationName": "imagery-worker",

"Description": "Imagery worker: AWS in Action: chapter 13"

}

},

"EBWorkerConfigurationTemplate": {

"Type": "AWS::ElasticBeanstalk::ConfigurationTemplate",

"Properties": {

"ApplicationName": {"Ref": "EBWorkerApplication"},

"Description": "Imagery worker: AWS in Action: chapter 13",

"SolutionStackName":

 "64bit Amazon Linux 2015.03 v1.4.6 running Node.js",

"OptionSettings": [{

"Namespace": "aws:autoscaling:launchconfiguration",

"OptionName": "EC2KeyName",

"Value": {"Ref": "KeyName"}

}, {

"Namespace": "aws:autoscaling:launchconfiguration",

"OptionName": "IamInstanceProfile",

"Value": {"Ref": "WorkerInstanceProfile"}

}, {

"Namespace": "aws:elasticbeanstalk:sqsd",

"OptionName": "WorkerQueueURL",

"Value": {"Ref": "SQSQueue"}

}, {

"Namespace": "aws:elasticbeanstalk:sqsd",

"OptionName": "HttpPath",

"Value": "/sqs"

}, {

Configures the HTTP
resource that’s
invoked when an SQS
message is received

"Namespace": "aws:elasticbeanstalk:container:nodejs",

"OptionName": "NodeCommand",

"Value": "node worker.js"

}, {

"Namespace": "aws:elasticbeanstalk:application:environment",

"OptionName": "ImageQueue",

"Value": {"Ref": "SQSQueue"}

}, {

"Namespace": "aws:elasticbeanstalk:application:environment",

"OptionName": "ImageBucket",

"Value": {"Ref": "Bucket"}

}]

}

},

"EBWorkerApplicationVersion": {

"Type": "AWS::ElasticBeanstalk::ApplicationVersion",

"Properties": {

"ApplicationName": {"Ref": "EBWorkerApplication"},

"Description": "Imagery worker: AWS in Action: chapter 13",

"SourceBundle": {

"S3Bucket": "awsinaction",

"S3Key": "chapter13/build/worker.zip"

}

}

},

"EBWorkerEnvironment": {

"Type": "AWS::ElasticBeanstalk::Environment",

www.itbook.store/books/9781617292880

http:worker.js
https://itbook.store/books/9781617292880

361 Architecting a fault-tolerant web application: Imagery

"Properties": {

"ApplicationName": {"Ref": "EBWorkerApplication"},

"Description": "Imagery worker: AWS in Action: chapter 13",

"TemplateName": {"Ref": "EBWorkerConfigurationTemplate"},

"VersionLabel": {"Ref": "EBWorkerApplicationVersion"},

"Tier": {

"Type": "SQS/HTTP",
 Switches to the worker
environment tier (pushes"Name": "Worker",

SQS messages to your app)"Version": "1.0"

}

}

}

After all that JSON reading, the CloudFormation stack should be created. Verify the
status of your stack:

$ aws cloudformation describe-stacks --stack-name imagery

{

"Stacks": [{

[...]

"Description": "AWS in Action: chapter 13",

"Outputs": [{
 Copy this output into

"Description": "Load Balancer URL",
 your web browser.
"OutputKey": "EndpointURL",

"OutputValue": "awseb-...582.us-east-1.elb.amazonaws.com"

}],

"StackName": "imagery",

"StackStatus": "CREATE_COMPLETE"
 Wait until CREATE_COMPLETE

}]
 is reached.
}

The EndpointURL output of the stack is the URL to access the Imagery application.
When you open Imagery in your web browser, you can upload an image as shown in
figure 13.16.

 Go ahead and upload some images. You’ve created a fault-tolerant application!

Cleaning up
To find out your 12-digit account ID (878533158213), you can use the CLI:

$ aws iam get-user --query "User.Arn" --output text

arn:aws:iam::878533158213:user/mycli

Delete all the files in the S3 bucket s3://imagery-$AccountId (replace $AccountId
with your account ID) by executing

$ aws s3 rm s3://imagery-$AccountId --recursive

Execute the following command to delete the CloudFormation stack:

$ aws cloudformation delete-stack --stack-name imagery

Stack deletion will take some time.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

362	 CHAPTER 13 Designing for fault-tolerance

Figure 13.16 The Imagery application in action

13.4 Summary
■	 Fault-tolerance means to expect that failures happen. Design your systems in

such a way that they can deal with failure.
■	 To create a fault-tolerant application, you can use idempotent actions to trans

fer from one state to the next.
■	 State shouldn’t reside on the server (a stateless server) as a prerequisite for

fault-tolerance.
■	 AWS offers fault-tolerant services and gives you all the tools you need to create

fault-tolerant systems. EC2 is one of the few services that isn’t fault-tolerant out
of the box.

■	 You can use multiple EC2 instances to eliminate the single point of failure.
Redundant EC2 instances in different availability zones, started with an auto-
scaling group, are the way to make EC2 fault-tolerant.

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

SOFTWARE ENGINEERING

Amazon Web Services IN ACTION

Andreas and Michael Wittig

P
hysical data centers require lots of equipment and take
time and resources to manage. If you need a data center,
but don’t want to build your own, Amazon Web Services

may be your solution. Whether you’re analyzing real-time
data, building software as a service, or running an e-commerce
site, AWS offers you a reliable cloud-based platform with
services that scale.

Amazon Web Services in Action introduces you to computing,
storing, and networking in the AWS cloud. You’ll start with an
overview of cloud computing and then begin setting up your
account. You’ll learn how to automate your infrastructure by
programmatically calling the AWS API to control every part of
AWS. Next, you’ll learn options and techniques for storing
your data. You’ll also learn how to isolate your systems using
private networks to increase security. Finally, this book teaches
you how to design for high availability and fault tolerance.

What’s Inside
● Overview of cloud concepts and patterns
● Deploy applications on AWS
● Integrate Amazon’s pre-built services
● Manage servers on EC2 for cost-effectiveness

Written for developers and DevOps engineers moving distri
buted applications to the AWS platform.

Andreas Wittig and Michael Wittig are software engineers and
consultants focused on AWS and web development.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/amazon-web-services-in-action

M A N N I N G $49.99 / Can $57.99 [INCLUDING eBOOK]

“A confi dent, practical

guide through the maze

of the industry’s leading

cloud platform.”
 —From the Foreword

 by Ben Whaley

“Fantastic introduction to

cloud basics with excellent

 real-world examples.”

—Rambabu Posa, GL Assessment

“A very thorough and

practical guide to

everything AWS …

highly recommended.”
 —Scott M. King, Amazon

“Cuts through the vast

expanse of offi cial

documentation and gives

you what you need to make

AWS work now!”
 —Carm Vecchio, Computer

Science Corporation (CSC)

SEE INSERT

www.itbook.store/books/9781617292880

https://itbook.store/books/9781617292880

