
Using Arquillian, Hoverfly,
AssertJ, JUnit, Selenium,

and Mockito

Alex Soto Bueno
Andy Gumbrecht
Jason Porter

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

Testing Java Microservices

by Alex Soto Bueno,

Jason Porter,

and Andy Gumbrecht

Chapter 9

Copyright 2018 Manning Publications

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

1

2

3

4

5

6

7

8

9

10

brief contents

■ An introduction to microservices 1

■ Application under test 13

■ Unit-testing microservices 41

■ Component-testing microservices 64

■ Integration-testing microservices 100

■ Contract tests 128

■ End-to-end testing 164

■ Docker and testing 190

■ Service virtualization 233

■ Continuous delivery in microservices 244

1

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

Service virtualization

This chapter covers
 Appreciating service virtualization

 Simulating internal and external services

 Understanding service virtualization and Java

In a microservices architecture, the application as a whole can be composed of
many interconnected services. These services can be either internal services, as in
members of the same application domain, or external, third-party services that are
totally out of your control.

 As you’ve seen throughout the book, this approach implies that some changes
are required when continuous application testing is part of your delivery pipeline.
Back in chapter 7, we observed that one of the biggest challenges faced when
testing a microservices architecture is having a clean test environment readily
available. Getting multiple services up, running, and prepared is no trivial task. It
takes time to prepare and execute tests, and it’s highly likely that you’ll end up with
several flaky tests—tests that fail not due to code issues, but because of a failures
within the testing environment. One of the techniques you can adopt to fix this is
service virtualization.

233

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

234	 CHAPTER 9 Service virtualization

9.1 What is service virtualization?
Service virtualization is a technique used to emulate the behavior of dependencies of
component-based applications. Generally speaking, in a microservices architecture,
these dependencies are usually REST API–based services, but the concept can also be
applied to other kinds of dependencies such as databases, enterprise service buses
(ESBs), web services, Java Message Service (JMS), or any other system that communi
cates using messaging protocols.

9.1.1 Why use service virtualization?

Following are several situations in which you might want to use service virtualization:

 When the current service (consumer) depends on another service (provider)
that hasn’t been developed yet or is still in development.

 When provisioning a new instance of the required service (provider) is difficult
or too slow for testing purposes.

 When configuring the service (provider) isn’t a trivial task. For example, you
might need to prepare a huge number of database scripts for running the tests.

 When services need to be accessed in parallel by different teams that have com
pletely different setups.

 When the provider service is controlled by a third party or partner, and you
have a rate-limited quota on daily requests. You don’t want to consume the
quota with tests!

 When the provider service is available only intermittently or at certain times of
the day or night.

Service virtualization can resolve all these challenges by simulating the behavior of the
required service. With service virtualization, you model and deploy a virtual asset that
represents the provider service, simulating the parts required for your test.

 Figure 9.1 shows the difference between provisioning a real environment and a vir
tualized one for running tests. On the left, you can see that writing a test for service A
requires that you boot up service B, including its database. At the same time, you
might also need to start transitive services such as services C and D. On the right side,
you can see that service B and all of its dependencies are replaced by a virtualized ver
sion that emulates the behavior of service B.

 It’s important to note that this diagram isn’t much different than the one you saw
when you learned about mocking and stubbing in chapter 3; but rather than simulat
ing classes, you’re simulating service calls. Streamlining that thought, you can imagine
service virtualization as mocking at the enterprise level.

 Service virtualization shouldn’t be used only for testing optimal path cases, but also
for testing edge cases, so that you test the entire application (negative testing). Some
times it’s difficult to test edge cases against real services. For example, you might want
to test how a client behaves with low-latency responses from the provider, or how it
acts when characters are sent with a different character encoding than expected.

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

235 What is service virtualization?

Real environment Virtualized service

Service C

Service A

Service B

Service D

HTTP call

HTTP call

HTTP call

SQL

DB

Service A Virtualized
service B

HTTP call

Figure 9.1 Real versus virtualized services

Think back to the Gamer application—you can’t ask igdb.com and youtube.com to
shut down their APIs for an afternoon while you perform negative testing. (Well, you
could, but don’t hold your breath waiting for an answer!) In such cases, it should be
apparent why service virtualization is so useful.

9.1.2 When to use service virtualization

The book has presented many different kinds of tests, from unit tests to end-to-end
tests. When is service virtualization useful?

 Unit tests—You’re unlikely to need service virtualization for unit tests. In 99% of
cases, using traditional mock, dummy, and stub techniques will be enough.

 Component tests—This is where service virtualization shines: you can test how
components interact with each other without relying on external services.

 Integration tests—By their nature, integration tests are run against real services.
In test cases, this might be a problem (such as edge cases, third-party services,
and so on), so you might opt for service virtualization.

 Contract tests—When testing a contract against a provider, you might need ser
vice virtualization to simulate dependencies of the provider service.

 End-to-end tests—By definition, end-to-end tests shouldn’t rely on service virtual
ization, because you’re testing against the real system. In some rare cases where
you relay on flaky third-party services, service virtualization might still be a via
ble solution.

As you can see, virtual assets are replaced by progressively more real services as you
move to more functional tests.

www.itbook.store/books/9781617292897

http:youtube.com
http:igdb.com
https://itbook.store/books/9781617292897

236	 CHAPTER 9 Service virtualization

 In chapter 4, we discussed the concept of simulating external services with Wire-
Mock. In this chapter, we’ll introduce a new tool called Hoverfly, which is designed spe
cifically for service virtualization.

9.2 Mimicking service responses with Hoverfly
Hoverfly (https://hoverfly.readthedocs.io) is an open source, lightweight, service-
virtualization proxy written in the Go programming language. It allows you to emulate
HTTP and HTTPS services. As you can see in fig
ure 9.2, Hoverfly starts a proxy that responds to
requests with stored (canned) responses. These

HTTP call
responses should be exactly the same as the ones the

real service would generate for the provided requests.

Service A Hoverfly proxyIf this process is performed correctly, and if the stored virtualizing
responses are accurate for the real service, Hoverfly service B

will mimic the real service responses perfectly, and
Figure 9.2 Hoverfly proxy

your tests will be accurate.

NOTE Hoverfly Java (https://hoverfly-java.readthedocs.io) is a Java wrapper
for Hoverfly that abstracts you away from the actual binary and API calls, and
also provides tight integration with JUnit. From this point on, when we talk
about Hoverfly, we mean the Java wrapper.

9.2.1 Hoverfly modes

Hoverfly has three working modes:

 Capture —Makes requests against real services as normal. Requests and responses
are intercepted and recorded by the Hoverfly proxy so they can be used later.

 Simulate—Returns simulated responses for the provided requests. Simulations
might be loaded from different kinds of sources such as files, classpath resources,
or URLs, or programmatically defined using the Hoverfly domain-specific lan
guage (DSL). This is the preferred mode for services under development.

 Capture or simulate—A combination of the other two modes. The proxy starts in
capture mode if the simulation file doesn’t exist, or in simulate mode other
wise. This mode is preferred when already developed services or third-party ser
vices are available.

Figure 9.3 shows a schema for capture mode:

1 A request is performed using a real service, which is probably deployed outside
of the machine where the test is running.

2 The Hoverfly proxy redirects traffic to the real host, and the response is
returned.

3 The Hoverfly proxy stores a script file for the matching request and response
that were generated by the real service interaction.

4 The real response is returned to the caller.

www.itbook.store/books/9781617292897

https://hoverfly.readthedocs.io
https://hoverfly-java.readthedocs.io
https://itbook.store/books/9781617292897

237 Mimicking service responses with Hoverfly

Hoverfly proxy

Service A Service B

External
network

Scripts Figure 9.3 Hoverfly capture mode

Figure 9.4 illustrates simulate mode:

1 A request is performed, but instead the call being routed to the real service, it’s
routed to the Hoverfly proxy.

2 The Hoverfly proxy checks the corresponding response script for the provided
request.

3 A canned response is replayed back to the caller.

Hoverfly proxy

Service A Service B

External
network

Scripts Figure 9.4 Hoverfly simulate mode

Hoverfly and JVM proxy settings
Hoverfly Java sets the network Java system properties to use the Hoverfly proxy. This
means if the client API you’re using to communicate with other services honors these
properties, you don’t need to change anything to work with Hoverfly. If that isn’t the
case, you need to set http.proxyHost, http.proxyPort, https.proxyHost, https
.proxyPort, and, optionally, http.nonProxyHosts to your client proxy configuration.

When this override is in place, all communication between the Java runtime and the
physical network (except localhost by default) will pass through the Hoverfly proxy.
For example, when using the okhttp client, which honors network system properties,
you might do this:

URL url = new URL("http", "www.myexample.com", 8080, "/" + name);

Request request = new Request.Builder().url(url).get().build();

final Response response = client.newCall(request).execute();

www.itbook.store/books/9781617292897

http:www.myexample.com
https://itbook.store/books/9781617292897

238 CHAPTER 9 Service virtualization

(continued)
Because the proxy settings are now overridden, the request is performed through the
Hoverfly proxy. Depending on the selected configuration mode, the request will either
be sent to www.myexample.com or simulated.

9.2.2 JUnit Hoverfly

Let’s look at some examples of how to use Hoverfly with JUnit.

JUNIT HOVERFLY SIMULATE MODE

Hoverfly comes in the form of a JUnit rule. You can use either @ClassRule for static
initialization, or @Rule for each test. We recommend using @ClassRule, to avoid the
overhead of starting the Hoverfly proxy for each test method execution. Here’s an
example:

import static io.specto.hoverfly.junit.core.SimulationSource.defaultPath;

import io.specto.hoverfly.junit.rule.HoverflyRule;

Reads simulation.json
from the default Hoverfly

@ClassRule
 resource path
public static HoverflyRule hoverflyRule = HoverflyRule

.inSimulationMode(defaultPath("simulation.json"));

Here, the Hoverfly proxy is started, and it then loads the simulation.json simulation
file from the default Hoverfly resource path, src/test/resources/hoverfly. After that,
all tests are executed, and the Hoverfly proxy is stopped.

 In addition to loading simulations from a file, you can specify request matchers
and responses using the DSL, as shown here:

import static io.specto.hoverfly.junit.core.SimulationSource.dsl;

import static io.specto.hoverfly.junit.dsl.HoverflyDsl.service;

import static io.specto.hoverfly.junit.dsl.ResponseCreators.success;

import static io.specto.hoverfly.junit.dsl.ResponseCreators.created;

import io.specto.hoverfly.junit.rule.HoverflyRule;

@ClassRule

Starts Hoverfly usingpublic static HoverflyRule hoverflyRule =

the DSL methodHoverflyRule.inSimulationMode(dsl(

service("www.myexample.com")

.post("/api/games").body("{\"gameId\": \"1\"}")
 Sets the host
.willReturn(created("http://localhost/api/game/1"))
 where the

connection is
to be made .get("/api/games/1")

Creates a
request and a
response for a
POST method

.willReturn(success("{\"gameId\":\"1\"\}", "application/json"))

));

Creates a request and a
response for a GET method

www.itbook.store/books/9781617292897

http:service("www.myexample.com
http:www.myexample.com
https://itbook.store/books/9781617292897

239 Mimicking service responses with Hoverfly

Request-field matchers
Hoverfly has the concept of request-field matchers, which let you use different kinds
of matchers in the DSL elements. Here’s an example:

Matches the URL using a wildcard
Matches the request path service(matches("www.*-test.com"))

that starts with /api/games/ .get(startsWith("/api/games/"))

.queryParam("page", any())

Matches the page query
parameter with any value

JUNIT HOVERFLY CAPTURE MODE

Starting Hoverfly in capture mode is the same as it is in simulate mode, but you use
inCaptureMode to indicate that you want to store the interaction:

Starts Hoverfly in@ClassRule

capture mode, and
records the result

public static HoverflyRule hoverflyRule

= HoverflyRule.inCaptureMode("simulation.json");

In this example, Hoverfly is started in capture mode. This effectively means the traffic
is redirected/routed to the real service, but now these interactions are recorded in a
file located by default at src/test/resources/hoverfly/simulation.json.

JUNIT HOVERFLY CAPTURE OR SIMULATE MODE

This mode is the combination of both previous modes, using capture mode if no pre
viously recorded file is present. The generated files can then be added to your version
control to complete the test case for others to use without the real service. Here’s an
example:

@ClassRule

public static HoverflyRule hoverflyRule

= HoverflyRule.inCaptureOrSimulationMode("simulation.json");

9.2.3 Configuring Hoverfly

Hoverfly ships with defaults that may work in all cases, but you can override them by pro
viding an io.specto.hoverfly.junit.core.HoverflyConfig instance to the previous
methods. For example, you can change the proxy port where the Hoverfly proxy is
started by setting inCaptureMode("simulation.json", HoverflyConfig.configs()
.proxyPort(8080)).

 By default, all hostnames are proxied, but you can also restrict this behavior to spe
cific hostnames. For example, configs().destination("www.myexample.com") con
figures the Hoverfly proxy to only process requests to www.myexample.com.

www.itbook.store/books/9781617292897

http:www.myexample.com
http:configs().destination("www.myexample.com
http:service(matches("www.*-test.com
https://itbook.store/books/9781617292897

240 CHAPTER 9 Service virtualization

 Localhost calls are not proxied by default. But if your provider service is running
on localhost, you can configure Hoverfly to proxy localhost calls by using configs()
.proxyLocalHost().

CONFIGURING SSL
If your service uses Secure Sockets Layer (SSL), Hoverfly needs to decrypt the mes
sages in order to persist them to a file in capture mode, or to perform the matching in
simulate mode. Effectively, you have one SSL connection between the client and the
Hoverfly proxy, and another between the Hoverfly proxy and the real service.

 To make things simple, Hoverfly comes with its own self-signed certificate that
must be trusted by your client. The good news is that Hoverfly’s certificate is trusted
automatically when you instantiate it.

 You can override this behavior and provide your own certificate and key using the
HoverflyConfig class: for example, configs().sslCertificatePath("ssl/ca.crt")
.sslKeyPath("ssl/ca.key"). Note that these files are relative to the classpath.

CONFIGURING AN EXTERNAL INSTANCE

It’s possible to configure Hoverfly to use an existing Hoverfly proxy instance. This sit
uation might arise when you’re using a Docker image hosting a Hoverfly proxy. Again,
you can configure these parameters easily by using the HoverflyConfig class: for
example, configs().remote().host("192.168.99.100").proxyPort(8081).

9.3 Build-script modifications
Now that you’ve learned about service virtualization and Hoverfly, let’s look at the
involved dependencies. Hoverfly requires only a single group, artifact, version (GAV)
dependency definition:

dependencies {

testCompile "io.specto:hoverfly-java:0.6.2"

}

This pulls in all the required transient dependencies to the test scope.

9.4 Using service virtualization for the Gamer application
As you’ve seen throughout the book, in the Gamer application, the aggregator service
communicates with three services to compose the final request to the end user with all
information about games, as shown in figure 9.5. Let’s write a component test for the
code that connects to the comments service.

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

241 Using service virtualization for the Gamer application

Figure 9.5 The aggregator service

In the following listing (code/aggregator/cp-tests/src/test/java/book/aggr/Com-
mentsGatewayTest.java), the comments service is deployed in (pre)production at
comments.gamers.com, and you’ll use capture or simulate mode so that initial
requests are sent to the real service. All subsequent calls will be simulated.

Listing 9.1 Testing the CommentsGateway class

public class CommentsGatewayTest {

@ClassRule

Instantiates thepublic static HoverflyRule hoverfly = HoverflyRule

Hoverfly rule .inCaptureOrSimulationMode("simulation.json"); /

@Test

public void shouldInsertComments()

throws ExecutionException, InterruptedException {

final JsonObject commentObject = Json.createObjectBuilder()

.add("comment", "This Game is Awesome").add("rate",

5).add("gameId", 1234).build();

final CommentsGateway commentsGateway = new CommentsGateway

Makes the ();

call to the commentsGateway.initRestClient("http://comments.gamers.com")

real host ;

final Future<Response>; comment = commentsGateway

.createComment(commentObject);

www.itbook.store/books/9781617292897

http:commentsGateway.initRestClient("http://comments.gamers.com
http:comments.gamers.com
https://itbook.store/books/9781617292897

242 CHAPTER 9 Service virtualization

final Response response = comment.get();
final URI location = response.getLocation();

}

assertThat(location).isNotNull();
final String id = extractId(location);
assertThat(id).matches("[0-9a-f]+");

Asserts that the
location is valid

The big difference between this and the other test cases is that the first time you run
this test, the request is sent to the comments service deployed at comments
.gamers.com via the Hoverfly proxy, and requests and responses are recorded. The
src/test/resources/hoverfly/simulation.json file is created because it doesn’t yet exist.
The next time you run the test, communication is still proxied through the Hoverfly
proxy, but because the file now exists, the canned responses are returned.

 In case you’re curious (we know you are), the recorded file looks like the next list
ing (src/test/resources/hoverfly/simulation.json).

Listing 9.2 Simulation file with canned responses

{

"data" : {

"pairs" : [{

"request" : {

"path" : {

"exactMatch" : "/comments"

},

"method" : {

"exactMatch" : "POST"

},

"destination" : {"exactMatch" : "comments.gamers.com"},

"scheme" : {

"exactMatch" : "http"

},

"query" : {"exactMatch" : ""},

"body" : {

"jsonMatch" : "{\"comment\":\"This Game is Awesome\",

\"rate\":5,\"gameId\":1234}"

}

},

"response" : {

"status" : 201,

"encodedBody" : false,

"headers" : {

"Content-Length" : ["0"],

"Date" : ["Thu, 15 Jun 2017 17:51:17 GMT"],

"Hoverfly" : ["Was-Here"],

"Location" : ["comments.gamers.com/5942c915c9e77c0001454df1"],

"Server" : ["Apache TomEE"]

}

}

}],

www.itbook.store/books/9781617292897

http:comments.gamers.com
https://itbook.store/books/9781617292897

Summary	 243

"globalActions" : {

"delays" : []

}

},

"meta" : {

"schemaVersion" : "v2"

}

}

Summary
 Service virtualization isn’t a substitute for contract tests but something to use

with them, mostly in provider-validation scenarios.
 Service virtualization is used for removing the flakiness of tests that depend on

external and potentially unreliable services.
 A virtual asset is the service you’re simulating.
 You can use service virtualization to emulate unfinished services in addition to

existing services, thus allowing rapid development in parallel teams.
 Hoverfly Java takes care of all network redirections and lets you get on with writ

ing the test.

www.itbook.store/books/9781617292897

https://itbook.store/books/9781617292897

SOFTWARE DEVELOPMENT/JAVA

Testing Java Microservices

Soto Bueno ● Gumbrecht ● Porter

M
icroservice applications present special testing chal
lenges. Even simple services need to handle unpredict
able loads, and distributed message-based designs pose

unique security and performance concerns. These challenges
increase when you throw in asynchronous communication
and containers.

Testing Java Microservices teaches you to implement unit and
integration tests for microservice systems running on the JVM.
You’ll work with a microservice environment built using Java
EE, WildFly Swarm, and Docker. You’ll advance from writ
ing simple unit tests for individual services to more-advanced
practices like chaos or integration tests. As you move towards
a continuous-delivery pipeline, you’ll also master live system
testing using technologies like the Arquillian, Wiremock, and
Mockito frameworks, along with techniques like contract
testing and over-the-wire service virtualization. Master these
microservice-specific practices and tools and you’ll greatly
increase your test coverage and productivity, and gain confi
dence that your system will work as you expect.

What’s Inside
● Test automation
● Integration testing microservice systems
● Testing container-centric systems
● Service virtualization

Written for Java developers familiar with Java EE, EE4J,
Spring, or Spring Boot.

Alex Soto Bueno and Jason Porter are Arquillian team members.
Andy Gumbrecht is an Apache TomEE developer and PMC.
They all have extensive enterprise-testing experience.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/testing-java-microservices

M A N N I N G $44.99 / Can $59.99 [INCLUDING eBOOK]

See first page

“A great and invaluable

gallery of test solutions,

descriptions, and examples.”
 —Gualtiero Testa, Factor-y

“Covers the full

spectrum of microservice-

testing techniques.

An indispensable book.”
 —Piotr Gliniewicz

netPR.pl

“Thorough explanations.

 Concrete examples.

 Real-world technology.
—Ethan Rivett, Powerley ”

“A beacon of light for
 Java developers.” —Yagiz Erkan, Motive Retail

www.itbook.store/books/9781617292897

http:netPR.pl
https://itbook.store/books/9781617292897

