
M A N N I N G

Claus Ibsen
Jonathan Anstey
FOREWORDS BY James Strachan
 AND Dr. Mark Little

SECOND EDITION

Bonus Chapter

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

Camel In Action
Second Edition

by Claus Ibsen
Jonathan Anstey

Chapter 20

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

vii

brief contents

Part 1 First steps... 1
1 ■	 Meeting Camel 3
2 ■	 Routing with Camel 27

Part 2 Core Camel... 73
3 ■	 Transforming data with Camel 75
4 ■	 Using beans with Camel 106
5 ■	 Enterprise integration patterns 146
6 ■	 Using components 194

Part 3 Developing and testing .. 239
7 ■	 Microservices 241
8 ■	 Developing Camel projects 306
9 ■	 Testing 343

10 ■	 RESTful web services 408

Part 4 Going further with Camel 467
11 ■	 Error handling 469
12 ■	 Transactions and idempotency 514
13 ■	 Parallel processing 562
14 ■	 Securing Camel 595

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

viiiviii brief contents

Part 5 Running and managing Camel 623
15 ■	 Running and deploying Camel 625
16 ■	 Management and monitoring 671

Part 6 Out in the wild .. 715
17 ■	 Clustering 717
18 ■	 Microservices with Docker and Kubernetes 752
19 ■	 Camel tooling 803

Bonus chapters
Available at https://www.manning.com/books/camel-in-action-second-edition
and in electronic versions of this book

20 ■	 Reactive Camel
21 ■	 Camel and the IoT by Henryk Konsek

www.itbook.store/books/9781617292934

https://www.manning.com/books/camel-in-action-second-edition
https://itbook.store/books/9781617292934

1

20Reactive Camel

This bonus online chapters covers
¡	First steps with Reactive Streams

¡	Using Reactive Streams with Camel

¡	Using Eclipse Vert.x with Camel

If you read this book in chronological order, you’ve been on a long journey. This is
the first of two bonus online- only chapters from the hands of Claus and Jonathan,
and this time we’ll keep it short. We have only two topics we want to bring to your
attention here at the end.

Apache Camel is a well- established project that’s been around for over a decade. A
decade in the IT industry is like half a lifetime for humans. Only recently has reactive
programming started to gain more interest, especially since Java 8 added support for
java.util.stream in its streaming API. Further interest may be spurred with the
upcoming Spring Framework 5, which now includes a reactive engine.

As for Apache Camel, the current architecture of Camel 2.x is based on a hybrid
routing engine that executes both blocking and nonblocking processing, depend-
ing on which EIPs and components are being used. The upcoming Camel 3.x
architecture is intended to be a dual engine comprising the current hybrid engine
and a new reactive engine based on a reactive event bus.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

2 chapter 20 Reactive Camel

The first half of this chapter presents a brief look at the new camel- reactive- streams
component that’s introduced in Camel 2.20. This component allows users to take
advantage of the reactive streaming APIs and work with the many Camel components.
The second half of this chapter is a personal story from Claus, who built a Vert.x appli-
cation that can simulate live football scores.

20.1 Using Reactive Streams with Camel
This section covers the new camel- reactive- streams component, which you can use to
integrate Camel with the Reactive Streams API (www.reactive- streams.org). This API
is a small standard specification for asynchronous stream processing. Java 9 comes
with the Flow API (java.util.concurrent.flow), which corresponds to the Reactive
Streams API.

20.1.1 Reactive Streams API

The API is composed of the following four interfaces:

¡	Publisher—A Publisher is a provider of a potentially unbounded number of
sequenced elements, publishing them according to the demand received from
its Subscribers.

¡	Subscriber—A Subscriber receives events from a Publisher.
¡	Processor—A Processor represents a processing stage, which is both a Sub-

scriber and a Publisher and obeys the contracts of both.
¡	Subscription—A Subscription represents a one- to- one lifecycle of a Sub-

scriber subscribing to a Publisher.

Because Reactive Streams is a specification, you need to use a library that implements
this specification. RxJava and Reactor Core are two widely used reactive programming
libraries that use Reactive Streams with back pressure included. This book presents
examples using those two libraries.

The Reactive Streams specification defines a model for back pressure, a way to ensure
that a fast publisher doesn’t overwhelm a slow subscriber. Back pressure provides resil-
ience by ensuring that all participants in a stream- based system participate in flow con-
trol to ensure a steady state of operation and graceful degradation.

20.1.2 Reactive flow control with back pressure

In an ideal situation, a publisher is able to push data to a subscriber as fast as possible,
and the subscriber is able to keep up. This isn’t the case in the real world we live in,
and it’s easy to imagine situations in which the subscriber can’t keep up and becomes
flooded with data. You could try to deal with this by having a buffer at the consumer
side with a reasonable capacity to store new data while the consumer is busy process-
ing. But this often mitigates only small bumps in the road. If the situation continues and
the producer remains faster than the consumer, the buffer will eventually run out of
capacity.

www.itbook.store/books/9781617292934

http://camel.apache.org/why-the-name-camel.html
http://camel.apache.org/why-the-name-camel.html
https://itbook.store/books/9781617292934

 3Using Reactive Streams with Camel

Okay, you could then choose a strategy to start dropping data if the buffer is full. For
example, you could choose to drop the oldest or the newest data. But that will result in
data loss, which often isn’t desirable.

What you need is a bidirectional flow of data. Data flows downstream from the pub-
lisher to the subscriber, and the subscriber sends a signal upstream to demand more
data. Figure 20.1 illustrates this principle.

Publisher
request = 3

Subscriber

Figure 20.1 The Publisher sends data to the Subscriber,
and the Subscriber requests more data from the
Publisher. Both events occur asynchronously.

When the publisher receives a demand from the subscriber, it’s free to publish new
data up to the number of elements requested. The bidirectional flow between the
publisher and the subscriber is asynchronous and guarantees the best possible flow
control.

The back pressure doesn’t terminate at the first publisher, as it may cascade fur-
ther up to upstream publishers. This follows one of the topics from the Reactive
Manifesto:

Back- pressure may cascade all the way up to the user, at which point responsiveness may
degrade, but this mechanism will ensure that the system is resilient under load, and
will provide information that may allow the system itself to apply other resources to help
distribute the load.

—www.reactivemanifesto.org/glossary#Back- Pressure

To better understand how the flow model between the Publisher and Subscriber
works, look at figure 20.2. The most interesting aspect in figure 20.2 is that the Sub-
scriber can request more data using the request(limit) method. Then the Publisher
sends data to the Subscriber up until that limit. At any time, the Subscriber can
request more data by calling the request(limit) method again.

You should also know that a Subscriber should subscribe to only one Publisher,
whereas a Publisher can have one or more Subscribers.

Okay, enough talk; let's get down to action.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

4 chapter 20 Reactive Camel

Subscriber

subscribe

onSubscribe

Publisher

request(3)

onNext

onNext

onNext

Subscription

20.1.3 First steps with Reactive Streams

To understand the gist of building reactive flows, we’ll start with a simple example:
we’ll take a set of words, apply a function, and then log each word. To make the example
as simple as possible, we’ll use a fixed set of words (not a continued stream), and the
reactive engine supports this by making it possible to create a Publisher that can do
only that. The following listing shows how this can be coded using RxJava as the reac-
tive engine.

Listing 20.1 Reactive flow takes the words that are uppercased and logged

Publisher<String> publisher = Flowable.just("Camel", "rocks",
 "streams", "as", "well");

Subscriber<String> subscriber = new DefaultSubscriber<>() {

 public void onNext(String w) {
 LOG.info(w.toUpperCase());
 }

 public void onError(Throwable throwable)
 }

 public void onComplete() {
 }
}

publisher.subscribe(subscriber);

Figure 20.2 The Subscriber subscribes to a
Publisher, which creates a Subscription. The
Subscriber will be signaled by the onSubscribe
callback when it has been successfully subscribed and the
Producer is ready to send data. The Subscriber then
requests how much data to receive. The Subscriber
receives each data message per the onNext callback up
until the number of elements requested.

1 Publisher
with only
these words

2 Creates
Subscriber

3 The callback
executed for each
new item

4 The callback
executed when
an error is
encountered

5 The callback
executed when the
stream ends

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 5Using Reactive Streams with Camel

The main entry to using Reactive Streams with RxJava is the io.reactivex.Flowable
class 1, where you can create a Publisher to stream from an array. The Subscriber is
created from the io.reactivex.subscribers.DefaultSubscriber class 2 that allows
you to define three callbacks (methods) to receive items and notifications from the
Publisher. The onNext callback 3 will be called once per every item of the stream.
The onError callback 4 will be called if an error occurs upstream. The onComplete
callback 5 will be called when the stream completes normally (for bounded streams,
like the one used in this example), to signal that no more items will be pushed down-
stream. In case of error, only the onError callback will be called, and onComplete will
be skipped.

In RxJava, subscribers shouldn’t be created explicitly using the DefaultSubscriber
class. Instead, callback functions and transformations are usually attached to a stream
using a flow DSL, as shown in the following listing.

Listing 20.2 Reactive flow using flow DSL

Publisher<String> publisher = Flowable.just("Camel", "rocks",
 "streams", "as", "well");

Flowable.fromPublisher(publisher)
 .map(w -> w.toUpperCase())
 .doOnNext(w -> LOG.info(w))
 .subscribe();

This Publisher is created the same way as in listing 20.1, from Flowable 1 to publish
just the given words from the array. The Subscriber is created using Flowable 2,
where you specify the Publisher to be used. You then want to uppercase each word,
which is done via the map function, where you can use Java 8 lambda style to call the
toUpperCase method 3. The flow then continues, where you want to run some code
that can log the word, as done in the doOnNext method 4. And finally, you call the
subscribe method 5, and the flow gets going.

When defining Reactive Streams using this kind of flow style, it may be more common
to set up the entire flow directly on one Flowable. The code from listing 20.2 can be
compacted to four lines of code:

Flowable.just("Camel", "rocks", "streams", "as", "well")
 .map(String::toUpperCase)
 .doOnNext(LOG::info)
 .subscribe();

You can find this example with the source code in chapter20/rx- java2, and you can try
the example using Maven:

mvn test -Dtest=FirstTest

1 Publisher
with only
these words

2 Defines a flow starting from the Publisher
3 Applies uppercase function
4 onNext logs the word
5 Subscribes

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

6 chapter 20 Reactive Camel

You can also find an equivalent example using the Reactor Core engine instead in the
chapter20/reactor-core directory, and you can try that example with the following:

mvn test -Dtest=FirstTest

The two examples are almost identical. When using Reactor Core, you use reactor.
core.publisher.Flux instead of io.reactivex.Flowable.

This was a good first test, but let’s move on to see how you can use Camel together
with Reactive Streams.

20.1.4 Using Camel with Reactive Streams

The reactive- streams component is a Camel component that allows you to use Camel as
a publisher or subscriber with your Reactive Streams. In this section, you’ll add Camel
to the previous example and then let Camel act as a publisher to send in the words to
the Reactive Streams. The following listing shows how this can be done.

Listing 20.3 Using Camel as a Publisher to send in words to the reactive flow

CamelContext camel = new DefaultCamelContext();
CamelReactiveStreamsService rsCamel = CamelReactiveStreams.get(camel);

camel.start();

Publisher<String> publisher = rsCamel.from("seda:words", String.class);

Flowable.fromPublisher(publisher)
 .map(w -> w.toUpperCase())
 .doOnNext(w -> LOG.info(w))
 .subscribe();

FluentProducerTemplate template = camel.createFluentProducerTemplate();
template.withBody("Camel").to("seda:words").send();
template.withBody("rocks").to("seda:words").send();
template.withBody("streams").to("seda:words").send();
template.withBody("as").to("seda:words").send();
template.withBody("well").to("seda:words").send();

To bridge Camel with Reactive Streams, you should get an instance of Camel-
ReativeStreamsService 1, whose lifecycle is controlled by the CamelContext2.
Camel can be used as Publisher from any of its 200+ components that can act as a
consumer. At first, it may sound confusing that a Reactive Streams Publisher is using
a Camel Consumer. The Publisher is the data sink where new data comes in, which is a
consumer in EIP terms and hence a Camel Consumer.

In this example, you want to receive data from the seda:words Camel endpoint 3.
Notice that you specify the type as String, which ensures that the Flowable builder 4
is able to use this as a Java generic, so that the compiler can accept the lambda code that
calls the toUpperCase method, because it knows it’s a String type. The last part of the

 Creates Reactive Camel 1

2 Starts Camel Creates Camel Publisher to
seda:words endpoint

3

4 Reactive flow

 Sends data using Camel 5

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 7Using Reactive Streams with Camel

example is to use Camel to send the words to the seda:words endpoint 5, which then
triggers the reactive flow.

You can find this example with the source code in chapter20/rx- java2, and you can
try the example using this Maven goal:

mvn test -Dtest=CamelFirstTest

using camel route as reactive streams publisher

When using Camel, you often use Camel routes, so let’s take a look at how to let
a Camel route be the data sink for a reactive flow. This time, let’s try numbers instead
of words and use a Camel route that has a continued stream of data, as shown here:

from("timer:number")
 .transform(simple("${random(0,10)}"))
 .log("Generated random number ${body}")
 .to("reactive- streams:numbers");

The Camel route is trivial, which starts from a timer that triggers once per second.
You then generate a random number between 0 and 9 (inclusive), which is sent to
the reactive- streams endpoint with the name numbers 1. This is a Camel end-
point from the camel- reactive- streams component, which you can use as bridge
between Camel and your reactive flows. The following listing shows the source
code with the reactive flow.

Listing 20.4 Reactive flow with a Publisher as data sink from Camel route

CamelReactiveStreamsService rsCamel = CamelReactiveStreams.get(context);

Publisher<Integer> numbers = rsCamel.fromStream("numbers",
 Integer.class);

Flowable.fromPublisher(numbers)
 .filter(n -> n > 5)

 .doOnNext(n -> log.info("Streaming big number {}", n))
 .subscribe();

To use Camel with reactive flows, you need to get an instance of CamelReativeStreams-
Service 1, which you use to create a Publisher from the stream with the name num-
bers of type Integer 2. Pay attention that numbers is the same name used in the
Camel route where data is being sent by the following:

.to("reactive- streams:numbers")

The reactive flow starts from the Publisher you created 3. This time, you want to
apply a filter that drops the low numbers so you carry only the big numbers 4. Each of
these big numbers is then logged 5. Finally, you start this flow by calling the subscribe
method 6.

1 Sends data to reactive- streams
endpoint

 Creates Reactive Camel 1

2 Publisher from
Camel reactive-
streams endpoint

3 Reactive flow
4 Filters for only big numbers

5 Logs the big
number

6 Subscribes

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

8 chapter 20 Reactive Camel

Reactive Streams operators
When using Reactive Streams with RxJava or Reactor Core, you have many operators
at your disposal to apply all kind of functions to filter, transform, combine, and merge
streams. In this chapter, you’ve used only a few of those operators. The ReactiveX web-
site lists all the operators: http://reactivex.io/documentation/operators.html.

You can try this example, provided in the chapter20/rx- java2 directory, with the
following:

mvn test -Dtest=CamelNumbersTest

using camel route as reactive streams subscriber

Now let’s try the opposite: letting a reactive flow publish streams with Camel acting
as the subscriber by receiving the data as input to a Camel route. The Camel route is
merely two lines of code:

from("reactive- streams:numbers")
 .log("Got number ${body}");

The reactive flow source code is shown in the following listing.

Listing 20.5 Reactive flow with Camel as a Subscriber

CamelReactiveStreamsService rsCamel = CamelReactiveStreams.get(context);

Flowable.just("3", "4", "1", "5", "2")

 .sorted(String::compareToIgnoreCase)

 .subscribe(rsCamel.streamSubscriber("numbers", String.class));

Yes, you’ve read it before: when you use Camel with Reactive Streams, you need to
get an instance of CamelReactiveStreamsService 1. To keep this example simple,
you let RxJava create a Publisher with just five numbers 2. Because the numbers are
unordered, you can apply a sort function 3. Then you create a Camel Subscriber
with the name numbers 4. The name of the stream is the name of the endpoint used
in the Camel route, for example:

from("reactive- streams:numbers")

You can try this example from the chapter20/rx- java2 directory by executing the fol-
lowing Maven goal:

mvn test -Dtest=CamelConsumeNumbersTest

So far, all the integration between Camel routes and reactive flows has used the
reactive- streams component. But regular Camel endpoints can also be used.

Creates Reactive Camel 1

2 Publisher that just sends
those five numbers

3 Sorts the numbers
 Subscriber from Camel
reactive- streams endpoint

4

www.itbook.store/books/9781617292934

http://camel.apache.org/download.html
http://camel.apache.org/download.html
https://itbook.store/books/9781617292934

 9Using Reactive Streams with Camel

using regular camel components in reactive flow

The last example we want to show you uses regular Camel endpoints in the reactive
flow. In this example, you’ll use the Camel file component as a sink for a reactive flow
and a Camel route as the subscriber. The following listing shows the source code.

Listing 20.6 Reactive flow with regular Camel endpoints and routes

Flowable.fromPublisher(rsCamel.from("file:target/inbox"))
 .doOnNext(e -> rsCamel.to("direct:inbox", e))

 .filter(e -> e.getIn().getBody(String.class).contains("Camel"))

 .subscribe(rsCamel.subscriber("direct:camel"));

from("direct:inbox")
 .log("Inbox ${header.CamelFileName}")
 .wireTap("mock:inbox");

from("direct:camel")
 .log("This is a Camel file ${header.name}")
 .to("mock:camel");

This time, the reactive flow seems more complicated the first couple of times you read
it. You start using reactive Camel to create a Publisher from a regular Camel file end-
point 1. From the reactive flow, you can make calls into Camel routes from within
the doOnNext function 2, where you can use Reactive Camel to publish to the Camel
route 5. Then you use the filter function 3 to include only files that contain the
text “Camel”. Finally, you let Camel be the Subscriber 4 by routing the data to the
specified Camel route 6.

You can try this example, found in the chapter20/rx- java2 directory, by running the
following:

mvn test -Dtest=CamelFilesTest

TIP You can find more examples from Apache Camel at https://github.com/
apache/camel/tree/master/examples/camel- example- reactive- streams.

Section 20.1.1 mentioned that one of the main goals of the Reactive Streams specification is
to define a model for back pressure. The following two sections show you how to configure
and control back pressure from a Camel reactive producer and consumer point of view.

20.1.5 Controlling back pressure from the producer side

When routing messages using Camel to an external subscriber, back pressure is by
default handled by an internal buffer that caches the Camel messages before deliver-
ing them to the reactive subscriber. If the subscriber is slower than the rate of messages,
the internal buffer may fill up and become too big. Such a situation must be avoided.

Publisher from Camel file endpoint 1

2 Calls Camel route from flow

 Filters out files
without Camel text

3

4 Subscriber from
Camel direct
endpoint

5 Camel route called
from flow

6 Camel route used by Subscriber

www.itbook.store/books/9781617292934

https://github.com/camelinaction/camelinaction2
https://itbook.store/books/9781617292934

10 chapter 20 Reactive Camel

For example, suppose you have the following Camel route:

from("jms:queue:inbox")
 .to("reactive- streams:inbox");

If the JMS queue contains a lot of messages and the reactive subscriber is too slow to
process the messages, the pending messages will keep piling up in an internal buffer
by the reactive-streams endpoint. That can potentially degrade the performance in the
JVM by taking up memory, or in the worst case, cause an out- of- memory error in the JVM
and cause the application to crash.

We’ve provided an example, shown in the following listing, with the source code
demonstrating a situation in which the subscriber is too slow, and pending messages are
piling up in the internal buffer.

Listing 20.7 Reactive flow without back pressure causing messages to fill up buffer

public void testNoBackPressure() throws Exception {
 CamelReactiveStreamsService rsCamel = CamelReactiveStreams.get(context);

 Publisher<String> inbox = rsCamel.fromStream("inbox", String.class);

 Flowable.fromPublisher(inbox)
 .doOnNext(c -> {
 log.info("Processing message {}", c);
 Thread.sleep(1000);
 })
 .subscribe();

 for (int i = 0; i < 200; i++) {
 fluentTemplate.withBody("Hello " + i)
 .to("seda:inbox?waitForTaskToComplete=Never").send();
 }

 Thread.sleep(250 * 1000L);
}

protected RoutesBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 public void configure() throws Exception {
 from("seda:inbox")
 .delay(100)
 .log("Camel routing to Reactive Streams: ${body}")
 .to("reactive- streams:inbox");
 }
 };
}

This example has been constructed so that we humans can follow what happens while
it runs; the reactive flow takes 1 second to process each message 1. Instead of sending
in hundreds of thousands of messages, you use a low limit of 200. That’s enough to
prove the point that those messages will stack up at the reactive buffer 4. The Camel
route also has a little delay 3 to allow us to better follow from the console output
what’s happening.

1 Reactive flow that
simulates a slow
subscriber

2 Sends in
200 messages
to queue

3 Camel route being
faster than the
subscriber

4 Messages will pile
up here at the
reactive buffer

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 11Using Reactive Streams with Camel

You can run the example from the chapter20/rx- java2 directory by executing the
following Maven goal:

mvn test -Dtest=CamelNoBackPressureTest

While the example runs, it outputs to the console, as shown here:

INFO NoBackPressureTest - Processing message Hello 20
INFO route1 - Camel routing to Reactive Streams: Hello 195
INFO route1 - Camel routing to Reactive Streams: Hello 196
INFO route1 - Camel routing to Reactive Streams: Hello 197
INFO route1 - Camel routing to Reactive Streams: Hello 198
INFO route1 - Camel routing to Reactive Streams: Hello 199
INFO NoBackPressureTest - Processing message Hello 21
INFO NoBackPressureTest - Processing message Hello 22

The interesting part of the output is highlighted in bold. Here you can see that Camel
has routed all 200 (0–199) messages to the Reactive Streams channel. And at this time,
the reactive flow is processing message number 21, which means that 200 – 21 – 1 = 178
messages are pending in the buffer. Now suppose you send 2,000 messages instead of
200; what would the situation be?

INFO route1 - Camel routing to Reactive Streams: Hello 1998
INFO route1 - Camel routing to Reactive Streams: Hello 1999
INFO NoBackPressureTest - Processing message Hello 205
INFO NoBackPressureTest - Processing message Hello 206

This time, there are 2,000 – 205 – 1 = 1,794 messages pending in the buffer. As expected,
the subscriber can’t keep pace with the publisher, and you could potentially cause the
JVM to become unstable with out- of- memory errors or degrade in performance.

TIP Runtime statistics about the Camel Reactive Streams are available from JMX.
Under the services folder, you can find the DefaultCamelReactiveStreams-
Service MBean, which has JMX operations that return the statistics in tabular
format.

adding back pressure

To avoid such problems, you can use back pressure to prevent dequeuing too many
messages from the JMS queue and instead try to keep a pace that’s more aligned with
the subscriber.

The strategy for back pressure that you can use in this example is to use Camel’s
ThrottlingInflightRoutePolicy in the Camel route, as shown in the following listing.

Listing 20.8 Reactive flow with back pressure using Camel route policy

public void configure() throws Exception {
 ThrottlingInflightRoutePolicy inflight =
 new ThrottlingInflightRoutePolicy();
 inflight.setMaxInflightExchanges(20);
 inflight.setResumePercentOfMax(25);

 from("seda:inbox").routePolicy(inflight)
 .delay(100)

1 Creates route policy

2 Configures policy

3 Uses policy in Camel route

www.itbook.store/books/9781617292934

http://maven.apache.org/download.html
https://itbook.store/books/9781617292934

12 chapter 20 Reactive Camel

 .log("Camel routing to Reactive Streams: ${body}")
 .to("reactive- streams:inbox");
}

To make the reactive flow and the Camel route in this listing flow with a similar pace, you
can use Camel’s route policy to suspend/resume the route to keep a maximum number
of inflight messages. Therefore, you create the ThrottlingInflightRoutePolicy

1, which is configured to limit at most 20 inflight messages 2 and resume again at
25 percent of the maximum (= 5 messages). In other words, the rate will be between 5
and 20 inflight messages. To use the policy, you must remember to configure it on the
route 3.

TIP You can find more information about the Camel route policy in chap-
ter 15, section 15.2.3.

You can run this example by executing the following Maven command:

cd chapter20/rx- java2
mvn test -Dtest=CamelInflightBackPressureTest

The following output is captured at a similar moment, when we ran the example with-
out back pressure:

INFO route1 - Camel routing to Reactive Streams: Hello 198
INFO route1 - Camel routing to Reactive Streams: Hello 199
INFO BackPressureTest - Processing message Hello 184
INFO BackPressureTest - Processing message Hello 185

This time, you can see that when the 200 messages have been routed by Camel, the
reactive flow is currently processing message 184. Only 15 (200 – 184 – 1 = 15) pending
messages are in the reactive buffer. This is because of the back pressure in use.

The following two outputs represent when the back pressure is in use by first sus-
pending the route and a little while later resuming the route:

INFO route1 - Camel routing to Reactive Streams: Hello 107
INFO route1 - Throttling consumer: 22 > 20 inflight exchange by

suspending consumer: SedaConsumer[seda://inbox]
INFO BackPressureTest - Processing message Hello 87
...
INFO BackPressureTest - Processing message Hello 102
INFO BackPressureTest - Processing message Hello 103
INFO route1 - Throttling consumer: 5 <= 5 inflight exchange by

resuming consumer: SedaConsumer[seda://inbox]
INFO BackPressureTest - Processing message Hello 104
INFO route1 - Camel routing to Reactive Streams: Hello 108

And when you run the example with 2,000 messages, you can see at the end of the test
that the back pressure works as if there are only 19 pending messages in the reactive
buffer:

INFO route1 - Camel routing to Reactive Streams: Hello 1998
INFO route1 - Camel routing to Reactive Streams: Hello 1999
INFO BackPressureTest - Processing message Hello 1980
INFO BackPressureTest - Processing message Hello 1981

www.itbook.store/books/9781617292934

http://repo1.maven.org/maven2
http://repo1.maven.org/maven2
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar
https://itbook.store/books/9781617292934

 13Using Reactive Streams with Camel

About using back pressure with the throttling route policy
Using ThrottlingInflightRoutePolicy as back pressure works by suspending and
resuming the Camel route. This works the best when the route is consuming messages
from a messaging system such as JMS, AMQP, or Kafka. But if the route is an HTTP ser-
vice, then the route suspending will cause the HTTP service to be unavailable and return
HTTP Status 503 to clients. That may not be desirable, and you should try to scale out
your applications in a cluster, as covered in chapters 17 and 18.

If a certain amount of data loss is acceptable, you can configure Camel to use a differ-
ent strategy than buffering every message.

using alternative back- pressure strategies

Table 20.1 lists the back- pressure strategies supported by Camel reactive-streams
component.

Table 20.1 Back- pressure strategies supported by Camel

Strategy Description

BUFFER Buffers all messages in an unbounded buffer. This is the default strategy.

LATEST Keeps only the latest message and drops all the others.

OLDEST Keeps only the oldest message and drops all the others.

So far, all the examples have been using the default BUFFER back- pressure strategy,
which is the first item in table 20.1. This strategy buffers the messages, which ensures
that no data loss occurs. But you learned about the potential danger if the publisher
produces messages faster than the downstream subscribers can process; this can cause
the JVM to consume more and more memory, degrade in performance, or eventu-
ally run out of memory. Camel supports alternative strategies if message loss can be
accepted, which is done by discarding messages from the buffer. When using the LATEST
or OLDEST strategy, the discarded messages will be removed from the buffer, and a
Reactive StreamsDiscardedException exception is thrown for each message. By
throwing the exception, you can use Camel to react and use its error handling to route
the message to a dead letter channel, or to log the message, or silently ignore it.

Let’s see an example in which you want to process only the latest message and silently
ignore the discarded messages. You can run this example from the chapter20/rx- java2
directory as follows:

mvn test -Dtest=CamelLatestBackPressureTest

The interesting output from running the example is highlighted here:

INFO route1 - Camel routing to Reactive Streams: Hello 193
INFO route1 - Camel routing to Reactive Streams: Hello 194
INFO LatestBackPressureTest - Processing message Hello 194
INFO route1 - Camel routing to Reactive Streams: Hello 195
INFO route1 - Camel routing to Reactive Streams: Hello 196

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

14 chapter 20 Reactive Camel

INFO route1 - Camel routing to Reactive Streams: Hello 197
INFO route1 - Camel routing to Reactive Streams: Hello 198
INFO route1 - Camel routing to Reactive Streams: Hello 199
INFO LatestBackPressureTest - Processing message Hello 199

As you can see, the reactive flow processes the latest message that was sent to the buf-
fer. All the other messages are discarded. To avoid causing every discarded message to
fail and have its stacktrace logged, you can use Camel’s error handler to handle the
ReactiveStreamsDiscardedException exception by adding the following line to
the Camel route:

onException(ReactiveStreamsDiscardedException.class).handled(true);

You can also use back pressure from the other side, the consumer side.

20.1.6 Controlling back pressure from the consumer side

When Camel consumes messages from a reactive publisher, it has back pressure
enabled out of the box. The Camel consumer allows by default at most 128 inflight
messages, which are used to determine the number of messages to request from the
publisher when requesting for more data. In other words, Camel will at most request
up to 128 messages from the publisher.

You can configure the maximum number of inflight messages as an option on the
endpoint:

from("reactive- streams:inbox?maxInflightExchanges=5")

The following listing shows the source code of an example using back pressure on the
consumer side.

Listing 20.9 Camel reactive consumer with back pressure

public void testConsumerBackPressure() throws Exception {
 CamelReactiveStreamsService rsCamel = CamelReactiveStreams.get(context);

 String[] inbox = new String[100];
 for (int i = 0; i < 100; i++) {
 inbox[i] = "Hello " + i;
 }

 Flowable.fromArray(inbox)
 .doOnRequest(n -> {
 log.info("Requesting {} messages", n);
 })
 .subscribe(rsCamel.streamSubscriber("inbox", String.class));

 Thread.sleep(10 * 1000L);
}

protected RoutesBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 public void configure() throws Exception {

1 Reactive flow

2 Logs every
request for
more data

 Camel reactive
subscriber

3

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 15Using Reactive Streams with Camel

 from("reactive- streams:inbox?maxInflightExchanges=5
 &concurrentConsumers=5")
 .delay(constant(10))
 .log("Processing message ${body}");
 }
 };
}

The example uses a reactive flow that publishes 100 messages 1. To be able to see when
Camel requests more data, you use doOnRequest to log the number of messages that were
requested 2. The flow then uses Camel as the subscriber 3 on the channel named inbox.
You can see how to create a Camel route that consumes from this channel 4. The con-
sumer has been configured with a maximum of five inflight messages. To speed up pro-
cessing, you’ve turned on concurrent consumers with a value of 5 also. This makes Camel
create a thread pool of five threads, each of which acts as a reactive subscriber and will
independently process the messages from the reactive channel. But they’ll collectively act
together under the limitations of the maximum inflight messages. Because those values
are the same, each consumer won’t exceed the maximum number of inflight messages.

The example, provided with the source code in the chapter20/rx- java2 directory,
runs using the following command:

mvn test -Dtest=CamelConsumerBackPressureTest

When running the example, you’ll notice the following from the output:

INFO CamelConsumerBackPressureTest - Requesting 5 messages
INFO route1 - Processing message Hello 0
INFO route1 - Processing message Hello 4
INFO route1 - Processing message Hello 3
INFO route1 - Processing message Hello 2
INFO route1 - Processing message Hello 1
INFO CamelConsumerBackPressureTest - Requesting 3 messages
INFO CamelConsumerBackPressureTest - Requesting 1 messages
INFO CamelConsumerBackPressureTest - Requesting 1 messages
INFO route1 - Processing message Hello 7
INFO CamelConsumerBackPressureTest - Requesting 1 messages
INFO route1 - Processing message Hello 5
INFO CamelConsumerBackPressureTest - Requesting 1 messages

As you can see, the output shows that Camel requests the maximum number of inflight
messages at first, and then as it runs the request, it drops down to one or three mes-
sages. Often only one message is requested. That’s because each consumer thread will
refill the buffer when it has processed the message. And because the thread has just
completed its own message, the buffer often has room for only one more message.

Doing frequent request(1) calls is generally a bad pattern, as this increases the
communication costs (chatty network). Therefore, Apache Camel from version 2.20
onward provides the exchangesRefillLowWatermark option, which is used as a thresh-
old to trigger when to request more data. The watermark is a percentage of the maxi-
mum inflight exchanges and has the default value of 0.25. Running the same example
as before with Camel 2.20 onward will demonstrate that Camel doesn’t perform any
request(1) calls anymore.

4 Camel reactive route

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

16 chapter 20 Reactive Camel

That’s all we could squeeze into this chapter about Camel, Reactive Streams, and
the Camel reactive-streams component. This fairly new addition to the Apache Camel
project is expected to be taken up by more Camel users when reactive applications start
to become more in use. We’ll come back to some more thoughts on this in the chapter
summary.

At this point, let’s move on to the second half of this chapter, which is devoted to
Vert.x.

20.2 Using Vert.x with Camel
On the Eclipse Vert.x website, the project describes itself as a toolkit for building reactive
applications on the JVM. This description has three important points.

First, as a toolkit, Vert.x isn’t an application server. Vert.x is just a JAR file (vertx-
core), so a Vert.x application is an application that uses this JAR file.

Second, Vert.x is reactive and adheres to the Reactive Manifesto (http://reactive-
manifesto.org), which is highlighted in the following four bullets:

¡	Responsive—A reactive system needs to handle requests in a reasonable amount
of time.

¡	Resilient—A reactive system must stay responsive in the face of failures, so it must
be designed with failure in mind.

¡	Elastic—A reactive system must stay responsive under various loads. Therefore, it
must be scalable.

¡	Message driven—Reactive systems rely on asynchronous messages passing between
its components. This establishes a boundary between components that ensures
loose coupling, isolation, and location transparency.

Finally, Vert.x applications run on the JVM, which means Vert.x applications can be
developed using any of the JVM languages such as Java, Groovy, Scala, Kotlin, Ceylon,
and JavaScript. The polyglot nature of Vert.x allows you to use the most appropriate
language for the task.

TIP If you’re new to Vert.x, we recommend the free book Building Reactive
Microservices in Java by Clement Escoffier, which you can download from https://
developers.redhat.com/promotions/building- reactive- microservices- in- java.
This book covers Apache Camel. But we want to give room for Vert.x in this book,
as it’s a great toolkit that becomes even greater when used together with Camel.

20.2.1 Building a football simulator using Vert.x

What follows next is a true event that happened in the life of Claus:
I hosted a Christmas party with seven of my old friends in December 2016. When

we were younger, from the late 90s to the mid 00s, we’d have these football weekends
to watch English football. During a football weekend, the state lottery company would
issue a football pool coupon with 13 games. One of these games was the TV game, and

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 17Using Vert.x with Camel

out of the remaining 12 games, each of us would select a game. We would then watch
the TV game as the other games were played at the same time. Whenever a goal was
scored in any of the games, it would be announced on TV with a bell sound. Our rules
were simple: if a goal was scored in the TV game, everyone would drink. If a goal was
scored in your game, you would drink (bottoms up). To keep the spirit of the old days,
a Manchester derby game from February 2004 was selected as the TV game. Figure 20.3
shows a screenshot of the game in action with the goal simulator on the right- hand side.

Figure 20.3 Football simulator playing the TV game with live goal scorer updates on the right

We had a great weekend playing this old game again. Manchester United won 4 to 2
with goals from Scholes and Ronaldo, and two from van Nistelrooy. That was the fun
part; now let’s talk about how to implement this using Vert.x.

the architecture

Figure 20.4 illustrates the key components in the architecture.

Games

Goals

websocket
HTML

JavaScript

Back end Front end

User
Vert.x

Figure 20.4 In the back end, the Vert.x application loads the games
and goals from disk. The front end is an HTML web application with
embedded JavaScript that uses WebSocket to communicate with the
Vert.x back end.

The back end is implemented as a Vert.x application using Java. Information about
the games and the goal scorers is stored in CSV files, which are loaded into the Vert.x
application upon startup. The front end is a HTML file with embedded JavaScript. The
JavaScript uses the Vert.x JavaScript client that handles all communication to the

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

18 chapter 20 Reactive Camel

back end via WebSocket. The entire application is packed together as a single fat JAR,
which can run as a Java application on the JVM.

The book’s source code contains this example in the chapter20/vertx directory. You
can try this by running the following Maven goal:

mvn compile vertx:run

Then open a web browser to http://localhost:8080.
The application is built using Java and HTML code with fascinating parts.

the Java code

You develop your Vert.x application in Java code in a verticle, which is deployed and
running in the Vert.x instance. The verticle is an abstract class that has start and stop
methods and easy access to the Vert.x instance itself.

The following listing shows the verticle for the football simulator.

Listing 20.10 Vert.x verticle for the football simulator

public class LiveScoreVerticle extends AbstractVerticle {

 public void start() throws Exception {
 Router router = Router.router(vertx);

 BridgeOptions options = new BridgeOptions()
 .addInboundPermitted(new PermittedOptions().setAddress("control"))
 .addOutboundPermitted(new PermittedOptions().setAddress("clock"))
 .addOutboundPermitted(new PermittedOptions().setAddress("games"))
 .addOutboundPermitted(new PermittedOptions().setAddress("goals"));

 router.route("/eventbus/*")
 .handler(SockJSHandler.create(vertx).bridge(options, event -> {
 if (event.type() == BridgeEventType.SOCKET_CREATED) {
 vertx.setTimer(500, h -> initGames());
 }
 event.complete(true);
 }));

 router.route().handler(StaticHandler.create());

 vertx.createHttpServer()
 .requestHandler(router::accept).listen(8080);

 initControls();
 streamLiveScore();
 }

This football simulator code shows how to build a Vert.x application as a verticle. The
LiveScoreVerticle class extends io.vertx.core.AbstractVerticle 1. In the start
method, you have the necessary code to start up, such as creating a Vert.x router for
HTTP and WebSocket 2. Then you set up allowed inbound and outbound commu-
nication 3 to the router with the following four event- bus addresses: control, clock,
games, and goals. The communication between the back end and front end uses

 The verticle is extending AbstractVerticle class 1

2 Create Vert.x router to set up
WebSocket and HTTP server

3 Allowed inbound and outbound
traffic on event bus

4 Route WebSocket to Vert.x event bus

5 A new WebSocket client is
connected, so initialize list
of games to client

6 Add static HTML resources
to Vert.x router

7 Vert.x router listen
on port 8080

8 Initialize game controls
and start live score
streams

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 19Using Vert.x with Camel

WebSocket, which you add to the router 4. Whenever a new client is connected, the
SOCKET_CREATED event is emitted to the back end, which triggers initialization of the
game list 5. The HTTP router is also used to service static content such as HTML
files 6 and is started by listening to port 8080 7. And finally, the game controls and
the goal score stream are started 8.

The LiveScoreVerticle class has more code to initialize the game list and react to
game control buttons pushed, game clock advances, and the actual stream of goals. For
example, the list of games is initialized as shown in the following listing.

Listing 20.11 Initializing the list of games

private void initGames() {
 try {
 InputStream is = LiveScoreVerticle.class.getClassLoader()
 .getResourceAsStream("games.csv");
 String text = IOHelper.loadText(is);
 Stream<String> games = Arrays.stream(text.split("\n"));
 games.forEach(game -> vertx.eventBus().publish("games", game));
 } catch (Exception e) {
 System.out.println("Error reading games.csv file");
 }

 if (clockRunning.get()) {
 vertx.eventBus().publish("clock", "" + gameTime.get());
 } else {
 vertx.eventBus().publish("clock", "Stopped");
 }
}

The list of games is stored in a CSV file that’s loaded 1. Each line in the CSV file is a
game that gets published to the Vert.x event bus at the game’s address 2. In addition,
the game clock state is published 3.

As you can see, it’s easy to send messages to the Vert.x event bus using the one- liner
code with the publish method 2. This is similar to Camel’s ProducerTemplate, which
also makes it easy in one line of code to send a message to any Camel endpoint. But
what if you want to consume a message instead? How can you do that from Vert.x?

The football simulator has buttons in the front end that control the game clock, so
the user can start and stop the clock. Each time the user clicks those buttons, a message
is sent from the front end to the back end using WebSocket on the Vert.x event bus. The
following code is all it takes in the back end to set up the consumer:

private void initControls() {
 vertx.eventBus().<String>consumer("control", h -> {

 String action = h.body();
 if ("start".equals(action)) {

 clockRunning.set(true);

1 Loads list of
games from
classpath

Publishes each
game to the
event bus

2

3 Publishes game
clock time

Sets up consumer on the Vert.x
event bus control address

1

2 The message body contains
action to perform

3 Either starts or stops the
game clock

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

20 chapter 20 Reactive Camel

 vertx.eventBus().publish("clock", "" + gameTime.get());
 } else if ("stop".equals(action)) {
 clockRunning.set(false);

 vertx.eventBus().publish("clock", "Stopped");
 }
 });
}

From the Vert.x event bus, you set up a consumer to listen on the address control 1,
and each message received triggers the handler (using Java 8 lambda style). A Vert.x
message also consists of a message body and headers, just like a Camel message. The
message body contains what button the user clicked 2, and you react accordingly to
either start or stop the game clock 3. You then publish the new state back so the web
page can react and update its display 4.

This was the key point from the Java code; let’s switch over to the wild west of front-
end programming with web frameworks and JavaScript. It’s fairly simple, certainly with
the Vert.x JavaScript client.

the html code

Vert.x allows you to embed web resources such as HTML and JavaScript files in the src/
main/resources/webroot folder. You have the following files in this folder:

├── bell.m4r
├── index.html
└── vertx- eventbus.js

The bell.m4r file is the bell audio that’s played when a goal is scored. The index.html
file is the HTML file that we’ll dive into in a moment. And the vertx- eventbus.js file is
the Vert.x JavaScript client.

The index.html file is a plain HTML file with embedded CSS styles and JavaScript. In
the <head> section, you set up Vert.x as follows:

<head>
 <title>Premier League 2004 Week 7 Livescores</title>
 <script src="https://code.jquery.com/jquery-1.11.2.min.js"></script>

 <script src="//cdn.jsdelivr.net/sockjs/0.3.4/sockjs.min.js"></script>

 <script src="vertx- eventbus.js"></script>
</head>

In this example, we’re using the popular JQuery JavaScript library. For WebSocket com-
munication, Vert.x uses SockJS, which provides fallbacks to a simulated WebSocket
communication if the web browser doesn’t support native WebSocket. The last script is
to include Vert.x itself.

In the <script> section, you set up the front end to connect to the Vert.x event bus,
as shown in the following listing.

 Publishes the new game clock state back to
the front end

4

3 Either starts or stops
the game clock

 Publishes the new game clock state
back to the front end

4

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 21Using Vert.x with Camel

Listing 20.12 Using Vert.x in the front end to handle events from the event bus

<script>
 var eb = new EventBus("/eventbus");

 eb.onopen = function () {

 eb.registerHandler("clock", function (err, msg) {
 document.getElementById("clock").innerHTML = msg.body;
 });

 eb.registerHandler("games", function (err, msg) {
 var arr = msg.body.split(',');
 var game = arr[0];
 var home = arr[1];
 var away = arr[2];

 // more code here not shown
 });

 eb.registerHandler("goals", function (err, msg) {
 if (msg.body === 'empty') {
 clearScorer();
 return;
 }

 playsound();

 // more code here not shown
 })
 };

To use the Vert.x event bus from JavaScript, you need to create a new event bus object
with the URL to the back end 1. Then the onopen method allows you to register han-
dlers that react when messages are sent to event- bus addresses. In this example, the
front end uses three addresses: when the game clock is updated 2, when the list of
games is initialized 3, and when a goal is scored 4.

For example, when the game clock is updated 2, the front end updates the HTML
page by setting innerHTML to the message body. The game clock is an HTML <div> ele-
ment, as shown here:

<div id="clock" class="clock"></div>

The source code in listing 20.12 has been abbreviated to not show the JavaScript code
that manipulates the HTML elements to update the website.

The source code is located in the chapter20/vertx directory. You can try running the
example using the following Maven goal:

mvn vertx:run

Then from a web browser, open http://localhost:8080.
The example has been accelerated, so you don’t have to wait the full 90 minutes for

the football game to end.

1 Connects to Vert.x
event bus

2 Reacts when the
game clock
changes

3 Reacts when
the game list is
updated

4 Reacts when a goal
is scored

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

22 chapter 20 Reactive Camel

If you’ve been sitting back and relaxing for a while as the goals are pouring in, you
may have been enlightened and noticed that the goal simulator isn’t using Camel at all.
Vert.x is surely an awesome toolkit for building small reactive microservices. But this
book is titled Camel in Action, so let’s update the simulator to use Camel with Vert.x.

20.2.2 Using Camel together with Vert.x

Vert.x and Camel are both small, lightweight toolkits that work well together. Fig-
ure 20.5 illustrates this principle, with Vert.x and Camel working together in the same
Vert.x application.

Games

Goals

websocket
HTML

JavaScript

Back end

Vert.x Application Front end

User
Camel Vert.x

Figure 20.5 Camel and Vert.x working together in the same Vert.x application
in the back end. The other parts of the architecture are unchanged.

To use Camel with Vert.x, you need to add camel- core and camel- vertx dependencies
to the Maven pom.xml file. In the Vert.x application, you add Camel to the verticle
class, as shown in the following listing.

Listing 20.13 Adding Camel to a Vert.x application

public class LiveScoreVerticle extends AbstractVerticle {

 private CamelContext camelContext;
 private FluentProducerTemplate template;

 public void start() throws Exception {
 camelContext = new DefaultCamelContext();

 camelContext.addRoutes(new LiveScoreRouteBuilder(vertx));

 template = camelContext.createFluentProducerTemplate();
 camelContext.start();

 Router router = Router.router(vertx);
 ...
 }

 public void stop() throws Exception {
 template.stop();
 camelContext.stop();
 }
}

1 Creates CamelContext

 Adds Camel routes that
use the Vert.x instance

2

Creates ProducerTemplate 3

4 Starts Camel

5 Sets up Vert.x Router

6 Stops Camel

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 23Using Vert.x with Camel

The code to add Camel should be familiar to you. At first, CamelContext is created 1,
and then routes are added 2. Then you create ProducerTemplate, 3 which will be
used by Vert.x to trigger a Camel route. Camel is then started 4, and the subsequent
code sets up Vert.x router 5. When the Vert.x application stops, you must remember
to stop Camel as well 6.

calling camel from vert.x
When a new client connects to the back end, Vert.x will trigger the SOCKET_CREATED
event, which you use to obtain the list of games and send to the front end so the web-
site can be updated accordingly. In the previous example, you used Java code to load
the game list from a CSV file and send the information using Vert.x. This time, you’re using
Camel, so the SOCKET_CREATED event uses ProducerTemplate to trigger a Camel route by
sending an empty message to the direct:init- game endpoint 1, as shown here:

router.route("/eventbus/*")
 .handler(SockJSHandler.create(vertx).bridge(options, event -> {
 if (event.type() == BridgeEventType.SOCKET_CREATED) {
 vertx.setTimer(100, h -> template.to("direct:init- games").send());
 }
 event.complete(true);
}));

As you can see, calling Camel from Vert.x is simple; you use regular Camel APIs such as
a ProducerTemplate. But what about the other way around? How do you make Camel
call Vert.x?

calling vert.x from camel

Camel provides the camel- vertx component that’s used to route messages to/from the
Vert.x event bus and Camel. The following listing shows how this is done.

Listing 20.14 Using Camel routes to stream live goal scores to Vert.x event bus

public class LiveScoreRouteBuilder extends RouteBuilder {

 private final Vertx vertx;

 public LiveScoreRouteBuilder(Vertx vertx) {
 this.vertx = vertx;
 }

 public void configure() throws Exception {
 getContext()
 .getComponent("vertx", VertxComponent.class)
 .setVertx(vertx);

 from("direct:init- games").routeId("init- games")
 .log("Init games event")
 .to("goal:games.csv")
 .split(body())
 .to("vertx:games");

 Calling Camel route using the
ProducerTemplate

1

1 Injects Vert.x instance in
constructor

2 Sets up Vert.x instance on
Camel vertx component

3 Routes to
initialize
game list

4 Gets list of games from goal component

5 Splits each game and sends to the vertx
event bus

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

24 chapter 20 Reactive Camel

 from("goal:goals.csv").routeId("livescore").autoStartup(false)
 .log("Goal event: ${header.action} -> ${body}")
 .choice()
 .when(header("action").isEqualTo("clock"))
 .to("vertx:clock")
 .when(header("action").isEqualTo("goal"))
 .to("vertx:goals");

 from("vertx:control").routeId("control")
 .log("Control event: ${body}")
 .toD("controlbus:route?routeId=livescore&async=true&action=${body}");
 }
}

The LiveScoreRouteBuilder class is injected with the Vert.x instance 1 in the construc-
tor because you need to configure the Camel vertx component to use this instance 2.

Then three Camel routes follow. The first route is used to initialize the list of games 3.
The route calls the goal component 4, which is responsible for loading the game list
from the filesystem. The front end expects one message per game, hence you need to
split the game list before sending to the Vert.x event bus on the game’s address 5.

NOTE To hide the complexity of loading the game list and streaming live goal
scores, we’ve built a Camel component named goal.

The second route is responsible for streaming game- clock and goal- score updates 6
that are routed using a Content-Based Router EIP to either the clock 7 or goal 8
address on the Vert.x event bus. Pay attention to the fact that the route has been con-
figured to not automatically start. You want the user to click the Start button at the
front end, which is controlled by the last route 9. The control-bus component is capa-
ble of starting and stopping routes. Notice that you refer to the livescore route using
the routeId parameter on the controlbus endpoint.

TIP Chapter 16 covers much more about the control-bus component in its dis-
cussion about managing and monitoring Camel.

The action parameter tells Camel what to do, such as start, stop, suspend, or resume
the route. This action is triggered from the front end using the following JavaScript
functions:

 startClock = function () {
 eb.send("control", "start");
 };
 stopClock = function () {
 eb.send("control", "suspend");
 };

The rest of the code for this example is the goal component, which hides the logic to
read the CSV files and stream the game clock and goal updates.

 Routes to stream live goal scores 6

7 Updates game clock

8 Updates goal score

9 Routes for control
buttons

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 25Summary and best practices

We encourage you to take a moment to look at this example and pay attention to how
Vert.x and Camel are loosely coupled and clearly separated.

The only touchpoint between them is the exchange of messages using the Vert.x
event bus using the camel- vertx component. Figure 20.6 illustrates this principle.

Camel Vert.xEvent
Bus

camel-
vertx

trying the example

You can find the source code in the chapter20/vertx- camel directory, and you can try
the example using the following Maven goal:

mvn compile vertx:run

Then, from a web browser, open http://localhost:8080.
Okay, let’s end the goal scoring simulator and conclude our Vert.x coverage in this

book with some final words.

20.2.3 Summary of using Camel with Vert.x for microservices

Building the goal scoring simulator has been a fun ride, using Vert.x and then later
adding Camel to the mix. This kind of application runs well with Vert.x, which has
great support for HTML and JavaScript clients. Notice how easy it is to exchange data
between the Java back end and the HTML front end using the Vert.x event bus. The
web front end is a modern HTML5 single- page application that reacts to a live stream
of events. This is where Vert.x shines. How does this compare to Camel? Vert.x is
focused on reactive applications, and Camel is focused on messaging and integration.
It’s the combination of the two that gives synergy (2 + 2 = 5).

There’s a lot of good to say about Vert.x, and we recommend you look at the project
and keep an eye on it for the future. Vert.x is reactive, asynchronous, and nonblocking;
it puts the burden on the developer to understand its APIs. This takes time to master
and grasp. Camel, on the other hand, hides a lot of that complexity. As a developer,
you can get far with Camel routes and configuring Camel components and endpoints.
Therefore, we recommend you study the Vert.x APIs and programming model if you
take up using Vert.x. A good place to start is with the book Building Reactive Microservices
in Java by Clement Escoffier, which you can free download for free from https://devel-
opers.redhat.com/promotions/building- reactive- microservices- in- java.

20.3 Summary and best practices
We’re ending this bonus chapter on a high note with coverage of a complex but inter-
esting topic of reactive applications and systems. Although reactive principles and
frameworks have been around for many years, they’ve only recently gained momen-
tum and attention from developers (we’re not talking about the ninja developers who
jump from hipster technology to hipster technology).

Figure 20.6 Camel and Vert.x exchange messages
using the Vert.x event bus. Camel facilitates this using
the camel- vertx component.

www.itbook.store/books/9781617292934

https://developers.redhat.com/promotions/building-reactive-microservices-in-java
https://developers.redhat.com/promotions/building-reactive-microservices-in-java
https://itbook.store/books/9781617292934

26 chapter 20 Reactive Camel

The addition of lambdas and streaming API in Java 8 has also helped Java developers
get exposed to and become more familiar with the streaming style of programming.
Another popular framework that would push in this direction is the Spring Framework,
which include a reactive API from version 5.

As you’ve seen in this chapter, Apache Camel is also striding into the reactive world
with the Reactive Streams component. The Camel team has designs for the Camel 3.x
architecture to offer two routing engines and APIs:

¡	Classic routing engine—The classic routing engine as of today.
¡	Reactive routing engine—A reactive engine based on the Reactive Streams API and

pluggable runtime reactive library such as RxJava or Reactor Core.

By having both routing engines side by side, Camel allows users to pick and choose
what best suits their situations. This also allows ample time for the new reactive engine
to be developed and matured over the years, with valuable feedback and influence
from the community.

We do want to say that reactive streaming APIs and reactive flows can be difficult to
learn and understand. If you decide to use this for serious work, make sure to take extra
time to learn and experiment.

As usual, here’s a bulleted list of the highlights and our thoughts:

¡	Reactive applications are complex—Learning, using, and developing reactive appli-
cations is more complex and harder than regular applications. Taming the
asynchronous beast isn’t easy—especially the RxJava library, which has a lot of
greatness but is also harder to get working and understand once you move past
the beginner stage. If you become more serious, try to find good online mate-
rial or a book. We recommend Reactive Programming with RxJava by Tomasz Nurk-
iewicz and Ben Christensen (O’Reilly, 2016).

¡	Vert.x has potential—Keep an eye on the Vert.x project, as it’s good and has great
potential. It’s a small, lightweight tool to build reactive applications. The camel-
vertx component enables you to easily use the many Camel components in your
Vert.x applications.

¡	Reactive, reactive, reactive—When Docker came out, it was Docker, Docker, Docker.
You may hear more and more about reactive systems, streams, and program-
ming. It’s not a game changer requiring you to drop everything and rewrite your
applications to these new systems, frameworks, and toolkits.

This is the end of the first bonus chapter. The second bonus chapter covers Camel and
the Internet of Things (IoT). Neither Claus nor Jonathan is a domain expert on IoT,
so we’ve invited Henryk Konsek to be the guest author for this chapter. This will be the
last word you hear from Claus and Jonathan; Henryk, the floor is yours.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

Claus Ibsen ● Jonathan Anstey

A
pache Camel is a Java framework that implements
enterprise integration patterns (EIPs) and comes with
over 200 adapters to third-party systems. A concise

DSL lets you build integration logic into your app with just
a few lines of Java or XML. By using Camel, you benefi t
from the testing and experience of a large and vibrant open
source community.

Camel in Action, Second Edition is the defi nitive guide to the
Camel framework. It starts with core concepts like sending,
receiving, routing, and transforming data. It then goes in
depth on many topics such as how to develop, debug, test,
deal with errors, secure, scale, cluster, deploy, and monitor
your Camel applications. The book also discusses how to run
Camel with microservices, reactive systems, containers, and in
the cloud.

What’s Inside
● Coverage of all relevant EIPs
● Camel microservices with Spring Boot
● Camel on Docker and Kubernetes
● Error handling, testing, security, clustering,
 monitoring, and deployment
● Hundreds of examples in Java and XML

Readers should be familiar with Java. This book is accessible
to beginners and invaluable to experts.

Claus Ibsen is a senior principal engineer for Red Hat and the
head of the Apache Camel project. Jonathan Anstey is an engi-
neering manager at Red Hat and a core Camel contributor.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/camel-in-action-second-edition

$69.99 / Can $92.99 [INCLUDING eBOOK]

Camel IN ACTION Second Edition

ENTERPRISE JAVA

M A N N I N G

“I highly recommend this
book to anyone with even a
passing interest in Apache

Camel. Do take Camel
for a ride ... and don’t

 get the hump!”
—From the Foreword by

James Strachan
Creator of Apache Camel

“Claus and Jon are great
writers, relying on fi gures

and diagrams where needed
and presenting lots of code

snippets and worked
 examples.”—From the Foreword by
Dr. Mark Little

Technical Director of JBoss

“The second edition of
this all-time classic is an

indispensable companion for
your Apache Camel rides.”—Gregor Zurowski

Apache Camel Committer

Go to
manning.com/

freebook

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	Camel in Action, Second Edition Bonus Chapter
	20 Reactive Camel
	20.1 Using Reactive Streams with Camel
	20.1.1 Reactive Streams API
	20.1.2 Reactive flow control with back pressure
	20.1.3 First steps with Reactive Streams
	20.1.4 Using Camel with Reactive Streams
	20.1.5 Controlling back pressure from the producer side
	20.1.6 Controlling back pressure from the consumer side

	20.2 Using Vert.x with Camel
	20.2.1 Building a football simulator using Vert.x
	20.2.2 Using Camel together with Vert.x
	20.2.3 Summary of using Camel with Vert.x for microservices

	20.3 Summary and best practices

