
Using Arquillian, Hoverfly,
AssertJ, JUnit, Selenium,

and Mockito

Alex Soto Bueno
Andy Gumbrecht
Jason Porter

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

Testing Java Microservices

by Alex Soto Bueno,

Jason Porter,

and Andy Gumbrecht

Chapter 1

Copyright 2018 Manning Publications

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

1

2

3

4

5

6

7

8

9

10

brief contents

■ An introduction to microservices 1

■ Application under test 13

■ Unit-testing microservices 41

■ Component-testing microservices 64

■ Integration-testing microservices 100

■ Contract tests 128

■ End-to-end testing 164

■ Docker and testing 190

■ Service virtualization 233

■ Continuous delivery in microservices 244

1

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

An introduction
 to microservices

This chapter covers
 Why move toward a new microservice architecture?

 What microservices are today, and where the future
may lead

 The basic component makeup of a microservice

 Testing strategies

Traditional monolithic applications are deployed as a single package, usually as a
web or enterprise-archive file (WAR or EAR). They contain all the business logic
required to complete multiple tasks, often alongside the components required to
render the user interface (UI, or GUI for graphical user interface). When scaling, this
usually means taking a complete copy of that entire application archive onto a new
server node (basically, deploying it to another server node in a cluster). It doesn’t
matter where the load or bottleneck is occurring; even if it’s only in a small cross
section of the application, scaling this way is an all-or-nothing approach. Microser­
vices are specifically designed to target and change this all-or-nothing aspect by

1

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

2 CHAPTER 1 An introduction to microservices

allowing you to break your business logic into smaller, more manageable elements
that can be employed in multiple ways.

This book isn’t intended to be a tutorial on the varied microservice architectures
that are available today; we’ll assume you have some understanding of the subject.
Rather, we’re going to help you overcome the challenges involved in testing the com­
mon features that all microservice applications share. In order to do that, in this chap­
ter we’ll establish some common ground about what a microservice is, so that you can
relate to where we’re coming from when we discuss these topics in later chapters.

Shifting toward the ever-more-popular microservice architecture means you need
to adopt new strategies in development, testing, and restructuring/refactoring and
move away from some of the purely monolithic-application practices.

 Microservices offer you the advantage of being able to scale individual services,
and the ability to develop and maintain multiple services in parallel using several
teams, but they still require a robust approach when it comes to testing.

In this book, we’ll discuss various approaches for using this new, more focused way
of delivering tightly packaged “micro” services and how to resolve the complex testing
scenarios that are required to maintain stability across multiple teams. Later chapters
will introduce an example application and how to develop testing strategies for it; this
will help you better understand how to create your own test environments.

 You’ll see and use many features of the Arquillian test framework, which was spe­
cifically designed to tackle many of the common testing challenges you’ll face. An
array of mature extensions have been developed over the years, and although other
tools are available, Arquillian is our tool of choice—so expect some bias. That said,
Arquillian also provides close integration with many testing tools you may already be
familiar with.

A note about software versions
This book uses many different software packages and tools, all of which change peri­
odically. We tried throughout the book to present examples and techniques that
wouldn’t be greatly affected by these changes. All examples require Java 8, although
when we finished the book, Java 10 had been released. We haven’t updated the
examples because in terms of testing microservices, the release doesn’t add any­
thing new. Something similar is true for JUnit 5. All of the examples are written using
JUnit 4.12, because when we started writing the book, JUnit 5 wasn’t yet in develop­
ment. At the time we finished the book, not all of the frameworks explained here have
official support for JUnit 5, so we decided to skip updating the JUnit version. Other
libraries, such as Spring Boot and Docker (Compose), have evolved as well during the
development of the book, but none of these changes have a significant impact on
how to write tests.

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

3 What are microservices, and why use them?

1.1 What are microservices, and why use them?
In this section, we present what we believe is a reasonably good interpretation of the
currently available answers to these questions. What you learn will provide a solid basis
for understanding the microservice architecture, but expect innovation over time. We
won’t make any predictions: as stated, our principle focus for the book is testing
microservices, which is unlikely to change in any significant way.

 It isn’t important that you fully understand the microservice architecture at this
point. But if, after reading this chapter, the term microservice is still a dark void for you,
we encourage you to gather more information from your own sources.

TIP You may find it useful to join the open discussions at MicroProfile (http://
microprofile.io). This is an initiative by the likes of IBM, London Java Commu­
nity (LJC), RedHat, Tomitribe, Payara, and Hazelcast to develop a shared defi­
nition of Enterprise Java for microservices, with the goal of standardization.

1.1.1 Why use microservices?

Before we delve into the nature of microservices, let’s answer the “why” question. Until
recently, it’s been commonplace to develop monolithic applications, and that’s still per­
fectly acceptable for any application that doesn’t require scaling. The problem with
scaling any kind of monolithic application is straightforward, as shown in figure 1.1.
Microservices aren’t here to tell you that everything else is bad; rather, they offer an
architecture that is far more resilient than a monolith to changes in the future.

 Microservices enable you to isolate and scale smaller pieces of your application,
rather than the entire application. Imagine that you’ve extracted some core business
logic in your application to services A and B. Let’s say service A provides access to an
inventory of items, and B provides simple statistics. You notice that on average, service A

A monolithic application
packages everything together.

A

Scaling it adds a complete copy
to multiple nodes (servers).

B

A B

A B

A B A B

Figure 1.1 Scaling a monolithic application

www.itbook.store/books/9781617292897

http://microprofile.io
http://microprofile.io
http://microprofile.io
https://itbook.store/books/9781617292897

4 CHAPTER 1 An introduction to microservices

is called one million times per hour and service B is called only once per day. Scaling
a monolithic application would mean adding a new node with the application that
includes both services A and B.

 Wouldn’t it be better if you only needed to scale service A? This is where the poten­
tial of microservices becomes apparent: in the new architecture, shown in figure 1.2,
services A and B become microservices A and B. You can still scale the application, but
this additional flexibility is the point: you can now choose to scale where the load is
greatest. Even better, you can dedicate one team of developers to maintaining micro­
service A and another to microservice B. You don’t need to touch the application to
add features or fix bugs in either A or B, and they can also be rolled out completely
independently of each other.

The application calls services A and B.

A is under load.

B is not.

A

B

Scale A to distribute the load.

A

A

A

B Figure 1.2 Scaling a microservice
independently of the main application

Companies like Netflix, Google, Amazon, and eBay have based much of their plat­
forms on a microservice architecture, and they’ve all been kind enough to share
much of this information freely. But although considerable focus is placed on web
applications, you can apply a microservice architecture to any application. We hope
this whets your appetite!

1.1.2 What are microservices?

At first glance, the term micro may conjure up images of a tiny application with a small
footprint. But regarding application size, there are no rules, other than a rule of thumb.
A microservice may consist of several, several hundred, or even several thousand lines

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

5 What are microservices, and why use them?

of code, depending on your specific business requirements; the rule of thumb is to keep
the logic small enough for a single team to manage. Ideally, you should focus on a single
endpoint (which may in turn provide multiple resources); but again, there’s no hard­
and-fast rule. It’s your party.

 The most common concept is that a single application should be the uppermost
limit of a microservice. In the context of a typical application server running multiple
applications, this means splitting applications so they’re running on a single applica­
tion server. In theory, think of your first microservice as a single piece of a jigsaw puz­
zle, and try to imagine how it will fit together with the next piece.

 You can break a monolithic application into its logical pieces, as shown in figure 1.3.
There should be just enough information within each piece of the puzzle to enable you
to build the greater picture. In a microservice architecture, these pieces are much more
loosely coupled; see figure 1.4.

User
interface

Inventory
service

Persistence
service

Statistics
service

Images
service

Email
service

Figure 1.3 Each service
is part of the big picture.

User
interface

Inventory
service

Persistence
service

Statistics
service

Images
service

Email
service

Figure 1.4 Each
microservice is still
part of the picture
but is isolated
within a separate
environment.

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

6 CHAPTER 1 An introduction to microservices

1.1.3 Continuous integration, deployment, and Docker

The decoupling of application elements into scalable microservices means you’ll have
to start thinking about the continuous integration (CI) and continuous delivery (CD) pipe­
lines from an early stage. Instead of one build script and one deployment, you’ll need
multiple independent builds that must be sewn together for integration testing and
deployment to different hosts.

 You’ll find that far less work is involved than you may think. This is largely due to
the fact that a microservice is, for all intents and purposes, an application like any
other. The only difference is that a microservice packages the application together
with its runtime environment. The easiest and most recognized way to do this today is
to create and deploy a microservice as a Docker image (www.docker.com).

NOTE Docker is the world’s leading software-containerization platform. If
you’re not sure what Docker is, then at some point please visit www.docker
.com and follow the “What is Docker?” tutorial. Don’t worry, though—we’ll
guide you through this pipeline when we put all the microservice elements
together toward the end of the book.

The heavyweight CI/CD contenders are Travis (https://travis-ci.org), Bamboo
(https://de.atlassian.com/software/bamboo), and Jenkins (https://jenkins.io). They
all provide great support for microservices and deployment pipelines for Docker
images; but in this book, we’ll use Jenkins, because it’s open source and has a huge
community. It’s not necessarily the easiest to use, but it offers by far the most features
via plugins. In chapter 8, we’ll highlight all the involved technologies in detail and
guide you through the development of a viable CI/CD pipeline.

1.2 Microservice networks and features
Microservices are loosely coupled, which leads to new questions. How are microservices
coupled, and what features does this architecture offer? In the following sections,
we’ll look at some answers. But for all intents and purposes, each microservice is iso­
lated by a network boundary.

1.2.1 Microservice networks

Microservices are most commonly integrated over a RESTful (Representational State
Transfer) API using HTTP or HTTPS, but they can be connected by anything that’s
considered a protocol to access an endpoint to a resource or function. This is a broad
topic, so we’re only going to discuss and demonstrate Java REST using JAX-RS.

TIP If you’re unfamiliar with RESTful web services using JAX-RS (https://
jax-rs-spec.java.net), now would be a good time to read up on these topics.

With this information, your initial ideas for microservices should be starting to take
form. Let’s continue with our earlier example. Microservice A, the inventory service, is
isolated by a network layer from the UI and from microservice B, the statistics service. B

www.itbook.store/books/9781617292897

https://jax-rs-spec.java.net
https://jax-rs-spec.java.net
https://jax-rs-spec.java.net
https://travis-ci.org
https://de.atlassian.com/software/bamboo
https://jenkins.io
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://itbook.store/books/9781617292897

7 Microservice networks and features

Hypermedia
Services should be developed with hypermedia in mind. This is the latest buzzword;
it implies that services should be self-documenting in their architecture, by providing
links to related resources in any response. Currently there’s no winner in this category,
and it would be unfair to start placing bets now, but you can take a look at the front
runners and make an educated guess: JSON-LD (http://json-ld.org), JSON Hypertext
Application Language (HAL, https://tools.ietf.org/html/draft-kelly-json-hal-08), Collec-
tion+JSON (https://github.com/collection-json/spec), and Siren (https://github
.com/kevinswiber/siren).

communicates with A to collect statistics using the defined request-and-response
protocols. They each have their own domain and external resources and are otherwise
completely separate from each other. The UI service is able to call both A and B to
present information in a human-readable form, a website, or a heavy client, as shown in
figure 1.5.

 Tests must be designed to cover comprehensively any and all interaction with
external services. It’s important to get this right, because network interaction will
always present its own set of challenges. We’ll cover this extensively in chapter 5.

 By now it should be clear that a microser­
vice can be large in terms of application
size, and that “micro” refers to the public-
facing surface area of the application.
Cloud space is cheap today, so the physical
size of a microservice is less relevant than in
the past.

 Another concern that we often hear
mentioned is, “What about network speed?”
Microservices are generally hosted in the
same local network, which is typically Giga­
bit Ethernet or better. So, from a client per­
spective, and given the ease of scaling
microservices, response times are likely to
be much better than expected. Again, don’t

UI
service

Service
A

Service
B

take our word for it; think of Netflix, Goo- Figure 1.5 Each service communicates by
gle, Amazon/AWS, and eBay. defined protocols.

1.2.2 Microservice features

In our example, both microservices A and B can be developed independently and
deployed by two entirely different teams. Each team only needs to understand the
resource-component layer of the microservice on which they’re working, rather than
the entire business-domain component. This is the first big win: development can be
much faster and easier to understand in the given context.

www.itbook.store/books/9781617292897

http://json-ld.org
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://github.com/collection-json/spec
https://github.com/kevinswiber/siren
https://github.com/kevinswiber/siren
https://github.com/kevinswiber/siren
https://itbook.store/books/9781617292897

Error
response

8 CHAPTER 1 An introduction to microservices

JavaScript Object Notation (JSON, www.json.org) and Extensible Markup Lan­
guage (XML, www.w3.org/XML) are the common resource languages, so it’s easy to
write clients for such services. Some cases may dictate a different approach, but the
basic scenarios remain essentially the same: the endpoints are accessible from a multi­
tude of devices and clients using defined protocols.

 Multiple microservices form a network of connected applications, where each indi­
vidual microservice can be scaled independently. Elastic deployment on the cloud is
now commonplace, and this enables an individual service to scale automatically up or
down—for example, based on load.

 Some other interesting benefits of microservices are improved fault isolation and
memory management. In a monolithic application, a fault in a single component can
bring down an entire server. With resilient

microservices, the larger part of the picture

will continue to function until the misbehav­
ing service issue is resolved. In figure 1.6, is

the statistics service really necessary for the

application to function as a whole, or can you

live without it for a while?

 Of course, as is the nature of all good

things, microservices have drawbacks.

Developers need to learn and understand the

complexities of developing a distributed

application, including how best to use IDEs,

which are often orientated toward monolithic
 Request to

resourcedevelopment. Developing use cases spanning

multiple services that aren’t included in

distributed transactions requires more

Figure 1.6 Resilient design using circuit
thought and planning than for a monolith. breakers
And testing is generally more difficult, at least
for the connected elements, which is why we
wrote this book.

1.3 Microservice architecture
The anatomy of a microservice can be varied,

as shown in figure 1.7, but design similarities

are bound to occur. These elements can be

grouped together to form the application-

component layers. It’s important to provide

test coverage at each layer, and you’ll likely

be presented with new challenges along the

way; we’ll address these challenges and offer

solutions throughout the book.

Incoming
request

Yes

No Yes

No

Is sleep time
completed?

Is circuit
closed?

Circuit breaker logical flow

Remote
resources

Persistence
ORM

Resource (REST API)

Business
domain

Figure 1.7 The basic microservice
components

www.itbook.store/books/9781617292897

https://www.json.org
https:www.w3.org/XML
https://itbook.store/books/9781617292897

9 Microservice architecture

 Let’s look at these microservice component layers from the top down.

NOTE A microservice should encapsulate and expose a well-defined area of
logic as a service. That doesn’t mean that you can’t allow interaction from
other systems by other means. For example, your service may expose spe­
cific documents that are stored in Elasticsearch (ES). In such a case, it’s per­
fectly legitimate for other applications to talk natively to ES in order to seed
the documents.

1.3.1 Resource component

Resources are responsible for exposing the service inter­
action via a chosen protocol. This interaction occurs

using mapped objects, usually serialized using JSON or

XML. These mapped objects represent the input and/or

output of the business domain. Sanitization of the incom-

Resource (REST API)

Figure 1.8 The resource
ing objects and construction of the protocol-specific component publicly exposes
response usually occur at this layer; see figure 1.8. the service.

NOTE Now that we’re here, it’s worth mentioning that the resource-component
layer is the layer that puts the micro in microservice.

For the rest of this book, and for the sake of simplicity, we’ll focus on the most com­
mon form of resource providers today: RESTful endpoints.1 If you aren’t familiar with
RESTful web services, please take the time to research and understand this important
topic.

1.3.2 Business-domain component

The business-domain component is the core focus of
your service application and is highly specific to the logi­
cal task for which the service is being developed. The
domain may have to communicate with various other ser­
vices (including other microservices) in order to calcu- Figure 1.9 The business-

Business
domain

domain component is your late a response or process requests to and from the
service’s business logic.

resource component; see figure 1.9.
A bridge is likely to be required between the domain component and the resource

component, and possibly the remote component. Most microservices need to commu­
nicate with other microservices at some point.

1.3.3 Remote resources component

This component layer is where your piece of the jigsaw puzzle may need to connect to
the next piece, or pieces, of the picture. It consists of a client that understands how to
send and receive resource objects to and from other microservice endpoints, which it

1 See “What Are RESTful Web Services?” in the Java EE 6 tutorial, http://mng.bz/fIa2.

www.itbook.store/books/9781617292897

http://mng.bz/fIa2
https://itbook.store/books/9781617292897

10 CHAPTER 1 An introduction to microservices

then translates for use in the business component layer; see

figure 1.10.

 Due to the nature of remote resources, you must pay

special attention to creating a resilient design. A resilient

framework is designed to provide features such as circuit

breakers and timeout fallbacks in the event of a failure.

Remote
resources

Figure 1.10 The remote
Don’t try to reinvent the wheel: several resilient frame- resources component is the

gateway to other services. works are available to choose from, including our top pick,
Hystrix (https://github.com/Netflix/Hystrix/wiki), which is open source and con­
tributed by Netflix.

 A gateway service should act as a bridge between the domain component and the
client component. It’s responsible for translating request-and-response calls to and
from any remote resource via the client. This is the best place to provide a graceful
failure if the resource can’t be reached.

 The client is responsible for speaking the language of your chosen protocol. Nine
times out of ten, this will be JAX-RS (https://jax-rs-spec.java.net) over HTTP/S for
RESTful web services.

 We highly recommend the open source services framework Apache CXF
(http://cxf.apache.org) for this layer, because it’s fully compliant with JAX-WS, JAX­
RS, and others, and it won’t tie you down to a specific platform.

1.3.4 Persistence component

More often than not, an application requires some type

of persistence or data retrieval (see figure 1.11). This

usually comes in the form of an object-relational map­
ping (ORM)2 mechanism, such as the Java Persistence

API (JPA),3 but could be something as simple as an

embedded database or properties file.

Persistence
ORM

Figure 1.11 The persistence
component is for data storage.

1.4 Microservice unit testing
Chapter 3 will take a deep dive into real unit-testing scenarios. The next few para­
graphs are an introduction to the terminology we’ll use and what to expect as you
develop your testing strategies.

 A typical unit test is designed to be as small as possible and to test a trivial item: a
unit of work. In the microservice context, this unit of work may be more difficult to rep­
resent, due to the fact that there’s often much more underlying complexity to the ser­
vice than is apparent at first glance.

 Unit testing can often lead to the conclusion that you need to refactor your code
in order to reduce the complexity of the component under test. This also makes test­
ing useful as a design tool, especially when you’re using test-driven development

2 See “Hibernate ORM: What Is Object/Relational Mapping?” http://hibernate.org/orm/what-is-an-orm.
3 See “Introduction to the Java Persistence API” in the Java EE 6 tutorial, http://mng.bz/Cy69.

www.itbook.store/books/9781617292897

http://hibernate.org/orm/what-is-an-orm
http://mng.bz/Cy69
http://cxf.apache.org
https://github.com/Netflix/Hystrix/wiki
https://jax-rs-spec.java.net
https://itbook.store/books/9781617292897

11 Microservice unit testing

(TDD). A beneficial side effect of unit testing is that it lets you continue developing an
application while detecting regressions at the same time.

 Although you’re likely to encounter more-detailed scenarios along the way, there
are basically two styles of unit testing: sociable and solitary. These styles are loosely based
on whether the unit test is isolated from its underlying collaborators. Both styles are
nonexclusive, and they complement each other nicely. You should count on using
both, depending on the nature of the testing challenge. We’ll expand on these con­
cepts throughout the book.

1.4.1 Solitary unit tests

Solitary unit testing should focus on the interaction

around a single object class. The test should encom­
pass only the class’s own dependents or dependen­
cies on the class. You’ll usually test resource,

persistence, and remote components using solitary

tests, because those components rarely need to col­
laborate with each other; see figure 1.12.

 You need to isolate individual classes for testing

by stubbing or mocking all collaborators within that

class. You should test all the methods of the class,

but not cross any boundaries to other concrete

classes. Basically, this means all injected fields

should receive either a mock or stubbed implemen-

Remote
resources

Persistence
ORM

Resource (REST API)

Figure 1.12 Predominantly solitary
tation that only returns canned responses. The pri- unit-test components

mary aim is for the code coverage of the class under
test to be as high as possible.

1.4.2 Sociable unit tests

Sociable unit testing focuses on testing the behavior of

modules by observing changes in their state. This

approach treats the unit under test as a black box

tested entirely through its interface. The domain com­
ponent is nearly always a candidate for sociable testing,
 Figure 1.13 Predominantly
because it needs to collaborate in order to process a sociable unit-test component

request and return a response; see figure 1.13.
 You may still need to stub or mock some complex collaborators of the class under

test, but this should be as far along as possible within the hierarchy of collaborating
objects. You shouldn’t only be testing that a specific class sends and receives correct
payloads, but also that the class collaborators are operating as expected within the
class. The test coverage should ideally include all models, variables and fields as well as
the class collaborators. It’s also important to test that the class can correctly handle
any response, including invalid responses (negative testing).

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

12	 CHAPTER 1 An introduction to microservices

Summary
 A microservice is a part of a monolithic application that has been dissected into

a smaller logical element.
 Microservices benefit your application by allowing targeted scaling and focused

development.
 Microservices offer a logical way to meet scalability requirements by providing

the ability to scale not only where performance is required, but also when.
 You can break monolithic applications into smaller elements that can be used

as microservices.
 Microservices allow several teams to focus on individual, nonconflicting tasks

that make up the bigger picture.
 Solitary unit tests are used for components that don’t store state or don’t need

to collaborate in order to be tested.
 Sociable unit tests are used for components that must collaborate or store state

in order to be tested.

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

SOFTWARE DEVELOPMENT/JAVA

Testing Java Microservices

Soto Bueno ● Gumbrecht ● Porter

M
icroservice applications present special testing chal­
lenges. Even simple services need to handle unpredict­
able loads, and distributed message-based designs pose

unique security and performance concerns. These challenges
increase when you throw in asynchronous communication
and containers.

Testing Java Microservices teaches you to implement unit and
integration tests for microservice systems running on the JVM.
You’ll work with a microservice environment built using Java
EE, WildFly Swarm, and Docker. You’ll advance from writ­
ing simple unit tests for individual services to more-advanced
practices like chaos or integration tests. As you move towards
a continuous-delivery pipeline, you’ll also master live system
testing using technologies like the Arquillian, Wiremock, and
Mockito frameworks, along with techniques like contract
testing and over-the-wire service virtualization. Master these
microservice-specific practices and tools and you’ll greatly
increase your test coverage and productivity, and gain confi ­
dence that your system will work as you expect.

What’s Inside
● Test automation
● Integration testing microservice systems
● Testing container-centric systems
● Service virtualization

Written for Java developers familiar with Java EE, EE4J,
Spring, or Spring Boot.

Alex Soto Bueno and Jason Porter are Arquillian team members.
Andy Gumbrecht is an Apache TomEE developer and PMC.
They all have extensive enterprise-testing experience.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/testing-java-microservices

M A N N I N G $44.99 / Can $59.99 [INCLUDING eBOOK]

See first page

“A great and invaluable

gallery of test solutions,

descriptions, and examples.”
 —Gualtiero Testa, Factor-y

“Covers the full

spectrum of microservice-

testing techniques.

An indispensable book.”
 —Piotr Gliniewicz

netPR.pl

“Thorough explanations.

 Concrete examples.

 Real-world technology.
—Ethan Rivett, Powerley ”

“A beacon of light for
 Java developers.” —Yagiz Erkan, Motive Retail

www.itbook.store/books/9781617292897

http:netPR.pl
https://itbook.store/books/9781617292897

