
M A N N I N G

Claus Ibsen
Jonathan Anstey
FOREWORDS BY James Strachan
 AND Dr. Mark Little

SECOND EDITION

Bonus Chapter

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

Camel In Action
Second Edition

by Claus Ibsen
Jonathan Anstey

Chapter 21

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

vii

brief contents

Part 1 First steps... 1
1 ■	 Meeting Camel 3
2 ■	 Routing with Camel 27

Part 2 Core Camel... 73
3 ■	 Transforming data with Camel 75
4 ■	 Using beans with Camel 106
5 ■	 Enterprise integration patterns 146
6 ■	 Using components 194

Part 3 Developing and testing .. 239
7 ■	 Microservices 241
8 ■	 Developing Camel projects 306
9 ■	 Testing 343

10 ■	 RESTful web services 408

Part 4 Going further with Camel 467
11 ■	 Error handling 469
12 ■	 Transactions and idempotency 514
13 ■	 Parallel processing 562
14 ■	 Securing Camel 595

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

viiiviii brief contents

Part 5 Running and managing Camel 623
15 ■	 Running and deploying Camel 625
16 ■	 Management and monitoring 671

Part 6 Out in the wild .. 715
17 ■	 Clustering 717
18 ■	 Microservices with Docker and Kubernetes 752
19 ■	 Camel tooling 803

Bonus chapters
Available at https://www.manning.com/books/camel-in-action-second-edition
and in electronic versions of this book

20 ■	 Reactive Camel
21 ■	 Camel and the IoT by Henryk Konsek

www.itbook.store/books/9781617292934

https://www.manning.com/books/camel-in-action-second-edition
https://itbook.store/books/9781617292934

1

21Camel and the IoT

BY HENRYK KONSEK

This chapters covers
¡	Basic introduction to the Internet of Things (IoT)

¡	Suggestions for purchasing base IoT hardware

¡	IoT architecture

¡	Reasons for using Camel for IoT applications

¡	Camel gateway- to- data- center connectivity

¡	Integrating Apache Camel and Eclipse Kura

The Internet of Things (IoT) is a term used to describe a certain class of distributed
IT systems that work with clients located on distributed devices connected to back-
end messaging systems. Imagine a centered back- end system with many devices con-
nected to it (like the one in figure 21.1); this is pretty much what IoT is.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

2 chapter 21 Camel and the IoT

Gateways and devices Back-end system

Figure 21.1 General view of the IoT architecture

These connected devices can range from mobile phones, tablets, and Raspberry Pi
boards to something as large as a car. The IoT is important for our industry, because
the number of connected devices in the world is growing exponentially, and we need
to find a way to deal with this kind of scale of distributed clients. In addition, market
predictions indicate that sooner or later the majority of developers will be involved in
an IoT project of some sort.

Many of us associate the IoT with futuristic devices such as drones and robots, with
hipster startups, or with Raspberry Pis. These may be true examples, but the reality is
that IoT usually isn’t as spectacular as we might expect. The IoT points to a future of
boring verticals such as industry, army, intelligence, automotive, home automation, city
infrastructure, and medical equipment. And in the majority of cases, end consumers
won’t even know that they’re interacting with an IoT system. For example, all our dish-
washers sooner or later are going to send information about their use to their manu-
facturers. Home furnaces are definitely not as spectacular as drones or robots, but we’ll
save money on furnace maintenance, as it might alert us whenever our manufacturer
detects disturbing patterns in usage.

This chapter provides a gentle introduction to the Internet of Things in gen-
eral. Then you’ll see how Camel can help you build an IoT- class system. Finally,
we’ll focus on using Apache Camel and Eclipse Kura to greatly simplify providing
production- grade IoT gateway solutions. But before proceeding to the details of
IoT architecture, let’s go shopping. You need some IoT equipment before digging
into the IoT world.

21.1 The Internet of Things shopping list
This section provides an opinionated list of hardware you might want to purchase in
order to start playing with Camel and the IoT. Although almost every IoT enthusiast

www.itbook.store/books/9781617292934

http://camel.apache.org/why-the-name-camel.html
http://camel.apache.org/why-the-name-camel.html
https://itbook.store/books/9781617292934

 3The Internet of Things shopping list

could provide another list and argue that it’s better than this one, my list is based on
the following important factors:

¡	Price—You don’t want to spend an excessive amount of money just to start a jour-
ney with the Internet of Things. Experiments ought to be cheap so you can play
and innovate without special financial concerns.

¡	Functionality—You’ll want hardware with many sensors and other features that
allow you to experiment with numerous test scenarios. The more sensors (such
as temperature or humidity sensors or gyrometers) and actuators that your hard-
ware has, the more exciting experiments you can do with it.

¡	Availability in various countries—A myriad of hardware is on the market, but not all
devices are easily available in every country. I’ve tried to select those devices that
can be easily purchased in and shipped to the most places in the world.

¡	Number of tutorials and online resources available—You want to be sure that hard-
ware you purchase is popular enough that you can easily search online for
tutorials and answers to your questions and problems. Some hardware is better
than other hardware, but for learning purposes, you should use the most pop-
ular ones.

21.1.1 Raspberry Pi

First of all, you need an IoT gateway. I’ll explain this term later in this chapter; for now,
you just need to know that you need a small computer board that can be used to run
a small Camel application. I recommend purchasing a Raspberry Pi for this purpose.

Raspberry Pi is a small computer with 1 GB of RAM and a decent CPU unit (ARM
based). The board size is slightly bigger than a pack of cigarettes, which is pretty small
for a computer. Raspberry Pi is extremely popular in the maker community, so you can
find a gazillion tutorials related to this awesome piece of hardware.

To be specific, I recommend buying the Raspberry Pi 3 model B (www.raspberrypi.
org/products/raspberry- pi-3-model- b/), which has significant advantages over the pre-
vious editions of the board. In particular, it has the following:

¡	64-bit CPU
¡	Embedded Wi- Fi and Bluetooth Low Energy (BLE) units

The price of a Raspberry Pi 3 is about $45. You may also consider buying a case
for your Raspberry Pi board (www.raspberrypi.org/products/raspberry- pi- case/),
which costs less than $8 and is a fancy plastic cover for your board. It’s not neces-
sary to have a case for your Raspberry Pi, but a case can protect your board from
physical damage. Last but not least, the Pi looks pretty spiffy in a case, compared to
a naked board.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

4 chapter 21 Camel and the IoT

21.1.2 SD card for Raspberry Pi

Raspberry Pi doesn’t come with any persistent storage. Instead, it provides a slot for
a micro SD card, which can be inserted to serve as Raspberry Pi’s disk. An SD card is
also used to install an operating system (www.raspberrypi.org/documentation/instal-
lation/installing- images/), which the board can bootstrap on startup. Raspberry Pi
supports a bunch of Linux distributions, including Raspbian (www.raspberrypi.org/
downloads/raspbian/) and Fedora (https://fedoraproject.org/wiki/Raspberry_Pi). I
recommend buying at least an 8 GB SD card, especially if you plan to install Raspbian.
Prices of decent 8 GB micro SD cards start at $5.

21.1.3 Power bank for Raspberry Pi

Raspberry Pi is powered using a micro USB cable. In practice, you can use your Android
phone charger (or any other micro USB cable connected to a laptop, for example)
to power your Raspberry Pi unit. Although it’s perfectly fine to run your Pi by using
one of those cables, I highly recommend purchasing a power bank and powering your
board with it. A power bank is a rechargeable battery with USB ports.

If you connect your Raspberry Pi to a power bank, you can take it anywhere you want;
you aren’t limited by a cable plugged into a power socket. You can even take your Pi
outdoors—for example, to measure how temperature changes when you go outside
your home.

I don’t recommend any particular power bank producer or model. Prices of power
banks start at a few bucks, but you should invest in a unit with as much power capacity
as possible. The more power capacity your power bank has, the longer Raspberry Pi can
run connected to it without an additional charging cycle.

21.1.4 Camera for Raspberry Pi

Another optional, but highly recommended, item for IoT developer wannabes is a
camera unit. A Raspberry Pi camera, which can be purchased for less than $25, is a
useful piece of equipment. It allows you to collect video streams and analyze or store
those streams on your board. This is an excellent unit for creating simple applications,
demonstrating how Raspberry Pi can be used to detect motion, process images, recog-
nize objects in a stream of video, and so forth.

21.1.5 TI SensorTag

You may already have your Raspberry Pi gateway device ordered, but you won’t be able
to collect any data with it. You need sensors to do that. Although it’s perfectly fine to
purchase a bunch of sensors from your favorite electronics store and connect those to
your Raspberry Pi via its general- purpose input/output (GPIO) interface, wiring all your
sensors to your Pi board requires an electronics background and effort. A great alter-
native is raw sensors, which can be efficiently used for learning purposes.

Texas Instruments SensorTag is a small device containing a bunch of sensors and
wireless connectivity units (www.ti.com/ww/en/wireless_connectivity/sensortag2015/
?INTC=SensorTag&HQS=sensortag).

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 5The Internet of Things architecture

The TI SensorTag unit can be purchased for about $30. The device, powered by
a tiny battery, brings an impressive array of sensors for that price, including a tem-
perature sensor, humidity sensor, and gyroscope, among others. The online Sen-
sorTag User Guide provides details (see http://processors.wiki.ti.com/index.php/
SensorTag_User_Guide#Sensors). You can choose the kind of wireless connectivity
you’re interested in when buying a unit, but choosing a model with a Bluetooth Low
Energy module is a great match for Raspberry Pi 3, which happens to provide BLE con-
nectivity out of the box as well.

In practice, purchasing a BLE- enabled SensorTag unit allows you to send telemetry
readings straight into your Raspberry Pi unit and process those readings with Camel. A
great match indeed! After you purchase these useful hardware devices, you’re ready to
dig into the IoT architecture to see how this hardware can be connected to your Camel
routes.

21.2 The Internet of Things architecture
Before you dig into Camel in the context of the Internet of Things, let’s look at a
generic IoT architecture example so you can understand the kinds of components
needed to create an operational system for connected devices. You need this knowl-
edge to understand where Camel can help you and where it can’t.

Architectures of an IoT system can be less or more complex, but we can extract a
main pattern from the majority of applications of this class. Figure 21.2 presents a typi-
cal IoT system architecture.

Sensors

Gateway
Collected

data

Data Center
Payloads
Sensors

Gateway
software

First of all, the system has sensors (visible on the left of figure 21.2). Sensors are small
devices that can collect information from an environment. This information may be
readings of temperature, air humidity, vibration level, sound, or video from a digital
camera. Sensors usually run embedded software and are too small to run Java and
Camel. Moreover, sensor devices are usually too small to handle the whole TCP/UDP
stack by themselves (they don’t provide TCP/UDP connectivity, or internet connectiv-
ity). Instead, sensors use more lightweight and limited protocols such as BLE, ZigBee,
or Z- Wave. Those protocols provide wireless connectivity limited to an effective range
of less than 100 meters.

This is where the middle part of figure 21.2 comes in. You need a piece of hardware
that can use short- range wireless protocols such as BLE, collect payloads from sensors,
and forward these payloads to a data center using TCP or UDP connectivity via Wi- Fi or

Figure 21.2 Internet of
Things application architecture

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

6 chapter 21 Camel and the IoT

Ethernet interfaces. This hardware is called a gateway. It’s a board similar to Raspberry Pi,
but usually with a better hardware specification. The gateway is more powerful and can
usually run Java Virtual Machine and take advantage of Camel (more on this later in
this chapter).

The last piece of the IoT architecture puzzle is data center connectivity (represented
on the right side of figure 21.2). There’s no point in collecting data on a gateway if you
don’t send the information you’ve gathered into a back- end service for further analy-
sis and processing. IoT gateways usually rely on TCP/UDP protocols such as MQTT,
AMQP, CoAP, LWM2M, and HTTP/REST for data center connectivity. The gateway’s
task is to enqueue collected data, preprocess it, filter it if needed, and finally send it to a
data center back- end endpoint.

Keep in mind that sensors aren’t always connected to a gateway using wireless proto-
cols (such as BLE or Z- Wave). It’s common to wire sensors directly into gateway hard-
ware with physical interfaces such as GPIO. Figure 21.3 shows how the architecture
might look in such a scenario. As you can see, sensors are not only connected to a gate-
way via wireless protocols, but also embedded in the gateway itself.

Sensors

Gateway

Embedded sensors

Collected
data

Data Center
Payloads
Sensors

Gateway
software

21.3 Why Camel is the right choice for the IoT
Now you have a sense of the general architecture of IoT applications. But you might still
be wondering whether Camel is the right choice for these applications and the real reason
to use it for IoT purposes. This section covers the most important areas where Camel func-
tionalities excel in the context of the Internet of Things to bring real value for developers.

Before we dig into the details of using Camel in IoT scenarios, let’s take a look at
those reasons from 10,000 feet:

¡	Many Camel components are available out of the box.
¡	Data formats are supported by Camel.
¡	Redelivery capabilities.
¡	Throttling support.
¡	Possibility of performing content- based routing.
¡	Support for client- side load balancing.
¡	Runtime flow control provided by the Camel control-bus component.

Let’s discuss those reasons in more detail.

Figure 21.3 IoT application
architecture with sensors
embedded in a gateway

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 7Why Camel is the right choice for the IoT

21.3.1 Components

Camel comes with more than 200 components that can be used to connect to the
myriad of protocol endpoints. You can use Camel components on your gateway
devices to connect to a data center using the protocol that’s the best choice for your
device connectivity scenario: AMQP, MQTT, REST, CoAP, Kafka, or many others.
Having out- of- the- box components that can be used to handle endpoint connectivity
is a huge advantage of Camel, as it allows you to reduce the amount of boilerplate
code you need to create, test, and maintain in order to connect your devices to the
outside world.

21.3.2 Data formats

Connectivity between your gateway device and your data center is one thing, but it’s
essential to understand the encoding of a message sent by your field device. Camel
data formats can be used on the gateway side to encode the message appropriately for
your back- end system. On the server side, Camel decoders can be used to deserialize
the message via a proper message format: AVRO, JSON, CSV, or others.

21.3.3 Redelivery

As stated in this book, Camel provides support for message redelivery when errors
occur in data processing. This feature happens to be one of the most wanted function-
alities of IoT systems. Because connected devices usually operate on flaky and highly
unreliable network connections, it’s common to encounter intermittent issues with
endpoint connectivity.

IoT systems should be designed to recover gracefully from interruptions of message
flow and should attempt to deliver messages later, when connectivity is back again. Mes-
sage redelivery is one of the key pieces of the error- handling puzzle, and it’s great to
have it included in Camel out of the box.

21.3.4 Throttling

Ideally, you want your sensors to produce telemetry data at a fixed pace—for example,
reading temperature every second, or ideally, being notified whenever temperature
changes. Depending on the sensor type you’re reading data from, you might from time
to time receive more data payloads than you expected. Because IoT gateway devices
aren’t as powerful as regular server machines, you may end up with sensor readings
overflowing your device. You need a mechanism that protects against such telemetry
data peaks. You need a way to tell your gateway to accept at most N messages per sec-
ond. For example, you may want to send at most one temperature reading per second
and drop all other payloads (and definitely don’t send the other payloads to the data
center).

Creating such reliable throttling logic from scratch may be time consuming. For-
tunately, Camel comes with Throttler EIP that can be used to limit the data flow. Cre-
ating throttling rules in Camel is as simple as the following snippet, which demonstrates

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

8 chapter 21 Camel and the IoT

code that you might deploy into your gateway device in order to send temperature read-
ings stored on its local filesystem:

from("file:/var/temperature?delete=true")
 .throttle(1).timePeriodMillis(1000)
 .to("paho:temperature");

The preceding example reads telemetry payloads stored on a local filesystem and sends
that data into an MQTT broker by using the Eclipse Paho component for Camel. Even
if temperature payloads are generated quickly, Camel forwards only one message per
second and drops all the others.

21.3.5 Content- based routing

Some IoT gateways are simple telemetry proxies. They take messages from a sensor
and send them to a data center service. In many cases, you want to add some intelli-
gence into your gateway, so you can make it smarter.

For example, you might be interested in filtering out all temperature readings that
don’t exceed a certain threshold. Imagine, for example, that you want to notify a data
center alarm service only when a gateway detects that a temperature in a factory where a
gateway is installed is higher than 30 degrees Celsius.

Another scenario that requires the gateway to be smart is a connected car that has
to send important telemetry information to a data center using a paid Global System
for Mobile Communications (GSM) connection. The same car could send low-priority
information, but only when it’s within the area of the owner’s home, connected to a fast
and cheap Wi- Fi network.

This kind of intelligence requires you to analyze the content of each message and
define rules to react accordingly. Camel provides excellent support for defining these
kinds of rules via content- based routing.

21.3.6 Client- side load balancing

As mentioned, IoT gateways are often connected to highly unreliable networks.
Another common scenario is to have an IoT gateway installed in a vehicle that periodi-
cally loses connectivity to its network. In such scenarios, it’s the gateway’s responsibility
to attempt to redeliver a message.

As connected vehicles are moving from one destination to another, it’s sometimes
desirable to attempt to connect to another back- end service when connecting to the
first one fails. This kind of behavior can be achieved by using the Camel load balancer
EIP. This kind of communication pattern, called a Circuit Breaker, can be easily imple-
mented using Camel core features. Also keep in mind that Camel provides a dedicated
Hystrix EIP that implements the Circuit Breaker pattern using the popular Hystrix
library from Netflix.

21.3.7 Control bus

Another useful piece of Camel is called the control bus. It allows you to dynamically
enable and disable certain parts of your routing logic. Is it useful for an IoT? Imagine

www.itbook.store/books/9781617292934

http://camel.apache.org/download.html
http://camel.apache.org/download.html
https://itbook.store/books/9781617292934

 9Gateway- to- data- center connectivity

that your connected vehicle is supposed to flush data cached on its local storage only
when it’s within the range of a trusted Wi- Fi network. The Camel control bus allows you
to enable data synchronization logic only when the device gets close to a Wi- Fi network
and to disable it when you’re out of range.

21.4 Gateway- to- data- center connectivity
You already know what an IoT architecture could look like. You also have a general
understanding of the way Camel can be applied to connected device applications. Now
let’s focus on the connectivity between a gateway device and data center, as this is an
area where Camel can be even more useful.

21.4.1 Understanding the architecture

As already discussed, one of the areas where Camel excels when it comes to the IoT is
in communication between a data center and a gateway device. This particular feature
of Camel requires extra attention, because the way your messages are transferred from
the field into your remote servers is one of the most important pieces of your IoT archi-
tecture. Figure 21.4 demonstrates a simplified architecture for an IoT application. The
communication bits are indicated by the circle.

Web client Server

Sensors

Gateway

Protocols working in this layer of an IoT solution are usually TCP-based, but some
notable exceptions occur (for example, CoAP and LWM2M are UDP- based). This
is good news for back- end developers because they can reuse their existing exper-
tise in working with TCP- based messaging protocols and apply it against a gateway
device.

Figure 21.4 Internet of Things connectivity
diagram

www.itbook.store/books/9781617292934

https://github.com/camelinaction/camelinaction2
https://itbook.store/books/9781617292934

10 chapter 21 Camel and the IoT

21.4.2 Choosing a protocol

In general, you can use any TCP/UDP protocol to transfer data between a gateway
and a data center. The choice of protocol should apply the use the right tool for the
job principle: you shouldn’t assume up front that any single protocol is better than
another for gateway connectivity. Keeping that in mind, I’ll focus on three protocols
supported by Camel: AMQP, MQTT, and REST/HTTP, are the most generic and popu-
lar gateway connectivity solutions.

amqp
One popular choice for connectivity between a gateway and data center is Advanced
Message Queuing Protocol (AMQP) 1.0. AMQP message overhead is a bit larger than
MQ Telemetry Transport (MQTT) messages, but the protocol is much richer in fea-
tures and better supported on the back end of the system. Many companies provide
scalable AMQP message brokers (for example, Azure Service Bus by Microsoft, or
A- MQ by Red Hat), whereas large- scale MQTT back- end offerings are limited.

As for message- size overhead, it’s the metadata you need to add to every message
that matters. For example, HTTP is considered “chatty” because it adds many verbose
plain- text headers and instructions for every request. Message overhead is important,
especially for gateway devices using paid GSM plans for data transfer; in this scenario,
every extra byte added to each message may count. AMQP messages have a reasonable
overhead, but it’s not significant. I’m talking about AMQP 1.0, not AMQP 0.9 or earlier.
This is an important distinction, because AMQP 1.0 is different from its earlier versions.

The main advantages of using AMQP for gateway- to- data- center connectivity are as
follows:

¡	Good scalability of your messaging infrastructure
¡	Small message overhead
¡	Request/reply communication support
¡	Built- in type system that may additionally reduce message overhead
¡	Flow- control support (dealing with gateways generating too many messages)
¡	Low- latency peer- to- peer communication support

To use Camel AMQP on your gateway device, you can use the Camel AMQP compo-
nent. First, add the Camel AMQP JAR to your application:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel- amqp</artifactId>
</dependency>

After adding the Camel AMQP JAR into your classpath, register the AMQP component
in your Camel context. In particular, you need to specify AMQP broker connection
credentials at this stage:

import org.apache.camel.component.amqp.AMQPComponent;
...
CamelContex camelContex = ...;

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 11Gateway- to- data- center connectivity

AMQPComponent amqp = AMQPComponent.amqpComponent.amqpComponent("amqp://
localhost:5672");

camelContex.addComponent("amqp", amqp);

Starting from this point, you can send your telemetry data (for example, temperature val-
ues read from a sensor and stored on a gateway filesystem) to the remote AMQP endpoint:

from("file:/var/temperature?delete=true")
 .marshal().json(JsonLibrary.Jackson)
 .to("amqp:temperature");

This demonstrates how to create a Camel route that consumes files from the local
filesystem of the gateway device and sends those converted into a JSON payload to the
AMQP destination named temperature.

Before executing the preceding snippet, be sure to add the Camel Jackson JAR file
into your classpath. The file is needed to serialize the payload into JSON format. The
following snippet demonstrates how to do this:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel- jackson</artifactId>
</dependency>

You may be wondering how temperature readings end up in the /var/temperature direc-
tory. Unfortunately, this kind of code is highly hardware dependent. You can use the GPIO
interface to read from temperature sensors—for example, DS18B20 (www.sparkfun.com/
products/245) connected directly to your gateway board. You can also use BLE to read
temperature values from sensors supporting BLE, such as TI SensorTag. Because this chap-
ter is too short to focus on any particular sensor details, I’ll assume your temperature read-
ings are persisted to a kind of storage on your gateway disk. Persisting sensor readings on
your local disk before forwarding those to a data center is common practice.

mqtt
The other alternative for gateway- to- data- center connectivity is the MQTT protocol.
Let’s see how it compares to AMQP.

MQTT stands for MQ Telemetry Transport and is one of the most popular TCP protocols
for IoT data center connectivity. The main advantage of the MQTT protocol in the con-
text of IoT applications is that metadata overhead per message is small (just a few bytes).
As mentioned in the previous AMQP section, the size of a message is an important factor
for connected devices, as the latter often rely on mobile GSM connectivity. Telecommuni-
cation providers charge GSM plan users based on their data consumption, so you want to
be sure that your messages don’t send unnecessarily large payloads over the wire.

The main advantages of the MQTT protocol are as follows:

¡	Small message overhead.
¡	Some devices already support embedded MQTT. These devices can send and

receive MQTT messages even though the devices can’t run Java applications. You
can expect more devices like this to be available in the future.

¡	Many resources and tutorials related to MQTT are available online.

www.itbook.store/books/9781617292934

http://maven.apache.org/download.html
https://itbook.store/books/9781617292934

12 chapter 21 Camel and the IoT

If you’re interested in open source MQTT brokers, you should look at the Eclipse Mos-
quitto and Apache Artemis projects. Also, Vert.x MQTT is a great brokerless alternative
for the MQTT back end.

Camel comes with a component supporting an excellent MQTT client library:
Eclipse Paho. To use the Camel Paho component on your gateway device, add the fol-
lowing JAR to your application:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel- paho</artifactId>
</dependency>

Starting from this point, you can send your telemetry data (for example, temperature
values read from a sensor and stored on a gateway filesystem) to a remote MQTT end-
point. The only things you need to provide to Paho are network coordinates of your
target MQTT broker (network address and port number). The easiest way to start
using a Paho component is to configure the broker directly in the endpoint URI:

from("file:/var/temperature?delete=true")
 .marshal().json(JsonLibrary.Jackson)
 .to("paho:temperature?brokerUrl=tcp://iot.eclipse.org:1883");

An alternative to URI- based configuration is configuring a component instance and
registering it directly into the Camel context:

import org.apache.camel.component.paho.PahoComponent;
...
CamelContex camelContex = ...
PahoComponent paho = new PahoComponent();
paho.setBrokerUrl("tcp://iot.eclipse.org:1883");
camelContex.addComponent("paho", paho);

In this case, you don’t have to specify connection coordinates in your route, but you
can send messages to the "paho:topicName" endpoint, as shown here:

from("file:/var/temperature?delete=true")
 .marshal().json(JsonLibrary.Jackson)
 .to("paho:temperature");

This demonstrates how to create a Camel route that consumes files from the local
filesystem of the gateway device and sends those converted into a JSON payload to the
MQTT destination named temperature. Before executing the preceding example, be
sure to add the Camel Jackson JAR to your classpath.

Please refer to the preceding AMQP section in order to understand how tempera-
ture payloads can end up in the /var/temperature directory.

rest/http
You already know how to use the AMQP and MQTT protocols to send messages straight
into your messaging broker. That’s great, because messaging- oriented solutions are
usually the best choice for IoT applications. The primary reason why is that messaging
protocols usually are better suited for traffic consisting of many small messages. Also,

www.itbook.store/books/9781617292934

http://repo1.maven.org/maven2
http://repo1.maven.org/maven2
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar
https://itbook.store/books/9781617292934

 13Camel and Eclipse Kura

messaging protocols support not only outbound traffic from a gateway to a data center,
but also inbound traffic (receiving messages from a data center without the need to
poll any endpoint). This is particularly important when your gateway needs to receive
a command from a data center (for example, to be restarted or to upgrade its software
to a more recent version).

Keeping all these points in mind, we can safely say that REST/HTTP usually isn’t the
best fit for IoT data center connectivity. The message- size overhead of REST/HTTP is
rather significant, as HTTP is a chatty, text- based protocol. This is a real disadvantage for
GSM- based connectivity. Because of the wide adoption of REST in server- side program-
ming, using HTTP is a popular choice for gateway- to- data- center connectivity. This is
especially the case when a gateway device doesn’t generate too many network calls to
the data center or when a gateway doesn’t rely on GSM connectivity (for example,
when the gateway is located near the factory floor to help with automation of the indus-
trial process).

Camel comes with several components for HTTP clients; this example will focus on
one of them. We’ll use a Netty- based HTTP client. To make this client available for your
gateway application, add the following line to your Maven pom.xml file:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel- netty4-http</artifactId>
</dependency>

From this point, you can send your telemetry data (for example, temperature values
read from a sensor and stored on a gateway filesystem) to the remote REST/HTTP
endpoint:

from("file:/var/temperature?delete=true")
 .marshal().json(JsonLibrary.Jackson)
 .to("netty4-http:http://my.app.com/temperature");

This demonstrates how to create a Camel route that consumes files from the local
filesystem of the gateway device and sends those converted into a JSON payload to the
HTTP URL http://my.app.com/temperature using the POST HTTP method. Before
executing the preceding example, be sure to add the Camel Jackson JAR to your
classpath.

Please refer to the previous AMQP section in order understand how temperature
payloads can end up in the /var/temperature directory.

21.5 Camel and Eclipse Kura
Although deploying a standalone fat JAR application into your gateway device is a per-
fectly valid solution, it may not be enough for more sophisticated scenarios.

A problem with the fat JAR approach is that it’s easy to deploy it into a data cen-
ter using SCP/SSH, Chef, or Ansible, because server- side resources are supposed to be
available all the time. You take your JAR and deploy it into a given server. If you need

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

14 chapter 21 Camel and the IoT

to upgrade your application, you deploy another version of a JAR. You don’t expect
your data center server to be out of the network for a certain period of time. Unfortu-
nately, this kind of scenario is common for IoT devices. It’s your device’s responsibility
to attempt to connect to a back- end service and ask for potential software updates. The
process of installing updates into a remote device is an over- the- air (OTA) update.

Another issue with IoT software upgrades is that usually you’ll want to avoid restart-
ing the whole device during the software upgrade process in order to keep your oper-
ations continuous. The fat JAR approach, as convenient as it is, doesn’t allow you to
restart only certain message flows of your application.

As you can see, updating your gateway software without any additional tool dedi-
cated for this purpose can be challenging. An interesting project that tries to solve such
issues is Eclipse Kura. Kura is a low- footprint OSGi server dedicated for gateway devices.
Camel provides official support for Eclipse Kura, which provides an opinionated way of
deploying Camel routes into a Kura server.

The usual reason to deploy Camel routes into Eclipse Kura is to provide enterprise
integration pattern support for the gateway. The other reason is to provide a myriad of
Camel components for Kura. An example of integrating Camel and Kura is installing
Kura on the Raspberry Pi board, reading temperature from a sensor installed into that
Raspberry Pi using Kura services, and finally, forwarding a current temperature value to
your data center service using Camel routes.

Figure 21.5 shows the general architecture of Camel and Kura integration.

Raspberry Pi
Data center

Temperature
sensor

CamelRouter
(OSGi bundle)Eclipse Kura

polls

sends to

Figure 21.5 Apache Camel and Eclipse Kura integration architecture

Eclipse Kura is installed on the board—for example, on Raspberry Pi, Camel routes
are installed as OSGi bundles into the Kura server. Those routes are responsible for
using Kura sensor APIs and forwarding messages to a data center.

21.5.1 Starting Kura in emulator mode

It’s outside the scope of this book to guide you in installing Kura on a real device board,
such as Raspberry Pi. Instead, I’ll describe how to run Kura in a board emulator mode
as a Docker container. The latter approach is the easiest way to become familiar with
Eclipse Kura. If you’re interested in installing Kura on a real IoT board, see the official
Kura installation guide (http://eclipse.github.io/kura/intro/raspberry-pi-quick-start.
html). The Kura emulator “pretends” that it’s installed on the Raspberry Pi board and
allows you to start playing with the Kura web UI and Camel.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 15Camel and Eclipse Kura

Docker is a virtual container management system that allows you to download
images containing runnable software and start those on your local machine. I won’t
provide detailed installation instructions, and I assume you have Docker installed on
your computer.

Let’s start your local instance of Kura server. To run the Kura emulator, execute the
following Docker command:

docker run --name=kura -d -p 8080:8080 ctron/kura- emulator

21.5.2 Defining Camel routes using the Kura web UI

When you have the Kura emulator running as a background Docker process, open
your favorite web browser and navigate to http://localhost:8080. You’ll be prompted
to provide a username and password. Type the username admin and password admin.
After providing valid credentials, you’ll see the Kura web UI, which should look similar
to figure 21.6.

Figure 21.6 Kura web UI

As you can see, Kura provides a bunch of useful features:

¡	Reviewing information about a given device
¡	Managing OSGi bundles installed on devices
¡	Connecting to a back- end services platform (for example, to Eclipse Kapua)

The feature that’s the most interesting is hidden under the Camel XML Router tab.
Eclipse Kura happens to come with Apache Camel installed by default. Among other
things, Camel support allows you to define XML routes using the web UI.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

16 chapter 21 Camel and the IoT

Let’s try to create a new Camel XML in a Kura server. To do that, navigate to the
Camel XML Router tab. After you click it, you should see a large Router XML tab
(shown in figure 21.7).

Figure 21.7 Camel routes in the Kura web UI

Now copy the code in the following listing and paste it into the Camel XML input.
After that, click the Apply button.

Listing 21.1 Camel XML route to copy into Kura web UI

<routes
 xmlns="http://camel.apache.org/schema/spring"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema- instance"
 xsi:schemaLocation="http://camel.apache.org/schema/spring https://camel.

apache.org/schema/spring/camel- spring.xsd">

 <route id="camle- kura">
 <from uri="timer:trigger"/>
 <setBody>
 <simple>${random(100)}</simple>
 </setBody>
 <to uri="stream:out"/>
 </route>

</routes>

This code generates a random number from 0 to 99 every second and prints that num-
ber into standard output. To see those numbers generated by Camel, navigate to your
shell again and execute the following command:

docker logs kura

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

 17Next steps with Camel and the IoT

As a result, you should see a stream of random numbers similar to the following:

3
12
79
28
71
4
38

21.5.3 Next steps with Camel and Kura

In the previous section, you managed to start the Eclipse Kura emulator as a Docker
container and deploy a Camel route into it. If you’re interested in using Camel and
Kura together for more serious use cases than a simple Hello World example, you
should think about getting your Kura server connected to a back- end IoT platform.

Although Kura can connect to various cloud providers, the primary back- end platform
for Kura is the Eclipse Kapua project. Kapua can be used to manage Kura servers con-
nected to it and to provision resources on individual devices. In particular, it’s possible to
manage OSGi bundles deployed into a particular Kura server. In practice, this means you
can use Kapua to manage Camel routes installed into your Kura- enabled device.

21.6 Next steps with Camel and the IoT
In this chapter, you’ve learned about the Internet of Things and how to take advan-
tage of Apache Camel to create applications for this domain. You’ve also learned how
Eclipse Kura can be used as a device deployment platform for your Camel routes. If
you want to continue your IoT journey from this point, I recommend becoming famil-
iar with the following topics.

eclipse kapua

When creating an IoT system, sooner or later you’ll discover a need for a back- end plat-
form for your connected devices. Eclipse Kapua is an open source back- end platform
supporting Camel as a first- class citizen.

lwm2m and the eclipse leshan proJect

LWM2M is an advanced device management protocol that has a real chance to become
a de facto standard for orchestrating a fleet of your connected things. An open source
implementation of the LWM2M protocol is called Eclipse Leshan (www.eclipse.org/
leshan/).

eclipse hono

Another IoT project from the Eclipse foundation is called Hono (www.eclipse.org/
hono/). Hono, an extension to the AMQP messaging layer, can be used to create a
scalable multitenant layer between your devices and your back- end platform. This is
a project that’s particularly interesting in the context of Camel, as Camel comes with
good AMQP connectivity support.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

18 chapter 21 Camel and the IoT

21.7 Summary
This chapter covered the basic concepts of the Internet of Things (IoT) in the context
of Camel- based applications. It started with a short shopping list to equip you with
basic and cheap, yet powerful, IoT hardware. It also briefly discussed IoT systems archi-
tecture and challenges. And this chapter presented scenarios in which Camel brings
the most benefits to the IoT messaging infrastructure.

The IoT is an extremely wide topic covered in many books. The aim of this chap-
ter was to give you a taste of how interesting IoT development can be, especially when
you’re equipped with such a powerful tool as Apache Camel.

I hope you’re now convinced that Camel and IoT are a good match and that you’d
like to investigate this topic further. I strongly encourage you to follow Eclipse IoT com-
munities such as Eclipse Kura or Eclipse Kapua, which are incubators of innovations
related to Camel and the IoT.

Henryk Konsek is a senior software engineer at Red Hat. His areas of expertise include data-inten-
sive back-end systems, data streaming, and messaging solutions. Henryk's primary duty at Red
Hat is working on data-streaming back-end services for large-scale IoT deployments. He is a com-
mitter to a wide range of open source projects related to messaging and the IoT, including Apache
Camel, Eclipse Hono, Eclipse Kapua, and Eclipse Kura.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

Claus Ibsen ● Jonathan Anstey

A
pache Camel is a Java framework that implements
enterprise integration patterns (EIPs) and comes with
over 200 adapters to third-party systems. A concise

DSL lets you build integration logic into your app with just
a few lines of Java or XML. By using Camel, you benefi t
from the testing and experience of a large and vibrant open
source community.

Camel in Action, Second Edition is the defi nitive guide to the
Camel framework. It starts with core concepts like sending,
receiving, routing, and transforming data. It then goes in
depth on many topics such as how to develop, debug, test,
deal with errors, secure, scale, cluster, deploy, and monitor
your Camel applications. The book also discusses how to run
Camel with microservices, reactive systems, containers, and in
the cloud.

What’s Inside
● Coverage of all relevant EIPs
● Camel microservices with Spring Boot
● Camel on Docker and Kubernetes
● Error handling, testing, security, clustering,
 monitoring, and deployment
● Hundreds of examples in Java and XML

Readers should be familiar with Java. This book is accessible
to beginners and invaluable to experts.

Claus Ibsen is a senior principal engineer for Red Hat and the
head of the Apache Camel project. Jonathan Anstey is an engi-
neering manager at Red Hat and a core Camel contributor.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/camel-in-action-second-edition

$69.99 / Can $92.99 [INCLUDING eBOOK]

Camel IN ACTION Second Edition

ENTERPRISE JAVA

M A N N I N G

“I highly recommend this
book to anyone with even a
passing interest in Apache

Camel. Do take Camel
for a ride ... and don’t

 get the hump!”
—From the Foreword by

James Strachan
Creator of Apache Camel

“Claus and Jon are great
writers, relying on fi gures

and diagrams where needed
and presenting lots of code

snippets and worked
 examples.”—From the Foreword by
Dr. Mark Little

Technical Director of JBoss

“The second edition of
this all-time classic is an

indispensable companion for
your Apache Camel rides.”—Gregor Zurowski

Apache Camel Committer

Go to
manning.com/

freebook

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	Camel in Action, Second Edition Bonus Chapter
	21 Camel and the IoT
	21.1 The Internet of Things shopping list
	21.1.1 Raspberry Pi
	21.1.2 SD card for Raspberry Pi
	21.1.3 Power bank for Raspberry Pi
	21.1.4 Camera for Raspberry Pi
	21.1.5 TI SensorTag

	21.2 The Internet of Things architecture
	21.3 Why Camel is the right choice for the IoT
	21.3.1 Components
	21.3.2 Data formats
	21.3.3 Redelivery
	21.3.4 Throttling
	21.3.5 Content-basedrouting
	21.3.6 Client-sideload balancing
	21.3.7 Control bus

	21.4 Gateway-to-data-centerconnectivity
	21.4.1 Understanding the architecture
	21.4.2 Choosing a protocol

	21.5 Camel and Eclipse Kura
	21.5.1 Starting Kura in emulator mode
	21.5.2 Defining Camel routes using the Kura web UI
	21.5.3 Next steps with Camel and Kura

	21.6 Next steps with Camel and the IoT
	Summary

