
M A N N I N G

Claus Ibsen
Jonathan Anstey
FOREWORDS BY James Strachan
 AND Dr. Mark Little

SECOND EDITION

Sample Chapter

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

Camel In Action
Second Edition

by Claus Ibsen
Jonathan Anstey

Chapter 3

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

vii

brief contents

Part 1	 First steps... 1
1	 ■	 Meeting Camel  3
2	 ■	 Routing with Camel  27

Part 2	 Core Camel... 73
3	 ■	 Transforming data with Camel  75
4	 ■	 Using beans with Camel  106
5	 ■	 Enterprise integration patterns  146
6	 ■	 Using components  194

Part 3	 Developing and testing... 239
7	 ■	 Microservices  241
8	 ■	 Developing Camel projects  306
9	 ■	 Testing  343

10	 ■	 RESTful web services  408

Part 4	 Going further with Camel..................................... 467
11	 ■	 Error handling  469
12	 ■	 Transactions and idempotency  514
13	 ■	 Parallel processing  562
14	 ■	 Securing Camel  595

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

viiiviii ﻿brief contents

Part 5	 Running and managing Camel................................. 623
15	 ■	 Running and deploying Camel  625
16	 ■	 Management and monitoring  671

Part 6	 Out in the wild... 715
17	 ■	 Clustering  717
18	 ■	 Microservices with Docker and Kubernetes   752
19	 ■	 Camel tooling  803

Bonus chapters
Available at https://www.manning.com/books/camel-in-action-second-edition
and in electronic versions of this book

20	 ■	 Reactive Camel
21	 ■	 Camel and the IoT by Henryk Konsek

www.itbook.store/books/9781617292934

https://www.manning.com/books/camel-in-action-second-edition
https://itbook.store/books/9781617292934

75

3Transforming
data with Camel

This chapter covers
¡	Transforming data by using EIPs and Java

¡	Transforming XML data

¡	Transforming by using well-known data formats

¡	Writing your own data formats for
transformations

¡	Understanding the Camel type-converter
mechanism

The preceding chapter covered routing, which is the single most important feature
any integration kit must provide. This chapter looks at the second most important
feature: data or message transformation.

Just like the real world, where people speak different languages, the IT world
speaks different protocols. Software engineers regularly need to act as mediators
between various protocols when IT systems must be integrated. To address this, the
data models used by the protocols must be transformed from one form to another,

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

76 Chapter 3  Transforming data with Camel

adapting to whatever protocol the receiver understands. Mediation and data transfor-
mation are key features in any integration kit, including Camel.

In this chapter, you’ll learn all about how Camel can help you with your data trans-
formation challenges. We’ll start with a brief overview of data transformation in Camel
and then look at transforming data into any custom format you may have. Next we’ll
look at Camel components that are specialized for transforming XML data and other
well-known data formats. We end the chapter by looking into Camel’s type-converter
mechanism, which supports, implicitly and explicitly, type conversion.

After reading this chapter, you’ll know how to tackle any data transformation you’re
faced with and which Camel solution to use.

3.1	 Data transformation overview
Camel provides many techniques for data transformation, and we’ll cover them shortly.
But let’s start with an overview of data transformation in Camel. Data transformation is a
broad term that covers two types of transformation:

¡	Data format transformation—The data format of the message body is transformed
from one form to another. For example, a CSV record is formatted as XML.

¡	Data type transformation—The data type of the message body is transformed from
one type to another. For example, java.lang.String is transformed into javax.
jms.TextMessage.

Figure 3.1 illustrates the principle of transforming a message body from one form
into another. This transformation can involve any combination of format and type
transformations. In most cases, the data transformation you’ll face with Camel is for-
mat transformation: you have to mediate between two protocols. Camel has a built-in
type-converter mechanism that can automatically convert between types, which greatly
reduces the need for end users to deal with type transformations.

Transform

Message
body

Message

Message
body

Message

Camel has many data-transformation features. We introduce them in the following sec-
tion, and then present them one by one. After reading this chapter, you’ll have a solid
understanding of how to use Camel to transform your data. In Camel, data transforma-
tion typically takes place in the six ways listed in table 3.1.

Figure 3.1   Camel offers many features for
transforming data from one form to another.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 77Transforming data by using EIPs and Java

Table 3.1   Six ways data transformation typically takes place in Camel

Transformation Description

Data transformation using EIPs and Java You can explicitly enforce transformation in the route by using
the Message Translator or the Content Enricher EIPs. This gives
you the power to do data mapping by using regular Java code.
We cover this in section 3.2.

Data transformation using components Camel provides a range of components for transformation,
such as the XSLT component for XML transformation. We dive
into this in section 3.3.

Data transformation using data formats Data formats are Camel transformers that come in pairs to
transform data back and forth between well-known formats.
Section 3.4 covers this topic.

Data transformation using templates Camel provides a range of components for transforming by
using templates, such as Apache Velocity. We’ll look at this in
section 3.5.

Data type transformation using Camel’s
type-converter mechanism

Camel has an elaborate type-converter mechanism that
activates on demand. This is convenient when you need to
convert from common types such as java.lang.Integer
to java.lang.String or even from java.io.File to
java.lang.String. Section 3.6 covers type converters.

Message transformation in component
adapters

Camel’s many components adapt to various commonly used
protocols and, as such, need to be able to transform messages
as they travel to and from those protocols. Often these compo-
nents use a combination of custom data transformations and
type converters. This happens seamlessly, and only component
writers need to worry about it. Chapter 8 covers writing custom
components.

This chapter covers the first five of these data transformation methods. We’ll leave the
last one for chapter 8 because it applies only to writing custom components.

3.2	 Transforming data by using EIPs and Java
Data mapping, the process of mapping between two distinct data models, is a key fac-
tor in data integration. There are many existing standards for data models, governed
by various organizations or committees. As such, you’ll often find yourself needing to
map from a company’s custom data model to a standard data model.

Camel provides great freedom in data mapping because it allows you to use Java
code. You aren’t limited to using a particular data-mapping tool that may at first seem
elegant but turns out to make things impossible.

In this section, you’ll look at mapping data by using Processor, a Camel API. Camel
can also use Java beans for mapping, which is a good practice because it allows your
mapping logic to be independent of the Camel API.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

78 Chapter 3  Transforming data with Camel

3.2.1	 Using the Message Translator EIP

The Message Translator EIP is illustrated in figure 3.2.

Message
translator

Incoming
message

Translated
message

This pattern covers translating a message from one format to another. It’s the equiva-
lent of the Adapter pattern from the Gang of Four book.

NOTE   The Gang of Four book is Design Patterns: Elements of Reusable Object-Ori-
ented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (Addison-Wesley Professional, 1994). See the “Design Patterns” Wiki-
pedia article for more information: http://en.wikipedia.org/wiki/Design_
Patterns_(book).

Camel provides three ways of using this pattern:

¡	Using Processor
¡	Using Java beans
¡	Using <transform>

We’ll look at them each in turn.

Transforming using Processor

The Camel Processor is an interface defined in org.apache.camel.Processor with a
single method:

public void process(Exchange exchange) throws Exception;

Processor is a low-level API in which you work directly on the Camel Exchange
instance. It gives you full access to all of Camel’s moving parts from the CamelContext,
which you can obtain from the Exchange by using the getContext method.

Let’s look at an example. At Rider Auto Parts, you’ve been asked to generate daily
reports of newly received orders to be outputted to a CSV file. The company uses a
custom format for order entries, but to make things easy, they already have an HTTP
service that returns a list of orders for whatever date you input. The challenge you face
is mapping the returned data from the HTTP service to a CSV format and writing the
report to a file.

Because you want to get started on a prototype quickly, you decide to use the Camel
Processor, as shown in the following listing.

Figure 3.2   In the Message Translator
EIP, an incoming message goes
through a translator and comes out as
a translated message.

www.itbook.store/books/9781617292934

https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://itbook.store/books/9781617292934

	 79Transforming data by using EIPs and Java

Listing 3.1   Using Processor to translate from a custom format to a CSV format

import org.apache.camel.Exchange;
import org.apache.camel.Processor;

public class OrderToCsvProcessor implements Processor {
 public void process(Exchange exchange) throws Exception {
 String custom = exchange.getIn()
 .getBody(String.class);
 String id = custom.substring(0, 10);
 String customerId = custom.substring(10, 20);
 String date = custom.substring(20, 30);
 String items = custom.substring(30);
 String[] itemIds = items.split("@");
 StringBuilder csv = new StringBuilder();
 csv.append(id.trim());
 csv.append(",").append(date.trim());
 csv.append(",").append(customerId.trim());
 for (String item : itemIds) {
 csv.append(",").append(item.trim());
 }
 exchange.getIn().setBody(csv.toString());
 }
}

First you grab the custom format payload from the exchange 1. It’s a String type, so
you pass String in as the parameter to have the payload returned as a string. Then you
extract data from the custom format to the local variables 2. The custom format could
be anything, but in this example, it’s a fixed-length custom format. Then you map the
CSV format by building a string with comma-separated values 3. Finally, you replace
the custom payload with your new CSV payload 4.

You can use OrderToCsvProcessor from listing 3.1 in a Camel route as follows:

from("quartz2://report?cron=0+0+6+*+*+?")
 .to("http://riders.com/orders/cmd=received&date=yesterday")
 .process(new OrderToCsvProcessor())
 .to("file://riders/orders?fileName=report-${header.Date}.csv");

The preceding route uses Quartz to schedule a job to run once a day at 6 a.m. It then
invokes the HTTP service to retrieve the orders received yesterday, which are returned
in the custom format. Next, it uses OrderToCsvProcessor to map from the custom for-
mat to CSV format before writing the result to a file.

The equivalent route in XML is as follows:

<bean id="csvProcessor" class="camelinaction.OrderToCsvProcessor"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="quartz2://report?cron=0+0+6+*+*+?"/>
 <to uri="http://riders.com/orders/cmd=received&date=yesterday"/>
 <process ref="csvProcessor"/>
 <to uri="file://riders/orders?fileName=report-${header.Date}.csv"/>
 </route>
</camelContext>

1 Gets custom payload

2 �Extracts data to
local variables

3 Maps to CSV format

4 �Replaces payload with
CSV payload

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

80 Chapter 3  Transforming data with Camel

You can try this example yourself; we’ve provided a little unit test with the book’s source
code. Go to the chapter3/transform directory and run these Maven goals:

mvn test -Dtest=OrderToCsvProcessorTest
mvn test -Dtest=SpringOrderToCsvProcessorTest

After the test runs, a report file is written in the target/orders/received directory.

Using the getIn and getOut methods on exchanges
The Camel Exchange defines two methods for retrieving messages: getIn and getOut.
The getIn method returns the incoming message, and the getOut method accesses
the outbound message.

In two scenarios, the Camel end user will have to decide which method to use:

¡	A read-only scenario, such as when you’re logging the incoming message
¡	A write scenario, such as when you’re transforming the message

In the second scenario, you’d assume getOut should be used. That’s correct according
to theory, but in practice there’s a common pitfall when using getOut: the incoming mes-
sage headers and attachments will be lost. This is often not what you want, so you must
copy the headers and attachments from the incoming message to the outgoing mes-
sage, which can be tedious. The alternative is to set the changes directly on the incoming
message by using getIn, and not to use getOut at all. This is the practice we use most
often in this book.

Using a processor has one disadvantage: you’re required to use the Camel API. In the
next section, you’ll learn how to avoid this by using a bean.

Transforming using beans

Using beans is a great practice because it allows you to use any Java code and library
you wish. Camel imposes no restrictions whatsoever. Camel can invoke any bean you
choose, so you can use existing beans without having to rewrite or recompile them.

The following listing shows using a bean instead of Processor.

Listing 3.2   Using a bean to translate from a custom format to CSV format

public class OrderToCsvBean {
 public static String map(String custom) {
 String id = custom.substring(0, 10);
 String customerId = custom.substring(10, 20);
 String date = custom.substring(20, 30);
 String items = custom.substring(30);
 String[] itemIds = items.split("@");
 StringBuilder csv = new StringBuilder();
 csv.append(id.trim());
 csv.append(",").append(date.trim());
 csv.append(",").append(customerId.trim());
 for (String item : itemIds) {
 csv.append(",").append(item.trim());

1 �Extracts data to
local variables

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 81Transforming data by using EIPs and Java

 }
 return csv.toString();
 }
}

The first noticeable difference between listings 3.1 and 3.2 is that listing 3.2 doesn’t
use any Camel imports. Your bean is totally independent of the Camel API. The next
difference is that you can name the method signature in listing 3.2—in this case, it’s a
static method named map.

The method signature defines the contract, which means that the first parameter
(String custom) is the message body you’re going to use for translation. The method
returns a string, which means the translated data will be a String type. At runtime,
Camel binds to this method signature. We won’t go into any more details here; chapter
4 covers much more about using beans.

The mapping 1 is the same as with the processor. At the end, you return the map-
ping output 2.

You can use OrderToCsvBean in a Camel route as shown here:

from("quartz2://report?cron=0+0+6+*+*+?")
 .to("http://riders.com/orders/cmd=received&date=yesterday")
 .bean(new OrderToCsvBean())
 .to("file://riders/orders?fileName=report-${header.Date}.csv");

The equivalent route in XML is as follows:

<bean id="csvBean" class="camelinaction.OrderToCsvBean"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="quartz2://report?cron=0+0+6+*+*+?"/>
 <to uri="http://riders.com/orders/cmd=received&date=yesterday"/>
 <bean ref="csvBean"/>
 <to uri="file://riders/orders?fileName=report-${header.Date}.csv"/>
 </route>
</camelContext>

You can try this example from the chapter3/transform directory by using the following
Maven goals:

mvn test -Dtest=OrderToCsvBeanTest
mvn test -Dtest=SpringOrderToCsvBeanTest

This generates a test report file in the target/orders/received directory.
Another advantage of using beans over processors for mappings is that unit testing is

much easier. For example, listing 3.2 doesn’t require the use of Camel at all, as opposed
to listing 3.1, where you need to create and pass in an Exchange instance.

We’ll leave the beans for now, because they’re covered extensively in the next chapter.
But you should keep in mind that beans are useful for doing message transformation.

Transforming using the transform method from the Java DSL
transform is a method in the Java DSL that can be used in Camel routes to transform mes-
sages. By allowing the use of expressions, transform permits great flexibility, and using
expressions directly within the DSL can sometimes save time. Let’s look at a little example.

2 Returns CSV payload

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

82 Chapter 3  Transforming data with Camel

Suppose you need to prepare text for HTML formatting by replacing all line breaks
with a
 tag. You can do this with a built-in Camel expression that searches and
replaces using regular expressions:

from("direct:start")
 .transform(body().regexReplaceAll("\n", "
"))
 .to("mock:result");

What this route does is use the transform method to tell Camel that the message
should be transformed using an expression. Camel provides the Builder pattern to
build compound expressions from individual expressions. This is done by chaining
together method calls, which is the essence of the Builder pattern.

NOTE   For more information on the Builder pattern, see the Wikipedia article:
http://en.wikipedia.org/wiki/Builder_pattern.

In this example, you combine body and regexReplaceAll. The expression should be
read as follows: take the body and perform a regular expression that replaces all new
lines (\n) with
 tags. Now you’ve combined two methods that conform to a com-
pound Camel expression.

You can run this example from chapter3/transform directly by using the following
Maven goal:

mvn test -Dtest=TransformTest

The Direct component
The example here uses the Direct component (http://camel.apache.org/direct) as the
input source for the route (from("direct:start")). The Direct component provides
direct invocation between a producer and a consumer. It allows connectivity only from
within Camel, so external systems can’t send messages directly to it. This component is
used within Camel to do things such as link routes together or for testing.

For more information on the Direct component and other types of in-memory messaging,
see chapter 6.

Camel also allows you to use custom expressions. This is useful when you need to be in
full control and have Java code at your fingertips. For example, the previous example
could’ve been implemented as follows:

from("direct:start")
 .transform(new Expression() {
 public <T> T evaluate(Exchange exchange, Class<T> type) {
 String body = exchange.getIn().getBody(String.class);
 body = body.replaceAll("\n", "
");
 body = "<body>" + body + "</body>";
 return (T) body;
 }
 })
 .to("mock:result");

www.itbook.store/books/9781617292934

http://en.wikipedia.org/wiki/Builder_pattern
https://itbook.store/books/9781617292934

	 83Transforming data by using EIPs and Java

As you can see, this code uses an inlined Camel Expression that allows you to use Java
code in its evaluate method. This follows the same principle as the Camel Processor
you saw before.

Now let’s see how to transform data using the XML DSL.

Transforming using <transform> from the XML DSL
Using <transform> from the XML DSL is a bit different from the Java DSL because the
XML DSL isn’t as powerful. In the XML DSL, the Builder pattern expressions aren’t
available because with XML you don’t have a real programming language underneath.
What you can do instead is invoke a method on a bean or use scripting languages.

Let’s see how this works. The following route uses a method call on a bean as the
expression:

<bean id="htmlBean" class="camelinaction.HtmlBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <transform>
 <method bean="htmlBean" method="toHtml"/>
 </transform>
 <to uri="mock:result"/>
 </route>
</camelContext>

First, you declare a regular Spring bean to be used to transform the message 1. Then, in
the route, you use <transform> with a <method> call expression to invoke the bean 2.

The implementation of the htmlBean is straightforward:

public class HtmlBean {
 public static String toHtml(String body) {
 body = body.replaceAll("\n", "
");
 body = "<body>" + body + "</body>";
 return body;
 }
}

You can also use scripting languages as expressions in Camel. For example, you can use
Groovy, MVFLEX Expression Language (MVEL), JavaScript, or Camel’s own scripting
language, called Simple (explained in appendix A). We won’t go into detail on how to
use the other scripting languages at this point, but you can use the Simple language
to build strings with placeholders. It pretty much speaks for itself—we’re sure you’ll
understand what the following transformation does:

<transform>
 <simple>Hello ${body} how are you?</simple>
</transform>

You can try the XML DSL transformation examples provided in the book’s source code
by running the following Maven goals from the chapter3/transform directory:

mvn test -Dtest=SpringTransformMethodTest
mvn test -Dtest=SpringTransformScriptTest

1 Does the transformation

2 �Invokes toHtml method
on bean

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

84 Chapter 3  Transforming data with Camel

We’re done covering the Message Translator EIP, so let’s look at the related Content
Enricher EIP.

3.2.2	 Using the Content Enricher EIP

The Content Enricher EIP is illustrated in figure 3.3. This pattern documents the sce-
nario in which a message is enriched with data obtained from another resource.

Basic
message

Enriched
message

Resource

Enricher

Figure 3.3   In the Content Enricher EIP, an existing message
has data added to it from another source.

To help understand this pattern, let’s turn back to Rider Auto Parts. It turns out that
the data mapping you did in listing 3.1 wasn’t sufficient. Orders are also piled up on
an FTP server, and your job is to somehow merge this information into the existing
report. Figure 3.4 illustrates the scenario.

HTTP
server

FTP
server

Quartz
scheduler

Report
(CSV)

File
server

Order
(CSV)

Transform

Camel

Content
enricher

➊ ➋

➌

➍

➎

➏

Figure 3.4   An overview of the route that generates the orders
report, now with the content enricher pulling in data from an FTP
server

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 85Transforming data by using EIPs and Java

A scheduled consumer using Quartz starts the route every day at 6 a.m. 1. It then pulls
data from an HTTP server, which returns orders in a custom format 2, which is then
transformed into CSV format 3. At this point, you have to perform the additional con-
tent enrichment step 4 with the data obtained from the FTP server 5. After this, the
final report is written to the file server 6.

Before you dig into the code and see how to implement this, you need to take a step
back and look at how the Content Enricher EIP is implemented in Camel. Camel pro-
vides two methods in the DSL for implementing the pattern:

¡	pollEnrich—This method merges data retrieved from another source by using
a consumer.

¡	enrich—This method merges data retrieved from another source by using a
producer.

The difference between pollEnrich and enrich
The difference between pollEnrich and enrich is that the former uses a consumer,
and the latter uses a producer, to retrieve data from the source. Knowing the difference
is important: the file component can be used with both, but using enrich will write the
message content as a file; using pollEnrich will read the file as the source, which is
most likely the scenario you’ll be facing when enriching with files. The HTTP component
works only with enrich; it allows you to invoke an external HTTP service and use its reply
as the source.

Camel uses the org.apache.camel.processor.aggregate.AggregationStrategy inter-
face to merge the result from the source with the original message, as follows:

Exchange aggregate(Exchange oldExchange, Exchange newExchange);

This aggregate method is a callback that you must implement. The method has two
parameters: the first, named oldExchange, contains the original exchange; the second,
newExchange, is the enriched source. Your task is to enrich the message by using Java
code and return the merged result. Let's see this in action.

To solve the problem at Rider Auto Parts, you need to use pollEnrich because it’s
capable of polling a file from an FTP server.

Enriching using pollEnrich

The following listing shows how to use pollEnrich to retrieve the additional orders
from the remote FTP server and aggregate this data with the existing message by using
Camel’s AggregationStrategy.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

86 Chapter 3  Transforming data with Camel

Listing 3.3   Using pollEnrich to merge additional data with an existing message

from("quartz2://report?cron=0+0+6+*+*+?")
 .to("http://riders.com/orders/cmd=received&date=yesterday")
 .process(new OrderToCsvProcessor())
 .pollEnrich("ftp://riders.com/orders/?username=rider&password=secret",
 new AggregationStrategy() {
 public Exchange aggregate(Exchange oldExchange,
 Exchange newExchange) {
 if (newExchange == null) {
 return oldExchange;
 }
 String http = oldExchange.getIn()
 .getBody(String.class);
 String ftp = newExchange.getIn()
 .getBody(String.class);
 String body = http + "\n" + ftp;
 oldExchange.getIn().setBody(body);
 return oldExchange;
 }
 })
 .to("file://riders/orders");

The route is triggered by Quartz to run at 6 a.m. every day. You invoke the HTTP ser-
vice to retrieve the orders and transform them to CSV format by using a processor.

At this point, you need to enrich the existing data with the orders from the remote
FTP server. This is done by using pollEnrich 1, which consumes the remote file.

To merge the data, you use AggregationStrategy 2. First, you check whether any
data was consumed. If newExchange is null, there’s no remote file to consume, and you
just return the existing data. If there’s a remote file, you merge the data by concatenat-
ing the existing data with the new data and setting it back on the oldExchange. Then,
you return the merged data by returning the oldExchange. To write the CSV report file,
you use the file component 3.

TIP   Both enrich and pollEnrich can accept dynamic URIs, as discussed in
chapter 2, section 2.5.1.

PollEnrich uses a polling consumer to retrieve messages, and it offers three time-
out modes:

¡	pollEnrich(timeout = -1)—Polls the message and waits until a message arrives.
This mode blocks until a message exists.

¡	pollEnrich(timeout = 0)—Immediately polls the message if any exists; other-
wise, null is returned. It never waits for messages to arrive, so this mode never
blocks. This is the default mode.

¡	pollEnrich(timeout > 0)—Polls the message, and if no message exists, it waits
for one, waiting at most until the time-out triggers. This mode potentially blocks.

It’s a best practice to either use timeout = 0 or assign a time-out value when using pol-
lEnrich to avoid waiting indefinitely if no message arrives.

1 Uses pollEnrich to read FTP file

2 �Merges data using
AggregationStrategy

3 Writes output to file

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 87Transforming XML

Now let’s take a quick look at how to use enrich with the XML DSL; it’s a bit different
from using the Java DSL. You use enrich when you need to enrich the current mes-
sage with data from another source using request-reply messaging. A prime example
is to enrich the current message with the reply from a web service call. But let’s look at
another example, using XML to enrich the current message via the TCP transport:

<bean id="quoteStrategy"
 class="camelinaction.QuoteStrategy"/>
<route>
 <from uri="jms:queue:quotes"/>
 <enrich url="netty4:tcp://riders.com:9876?textline=true&sync=true"
 strategyRef="quoteStrategy"/>
 <to uri="log:quotes"/>
</route>

Here you use the Camel netty4 component for the TCP transport, configured to use
request-reply messaging by using the sync=true option. To merge the original message
with data from the remote server, <enrich> must refer to an AggregationStrategy.
This is done using the strategyRef attribute. As you can see in the example, the
quoteStrategy being referred to is a bean id 1, which contains the implementation
of the AggregationStrategy, where the merging takes place.

You’ve seen a lot about how to transform data in Camel, using Java code for the transfor-
mations. Now let’s take a peek into the XML world and look at the XSLT component, which
is used for transforming XML messages into another format by using XSLT stylesheets.

3.3	 Transforming XML
Camel provides two ways to perform XML transformations:

¡	XSLT component—For transforming an XML payload into another format by
using XSLT stylesheets

¡	XML marshaling—For marshaling and unmarshaling objects to and from XML

Both of these are covered in the following subsections.

3.3.1	 Transforming XML with XSLT

XSL Transformations (XSLT) is a declarative XML-based language used to transform
XML documents into other documents. For example, XSLT can be used to trans-
form XML into HTML for web pages or to transform an XML document into another
XML document with a different structure. XSLT is powerful and versatile, but it’s also
a complex language that takes time and effort to fully understand and master. Think
twice before deciding to pick up and use XSLT.

Camel provides the XSLT component as part of camel-core.jar, so you don’t need
any other dependencies. Using the XSLT component is straightforward because it’s just
another Camel component. The following route shows an example of how to use it; this
route is also illustrated in figure 3.5:

from("file://rider/inbox")
 .to("xslt://camelinaction/transform.xsl")
 .to("jms:queue:transformed")

1 �Bean implementing
AggregationStrategy

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

88 Chapter 3  Transforming data with Camel

Style
sheet

Transformed
message

D

JMS
producer

File
message

XSLT
component

File
consumer

➊ ➋ ➌

Figure 3.5   A Camel route using an XSLT component to transform an XML document
before it’s sent to a JMS queue

The file consumer picks up new files and routes them to the XSLT component, which
transforms the payload by using the stylesheet. After the transformation, the message is
routed to a JMS producer, which sends the message to the JMS queue. Notice in the pre-
ceding code how the URI for the XSLT component is defined: xslt://camelinaction/
transform.xsl. The part after the scheme is the URI location of the stylesheet to
use. Camel will look in the classpath by default. To look elsewhere, you can prefix the
resource name with any of the prefixes listed in table 3.2.

Table 3.2   Prefixes supported by the XSLT component for loading stylesheets

Prefix Example Description

<none> xslt://camelinaction/transform.xsl If no prefix is provided, Camel
loads the resource from the
classpath.

file: xslt://file:/rider/config/transform.xml Loads the resource from the
filesystem.

http: xslt://http://rider.com/styles/transform.xsl Loads the resource from
a URL.

ref: xslt://ref:resourceId Look up the resource from
the registry.

bean: xslt://bean:nameOfBean.methodName Look up a bean in the regis-
try and call a method which
returns the resource.

Let’s leave the XSLT world now and take a look at how to do XML-to-object marshaling
with Camel.

3.3.2	 Transforming XML with object marshaling

Any software engineer who has worked with XML knows that it’s a challenge to use
the low-level XML API that Java offers. Instead, people often prefer to work with

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 89Transforming XML

regular Java objects and use marshaling to transform between Java objects and XML
representations.

In Camel, this marshaling process is provided in ready-to-use components known as
data formats. Section 3.4 covers data formats in full detail, but you’ll take a quick look
at the XStream and JAXB data formats here as we cover XML transformations using
marshaling.

Transforming using XStream

XStream is a simple library for serializing objects to XML and back again. To use it, you
need camel-xstream.jar on the classpath and the XStream library itself.

Suppose you need to send messages in XML format to a shared JMS queue, which is
then used to integrate two systems. The following listing shows how this can be done.

Listing 3.4   Using XStream to transform a message into XML

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <xstream id="myXstream"/>
 </dataFormats>
 <route>
 <from uri="direct:foo"/>
 <marshal ref="myXstream"/>
 <to uri="jms:queue:foo"/>
 </route>
</camelContext>

When using the XML DSL, you can declare the data formats used at the top 1 of
the <camelContext>. By doing this, you can share the data formats in multiple routes.
In the first route, where you send messages to a JMS queue, you use marshal 2, which
refers to the id from 1, so Camel knows that the XStream data format is being used.

You can also use the XStream data format directly in the route, which can shorten
the syntax a bit, like this:

<route>
 <from uri="direct:foo"/>
 <marshal><xstream/></marshal>
 <to uri="jms:queue:foo"/>
</route>

The same route is shorter to write in the Java DSL, because you can do it with one line
per route:

from("direct:foo").marshal().xstream().to("jms:queue:foo");

Yes, using XStream is that simple. And the reverse operation, unmarshaling from XML
to an object, is just as simple:

<route>
 <from uri="jms:queue:foo"/>
 <unmarshal ref="myXstream"/>
 <to uri="direct:handleFoo"/>
</route>

1 Specifies XStream data format

2 Transforms to XML

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

90 Chapter 3  Transforming data with Camel

You’ve now seen how easy it is to use XStream with Camel. Let’s take a look at using
JAXB with Camel.

Transforming using JAXB
Java Architecture for XML Binding (JAXB) is a standard specification for XML binding,
and it’s provided out of the box in the Java runtime. Like XStream, it allows you to seri-
alize objects to XML and back again. It’s not as simple, but it does offer more bells and
whistles for controlling the XML output. And because it’s distributed in Java, you don’t
need any special JAR files on the classpath.

Unlike XStream, JAXB requires that you do a bit of work to declare the binding
between Java objects and the XML form. This is done using annotations. Suppose you
define a model bean to represent an order, as shown in listing 3.5, and you want to
transform this into XML before sending it to a JMS queue. Then you want to transform
it back to the order bean again when consuming from the JMS queue. This can be done
as shown in listings 3.5 and 3.6.

Listing 3.5   Annotating a bean with JAXB so it can be transformed to and from XML

package camelinaction;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class PurchaseOrder {
 @XmlAttribute
 private String name;
 @XmlAttribute
 private double price;
 @XmlAttribute
 private double amount;
}

Listing 3.5 shows how to use JAXB annotations to decorate your model object (omit-
ting the usual getters and setters). First you define @XmlRootElement 1 as a class-
level annotation to indicate that this class is an XML element. Then you define the
@XmlAccessorType to let JAXB access fields directly. To expose the fields of this model
object as XML attributes, you mark them with the @XmlAttribute annotation.

Using JAXB, you should be able to marshal a model object into an XML representa-
tion like this:

<purchaseOrder name="Camel in Action" price="6999" amount="1"/>

The following listing shows how you can use JAXB in routes to transform the Pur-
chaseOrder object to XML before it’s sent to a JMS queue, and then back again from
XML to the PurchaseOrder object when consuming from the same JMS queue.

1 �PurchaseOrder class is JAXB annotated

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 91Transforming with data formats

Listing 3.6   Using JAXB to serialize objects to and from XML

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <jaxb id="jaxb" contextPath="camelinaction"/>
 </dataFormats>
 <route>
 <from uri="direct:order"/>
 <marshal ref="jaxb"/>
 <to uri="jms:queue:order"/>
 </route>
 <route>
 <from uri="jms:queue:order"/>
 <unmarshal ref="jaxb"/>
 <to uri="direct:doSomething"/>
 </route>
</camelContext>

First you need to declare the JAXB data format 1. Note that a contextPath attribute
is also defined on the JAXB data format; this is a package name that instructs JAXB to
look in this package for classes that are JAXB annotated. The first route then marshals
to XML 2, and the second route unmarshals to transform the XML back into the Pur-
chaseOrder object 3.

You can try this example by running the following Maven goal from the chapter3/
order directory:

mvn test -Dtest=PurchaseOrderJaxbTest

NOTE   To tell JAXB which classes are JAXB annotated, you need to drop a spe-
cial jaxb.index file into each package in the classpath containing the POJO
classes. It’s a plain-text file in which each line lists the class name. In the preced-
ing example, the file contains a single line with the text PurchaseOrder.

That’s the basis of using XML object marshaling with XStream and JAXB. Both are
implemented in Camel via data formats that are capable of transforming back and
forth between various well-known formats.

3.4	 Transforming with data formats
In Camel, data formats are pluggable transformers that can transform messages from
one form to another, and vice versa. Each data format is represented in Camel as an
interface in org.apache.camel.spi.DataFormat containing two methods:

¡	marshal—For marshaling a message into another form, such as marshaling Java
objects to XML, CSV, JSON, HL7, or other well-known data models

¡	unmarshal—For performing the reverse operation, which turns data from well-
known formats back into a message

You may already have realized that these two functions are opposites; one is capable of
reversing what the other has done, as illustrated in figure 3.6.

1 �Declares JAXB
data format

2 Transforms from model to XML

3 Transforms from XML to model

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

92 Chapter 3  Transforming data with Camel

Message

Message
body marshal

Class
Attribute
Attribute unmarshal

Message

Message
body

010011010101...

We touched on data formats in section 3.3, where we covered XML transformations.
This section covers data formats in more depth and using data types other than XML,
such as CSV and JSON. We’ll even look at how to create your own data formats. We’ll
start our journey by briefly looking at the data formats Camel provides out of the box.

3.4.1	 Data formats provided with Camel

Camel provides data formats for a range of well-known data models, some of which are
listed in table 3.3.

Table 3.3   Selection of data formats provided out of the box with Camel

Data format Data model Artifact Description

Avro Binary Avro
format

camel-avro Supports serializing and deserializing mes-
sages by using Apache Avro

Base64 Base64 string camel-base64 Can encode and decode into a base64 string

Bindy CSV, FIX, fixed
length

camel-bindy Binds various data models to model objects by
using annotations

Crypto Any camel-crypto Encrypts and decrypts data by using the Java
Cryptography Extension

CSV CSV camel-csv Transforms to and from CSV by using the
Apache Commons CSV library

GSon JSON camel-gson Transforms to and from JSON by using the
Google GSON library

GZip Any camel-gzip Compresses and decompresses files (compati-
ble with the popular gzip/gunzip tools)

HL7 HL7 camel-hl7 Transforms to and from HL7, which is a well-
known data format in the health-care industry

JAXB XML camel-jaxb Uses the JAXB 2.x standard for XML binding to
and from Java objects

Jackson JSON camel-jackson Transforms to and from JSON by using the
ultra-fast Jackson library

PGP Any camel-crypto Encrypts and decrypts data by using PGP

Figure 3.6   An object is marshaled to a
binary representation; unmarshal can
be used to get the object back.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 93Transforming with data formats

Data format Data model Artifact Description

Protobuf XML camel-protobuf Transforms to and from XML by using the Goo-
gle Protocol Buffers library

SOAP XML camel-soap Transforms to and from SOAP

Serialization Object camel-core Uses Java Object Serialization to transform
objects to and from a serialized stream

Syslog RFC3164,
RFC5424

camel-syslog Transforms between RFC3164/RFC5424 mes-
sages and SyslogMessage model objects

XMLSecurity XML camel-xmlsecurity Facilitates encryption and decryption of XML
documents

XStream XML camel-xstream Uses XStream for XML binding to and from
Java objects

XStream JSON camel-xstream Transforms to and from JSON by using the
XStream library

Zip Any camel-core Compresses and decompresses messages,
and is most effective when dealing with large
XML- or text-based payloads

Zip file Zip file camel-zipfile Compresses and decompresses zip files

Camel provides more than 40 data formats out of the box. You can read more about
these data formats at the Camel website (http://camel.apache.org/data-format.html).
We’ve picked three to cover in the following section. They’re among the most com-
monly used, and what you learn about those will also apply to the remainder of the
data formats.

3.4.2	 Using Camel’s CSV data format

The camel-csv data format is capable of transforming to and from CSV format. It uses
Apache Commons CSV to do the work.

Suppose you need to consume CSV files, split out each row, and send it to a JMS
queue. Sounds hard to do, but it’s possible with little effort in a Camel route:

from("file://rider/csvfiles")
 .unmarshal().csv()
 .split(body()).to("jms:queue:csv.record");

All you have to do is unmarshal the CSV files, which will read the file line by line and
store all lines in the message body as a java.util.List<List> type. Then you use the
splitter to split up the body, which will break the java.util.List<List<String>> into
rows (each row represented as another List<String> containing the fields) and send
each row to the JMS queue. You may not want to send each row as a List type to the
JMS queue, so you can transform the row before sending, perhaps using a processor.

Table 3.3   Selection of data formats provided out of the box with Camel  (continued)

www.itbook.store/books/9781617292934

http://camel.apache.org/data-format.html
https://itbook.store/books/9781617292934

94 Chapter 3  Transforming data with Camel

The same example in XML is a bit different, as shown here:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file://rider/csvfiles"/>
 <unmarshal><csv/></unmarshal>
 <split>
 <simple>body</simple>
 <to uri="jms:queue:csv.record"/>
 </split>
 </route>
</camelContext>

The noticeable difference is in the way you tell <split> that it should split up the message
body. To do this, you need to provide <split> with an Expression, which is what the split-
ter should iterate when it performs the splitting. To do so, you can use Camel’s built-in
expression language called Simple (see appendix A), which knows how to do that.

NOTE   The Splitter EIP is fully covered in chapter 5.

This example is in the source code for the book, in the chapter3/order directory. You
can try the examples by running the following Maven goals:

mvn test -Dtest=PurchaseOrderCsvTest
mvn test -Dtest=PurchaseOrderCsvSpringTest

At first, the data types that the CSV data format uses may seem confusing. They’re
listed in table 3.4.

Table 3.4   Data types that camel-csv uses when transforming to and from CSV format

Operation From type To type Description

marshal Map<String,Object> OutputStream Contains a single row in
CSV format.

marshal List<Map<String,Object>> OutputStream Contains multiple rows
in CSV format; each
row is separated by \n
(newline).

unmarshal InputStream List<List<String>> Contains a List
of rows; each row is
another List of fields.

One problem with camel-csv is that it uses generic data types, such as Map or List, to
represent CSV records. Often you’ll already have model objects to represent your data
in memory. Let’s look at using model objects with the camel-bindy component.

3.4.3	 Using Camel’s Bindy data format

Two of the existing CSV-related data formats (camel-csv and camel-flatpack) are older
libraries that don’t take advantage of the new features in Java 1.5, such as annotations

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 95Transforming with data formats

and generics. In light of this deficiency, Charles Moulliard stepped up and wrote the
camel-bindy component to take advantage of these new possibilities. It’s capable of
binding CSV, FIX, and fixed-length formats to existing model objects by using annota-
tions. This is similar to what JAXB does for XML.

Suppose you have a model object that represents a purchase order. By annotating the
model object with camel-bindy annotations, you can easily transform messages between
CSV and Java model objects, as shown in the following listing.

Listing 3.7   Model object annotated for CSV transformation

package camelinaction.bindy;

import java.math.BigDecimal;
import org.apache.camel.dataformat.bindy.annotation.CsvRecord;
import org.apache.camel.dataformat.bindy.annotation.DataField;

@CsvRecord(separator = ",", crlf = "UNIX")
public class PurchaseOrder {
 @DataField(pos = 1)
 private String name;
 @DataField(pos = 2, precision = 2)
 private BigDecimal price;
 @DataField(pos = 3)
 private int amount;
}

First you mark the class with the @CsvRecord annotation 1 to indicate that it rep-
resents a record in CSV format. Then you annotate the fields with @DataField accord-
ing to the layout of the CSV record 2. Using the pos attribute, you can dictate the
order in which they’re output in CSV; pos starts with a value of 1. For numeric fields,
you can additionally declare precision, which in this example is set to 2, indicating that
the price should use two digits for cents. Bindy also has attributes for fine-grained lay-
out of the fields, such as pattern, trim, and length. You can use pattern to indicate
a data pattern, trim to trim the input, and length to restrict a text description to a
certain number of characters.

Before you look at how to use Bindy in Camel routes, the data types Bindy expects to
use are listed in table 3.5.

Table 3.5   Data types that Bindy uses when transforming to and from CSV format

Operation From type To type Output description

marshal List<Map<String,
Object>>

OutputStream Contains multiple rows in CSV
format; each row is separated by
\n (newline).

unmarshal InputStream List<Map<String,
Object>>

Contains a List of rows; each
row contains 1 ... n data models
contained in a Map.

1 Maps to CSV record

2 Maps to column in CSV record

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

96 Chapter 3  Transforming data with Camel

The important thing to notice in table 3.5 is that Bindy uses Map<String, Object> to
represent a CSV row. At first, this may seem odd. Why doesn’t it use a single model
object for that? The answer is that you can have multiple model objects with the CSV
record being scattered across those objects. For example, you could have fields 1 to 3
in one model object, fields 4 to 9 in another, and fields 10 to 12 in a third.

The map entry <String, Object> is distilled as follows:

¡	Map key (String)—Must contain the fully qualified class name of the model
object

¡	Map value (Object)—Must contain the model object

If this seems confusing, don’t worry. The following listing should make it clearer.

Listing 3.8   Using Bindy to transform a model object to CSV format

public void testBindy() throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(createRoute());
 context.start();
 MockEndpoint mock = context.getEndpoint("mock:result",
 MockEndpoint.class);
 mock.expectedBodiesReceived("Camel in Action,69.99,1\n");
 PurchaseOrder order = new PurchaseOrder();
 order.setAmount(1);
 order.setPrice(new BigDecimal("69.99"));
 order.setName("Camel in Action");
 ProducerTemplate template = context.createProducerTemplate();
 template.sendBody("direct:toCsv", order);
 mock.assertIsSatisfied();
}

public RouteBuilder createRoute() {
 return new RouteBuilder() {
 public void configure() throws Exception {
 from("direct:toCsv")
 .marshal().bindy(BindyType.Csv,
 camelinaction.bindy.PurchaseOrder.class)
 .to("mock:result");
 }
 };
}

In listing 3.8, you first create and populate the order model by using regular Java
setters 1. Then you send the order model to the route by sending it to the direct:toCsv
endpoint 2 used in the route. The route will then marshal the order model to CSV by
using Bindy 3. Notice that Bindy is configured to use CSV mode via BindyType.Csv. To
let Bindy know how to map the order model object, you need to provide a class anno-
tated with Bindy annotations, as in listing 3.7.

1 Creates model object as usual

2 Starts test

3 �Transforms model
object to CSV

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 97Transforming with data formats

NOTE   Listing 3.8 uses MockEndpoint to easily test that the CSV record is as
expected. Chapter 9 covers testing with Camel, and you’ll learn all about using
MockEndpoint.

You can try this example from the chapter3/order directory by using the following
Maven goal:

mvn test –Dtest=PurchaseOrderBindyTest

The source code for the book also contains a reverse example of how to use Bindy to trans-
form a CSV record into a Java object. You can try it by using the following Maven goal:

mvn test –Dtest=PurchaseOrderUnmarshalBindyTest

CSV is only one of the well-known data formats that Bindy supports. Bindy is equally
capable of working with fixed-length and FIX data formats, both of which follow the
same principles as CSV.

It’s now time to leave CSV and look at a more modern format: JSON.

3.4.4	 Using Camel’s JSON data format

JavaScript Object Notation (JSON) is a data-interchange format, and Camel provides
six components that support the JSON data format: camel-xstream, camel-gson,
camel-jackson, camel-boon, camel-fastjson, camel-johnzon. This section focuses on
camel-jackson because Jackson is a popular JSON library.

Back at Rider Auto Parts, you now have to implement a new service that returns
order summaries rendered in JSON format. Doing this with Camel is fairly easy, because
Camel has all the ingredients needed to brew this service. The following listing shows
how to ramp up a prototype.

Listing 3.9   An HTTP service that returns order summaries rendered in JSON format

<bean id="orderService" class="camelinaction.OrderServiceBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <json id="json" library="Jackson"/>
 </dataFormats>
 <route>
 <from uri="jetty://http://0.0.0.0:8080/order"/>
 <bean ref="orderService" method="lookup"/>
 <marshal ref="json"/>
 </route>
</camelContext>

First you need to set up the JSON data format and specify that the Jackson library
should be used 1. Then you define a route that exposes the HTTP service using the
Jetty endpoint. This example exposes the Jetty endpoint directly in the URI. By using
http://0.0.0.0:8080/order, you tell Jetty that any client can reach this service on
port 8080. Whenever a request hits this HTTP service, it’s routed to the orderService

1 Sets up JSON data format

2 �Invokes bean to
retrieve data for reply

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

98 Chapter 3  Transforming data with Camel

bean 2, and the lookup method is invoked on that bean. The result of this bean invo-
cation is then marshaled to JSON format and returned to the HTTP client.

The order service bean could have a method signature such as this:

public PurchaseOrder lookup(@Header(name = "id") String id)

This signature allows you to implement the lookup logic as you wish. You’ll learn more
about the @Header annotation in chapter 4, when we cover how bean parameter bind-
ing works in Camel.

Notice that the service bean can return a POJO that the JSON library is capable of
marshaling. For example, suppose you used the PurchaseOrder from listing 3.7 and
had JSON output as follows:

{"name":"Camel in Action","amount":1.0,"price":69.99}

The HTTP service itself can be invoked by an HTTP Get request with the id of the order
as a parameter: http://0.0.0.0:8080/order/service?id=123.

Notice how easy it is with Camel to bind the HTTP id parameter as the String id
parameter with the help of the @Header annotation.

You can try this example yourself from the chapter3/order directory by using the
following Maven goal:

mvn test –Dtest=PurchaseOrderJSONTest

So far, we’ve used data formats with their default settings. But what if you need to con-
figure the data format, for example, to use another splitter character with the CSV data
format? That’s the topic of the next section.

3.4.5	 Configuring Camel data formats

In section 3.4.2, you used the CSV data format, but this data format offers many addi-
tional settings. The following listing shows how to configure the CSV data format.

Listing 3.10   Configuring the CSV data format

public void configure() {
 CsvDataFormat myCsv = new CsvDataFormat()
 .setDelimiter(';')
 .setHeader(new String[]{
 "id", "customerId", "date", "item", "amount", "description"});

 from("direct:toCsv")
 .marshal(myCsv)
 .to("file://acme/outbox/csv");
}

Configuring data formats in Camel is typically done directly on DataFormat itself;
sometimes you may also need to use the API that the third-party library under the
hood provides. In listing 3.10, the CSV data format nicely wraps the third-party API
so you can just configure the DataFormat directly 1. Here you set the semicolon as
a delimiter and specify the order of the fields 1. The use of the data format stays the

1 �Creates and
configures a
custom CSV
data format

2 Uses CSV data format

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 99Transforming with templates

same, so all you need to do is refer to it from the marshal 2 or unmarshal methods.
This same principle applies to all data formats in Camel.

TIP   You can learn how to create your own data format in chapter 8, section 8.5.

You’ve learned all about data formats, and now it’s time to say goodbye to data formats
and take a look at using templating with Camel for data transformation. Templating is
extremely useful when you need to generate automatic reply emails.

3.5	 Transforming with templates
Camel provides slick integration with two template languages:

¡	Apache Velocity—Probably the best-known templating language (http://camel.
apache.org/velocity.html)

¡	Apache FreeMarker—Another great templating language from Apache (http://
camel.apache.org/freemarker.html)

These two templating languages are fairly similar to use, so we discuss only Velocity here.

3.5.1	 Using Apache Velocity

Rider Auto Parts has implemented a new order system that must send an email reply
when a customer has submitted an order. Your job is to implement this feature.

The reply email could look like this:

Dear customer
Thank you for ordering X piece(s) of XXX at a cost of XXX.
This is an automated email, please do not reply.

Three pieces of information in the email must be replaced at runtime with real values.
You need to adjust the email to use the Velocity template language, and then place it
into the source repository as src/test/resources/email.vm:

Dear customer
Thank you for ordering ${body.amount} piece(s) of ${body.name} at a cost of

${body.price}.
This is an automated email, please do not reply.

Notice that you insert ${ } placeholders in the template, which instructs Velocity to eval-
uate and replace them at runtime. Camel prepopulates the Velocity context with numer-
ous entities that are then available to Velocity. Those entities are listed in table 3.6.

NOTE   The entities in table 3.6 also apply to other templating languages, such
as FreeMarker.

Table 3.6   Entities that are prepopulated in the Velocity context and available at runtime

Entity Type Description

camelContext org.apache.camel.CamelContext The CamelContext.

exchange org.apache.camel.Exchange The current exchange.

www.itbook.store/books/9781617292934

http://camel.apache.org/velocity.html
http://camel.apache.org/velocity.html
http://camel.apache.org/freemarker.html
http://camel.apache.org/freemarker.html
https://itbook.store/books/9781617292934

100 Chapter 3  Transforming data with Camel

Entity Type Description

in org.apache.camel.Message The input message. This can clash with
a reserved word in some languages; use
request instead.

request org.apache.camel.Message The input message.

body java.lang.Object The input message body.

headers java.util.Map The input message headers.

response org.apache.camel.Message The output message.

out org.apache.camel.Message The output message. This can clash with
a reserved word in some languages; use
response instead.

Using Velocity in a Camel route is as simple as this:

from("direct:sendMail")
 .setHeader("Subject", constant("Thanks for ordering"))
 .setHeader("From", constant("donotreply@riders.com"))
 .to("velocity://rider/mail.vm")
 .to("smtp://mail.riders.com?user=camel&password=secret");

All you have to do is route the message to the Velocity endpoint that’s configured with
the template you want to use, which is the rider/mail.vm file that’s loaded from the
classpath by default. All the template components in Camel use the same resource
loader, which allows you to load templates from the classpath, file paths, and other
such locations. You can use the same prefixes listed in table 3.2.

You can try this example by going to the chapter3/order directory in the book’s
source code and running the following Maven goal:

mvn test -Dtest=PurchaseOrderVelocityTest

We’ll now leave data transformation and look at type conversion. Camel has a powerful
type-converter mechanism that removes all need for boilerplate type-converter code.

3.6	 Understanding Camel type converters
Camel provides a built-in type-converter system that automatically converts between
well-known types. This system allows Camel components to easily work together with-
out having type mismatches. And from the Camel user’s perspective, type conversions
are built into the API in many places without being invasive. For example, you used it
in listing 3.1:

String custom = exchange.getIn().getBody(String.class);

The getBody method is passed the type you want to have returned. Under the covers,
the type-converter system converts the returned type to a String if needed.

Table 3.6   Entities that are prepopulated in the Velocity context and available at runtime  (continued)

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 101Understanding Camel type converters

In this section, you’ll take a look at the insides of the type-converter system. We’ll
explain how Camel scans the classpath on startup to register type converters dynami-
cally. We’ll also show how to use it from a Camel route, and how to build your own type
converters.

3.6.1	 How the Camel type-converter mechanism works

To understand the type-converter system, you first need to know what a type converter
in Camel is. Figure 3.7 illustrates the relationship between TypeConverterRegistry
and the TypeConverters it holds.

TypeConverter
Registry TypeConverter

0..n

TypeConverterRegistry is where all the type converters are registered when Camel is
started. At runtime, Camel uses the TypeConverterRegistry’s lookup method to look
up a suitable TypeConverter:

TypeConverter lookup(Class<?> toType, Class<?> fromType);

By using TypeConverter, Camel can then convert one type to another by using Type-
Converter’s convertTo method, which is defined as follows:

<T> T convertTo(Class<T> type, Object value);

NOTE   Camel implements about 350 or more type converters out of the box,
which are capable of converting to and from the most commonly used types.

Loading type converters into the registry

On startup, Camel loads all the type converters into the TypeConverterRegistry by using
a classpath-scanning solution. This allows Camel to pick up type converters not only from
camel-core, but also from any of the other Camel components, including your Camel
applications. You’ll see this in section 3.6.3 when you build your own type converter.

Camel uses org.apache.camel.impl.converter.AnnotationTypeConverterLoader
to scan and load the type converters. To avoid scanning zillions of classes, it reads
a service discovery file in the META-INF folder: META-INF/services/org/apache/
camel/TypeConverter. This is a plain-text file that has a list of fully qualified class names
and packages that contain Camel type converters. The special file is needed to avoid
scanning every possible JAR and all their packages, which would be time-consuming.
This special file tells Camel whether the JAR file contains type converters. For example,
the file in camel-cxf contains the following entries:

org.apache.camel.component.cxf.converter.CxfConverter

Figure 3.7   The TypeConverterRegistry
contains many TypeConverters

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

102 Chapter 3  Transforming data with Camel

org.apache.camel.component.cxf.converter.CxfPayloadConverter

AnnotationTypeConverterLoader loads those classes that have been annotated with
@Converter, and then searches within them for public methods that are annotated
with @Converter. Each of those methods is considered a type converter. Yes, the class @
Converter annotation is a bit of overkill when we’ve already defined the class name in
the TypeConverter text file. We need this because we can also specify package names,
which could include many classes. For example, a package name of org.apache.camel
.component.cxf.converter also could have been provided in the TypeConverter text
file and would have included CxfConverter and CxfPayloadConverter. Using the fully
qualified class name is preferred, though, because Camel loads them more quickly.

This process is best illustrated with an example. The following code is a snippet from
the IOConverter class from the camel-core JAR:

@Converter
public final class IOConverter {
 @Converter
 public static InputStream toInputStream(URL url) throws IOException {
 return IOHelper.buffered(url.openStream());
 }
}

Camel will go over each method annotated with @Converter and look at the method
signature. The first parameter is the from type, and the return type is the to type. In this
example, you have a TypeConverter that can convert from a URL to an InputStream.
By doing this, Camel loads all the built-in type converters, including those from the
Camel components in use.

TIP   Type converters can also be loaded into the registry manually. This is often
useful if you need to quickly add a type converter into your application or want
full control over when it will be loaded. You can find more information in the
online documentation (http://camel.apache.org/type-converter.html).

Now that you know how the Camel type converters are loaded, let’s look at using them.

3.6.2	 Using Camel type converters

As we mentioned, the Camel type converters are used throughout Camel, often auto-
matically. But you might want to use them to force a specific type to be used in a route,
such as before sending data back to a caller or a JMS destination. Let’s look at how to
do that.

Suppose you need to route files to a JMS queue by using javax.jms.TextMessage.
To do so, you can convert each file to a String, which forces the JMS component to
use TextMessage. This is easy to do in Camel—you use the convertBodyTo method, as
shown here:

from("file://riders/inbox")
 .convertBodyTo(String.class)

www.itbook.store/books/9781617292934

http://camel.apache.org/type-converter.html
https://itbook.store/books/9781617292934

	 103Understanding Camel type converters

 .to("jms:queue:inbox");

If you’re using the XML DSL, you provide the type as an attribute instead, like this:

<route>
 <from uri="file://riders/inbox"/>
 <convertBodyTo type="java.lang.String"/>
 <to uri="jms:queue:inbox"/>
</route>

You can omit the java.lang. prefix on the type, which can shorten the syntax: <con-
vertBodyTo type="String"/>.

Another reason for using convertBodyTo is to read files by using a fixed encoding
such as UTF-8. This is done by passing in the encoding as the second parameter:

from("file://riders/inbox")
 .convertBodyTo(String.class, "UTF-8")
 .to("jms:queue:inbox");

TIP   If you have trouble with a route because of the payload or its type, try using
.convertBodyTo(String.class) at the start of the route to convert to a String
type, which is a well-supported type. If the payload can’t be converted to the
desired type, a NoTypeConversionAvailableException exception is thrown.

That’s all there is to using type converters in Camel routes. Before we wrap up this
chapter, though, let’s take a look at how to write your own type converter.

3.6.3	 Writing your own type converter

Writing your own type converter is easy in Camel. You already saw what a type converter
looks like in section 3.6.1, when you looked at how type converters work.

Suppose you want to write a custom type converter that can convert a byte[] into a
PurchaseOrder model object (an object you used in listing 3.7). As you saw earlier, you
need to create an @Converter class containing the type-converter method, as shown in
the following listing.

Listing 3.11   A custom type converter to convert from byte[] to PurchaseOrder
type

@Converter
public final class PurchaseOrderConverter
 @Converter
 public static PurchaseOrder toPurchaseOrder(byte[] data,
 Exchange exchange) {
 TypeConverter converter = exchange.getContext()
 .getTypeConverter();
 String s = converter.convertTo(String.class, data);
 if (s == null || s.length() < 30) {
 throw new IllegalArgumentException("data is invalid");
 }

1 �Grabs TypeConverter
to reuse

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

104 Chapter 3  Transforming data with Camel

 s = s.replaceAll("##START##", "");
 s = s.replaceAll("##END##", "");
 String name = s.substring(0, 9).trim();

 String s2 = s.substring(10, 19).trim();
 BigDecimal price = new BigDecimal(s2);

 price.setScale(2);
 String s3 = s.substring(20).trim();
 Integer amount = converter
 .convertTo(Integer.class, s3);
 return new PurchaseOrder(name, price, amount);
 }
}

The Exchange gives you access to the CamelContext and thus to the parent TypeCon-
verter 1, which you use in this method to convert between strings and numbers.
The rest of the code is the logic for parsing the custom protocol and returning the
PurchaseOrder 2. Notice that you can use converter to easily convert between well-
known types.

All you need to do now is add the service discovery file, named TypeConverter, in the
META-INF directory. As explained previously, this file contains the fully qualified name
of the @Converter class.

If you cat the TypeConverter file, you’ll see this:

$ cat src/main/resources/META-INF/services/org/apache/camel/TypeConverter
camelinaction.PurchaseOrderConverter

This example can be found in the chapter3/converter directory of the book’s source
code, which you can try by using the following Maven goal:

mvn test -Dtest=PurchaseOrderConverterTest

Returning null values

By default, a null return value from a type converter isn’t valid. Camel considers null
as a “miss” and adds the pair of types you’re trying to convert to a blacklist so they won’t
be tried again. For example, if our previous example returned null, the conversion
from byte[] to PurchaseOrder would be blacklisted. If null is a valid return value
for your conversion, you can force Camel to accept it by using the allowNull option
on the @Converter annotation. For example, if the example in listing 3.11 required a
null return value, you could do something like this:

@Converter(allowNull = true)
public static PurchaseOrder toPurchaseOrder(byte[] data,
 Exchange exchange) {
...

Adding type converters to camel-core

If you’re on track to becoming a star Camel rider and want to write a shiny new type
converter for the camel-core module, you may notice that type-converter loading is han-
dled differently there. The META-INF/services/org/apache/camel/TypeConverter file
specifies the org.apache.camel.core package, which doesn’t exist. It’s just a dummy

2 �Converts from String to
PurchaseOrder

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	 105Summary and best practices

package name. The type converters for camel-core are specified directly in org.apache.
camel.impl.converter.CorePackageScanClassResolver, and you can add them
there. And that completes this chapter on transforming data with Camel.

3.7	 Summary and best practices
Data transformation is the cornerstone of any integration kit; it bridges the gap
between various data types and formats. It’s also essential in today’s industry, because
more and more disparate systems need to be integrated to support the ever-changing
businesses and world we live in.

This chapter covered many of the possibilities Camel offers for data transformation.
You learned how to format messages by using EIPs and beans. You also learned that
Camel provides special support for transforming XML documents by using XSLT com-
ponents and XML-capable data formats. Camel provides data formats for well-known
data models, which you learned to use, and it even allows you to build your own data
formats. We also took a look into the templating world, which can be used to format
data in specialized cases, such as generating email bodies. Finally, we looked at how the
Camel type-converter mechanism works and learned that it’s used internally to help all
the Camel components work together. You learned how to use it in routes and how to
write your own converters.

Here are a few key tips you should take away from this chapter:

¡	Data transformation is often required—Integrating IT systems often requires you to
use different data formats when exchanging data. Camel can act as the mediator
and has strong support for transforming data in any way possible. Use the various
features in Camel to aid with your transformation needs.

¡	Java is powerful—Using Java code isn’t a worse solution than using a fancy map-
ping tool. Don’t underestimate the power of the Java language. Even if it takes 50
lines of grunt boilerplate code to get the job done, you have a solution that can
easily be maintained by fellow engineers.

¡	Prefer to use beans over processors—If you’re using Java code for data transforma-
tion, you can use beans or processors. Processors are more dependent on the
Camel API, whereas beans allow loose coupling. Chapter 4 covers how to use beans.

This chapter, along with chapter 2, covered two crucial features of integration kits:
routing and transformation. The next chapter dives into the world of Java beans, and
you’ll see how Camel can easily adapt to and use your existing beans. This allows a
higher degree of reuse and loose coupling, so you can keep your business and integra-
tion logic clean and apart from Camel and other middleware APIs.

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

Claus Ibsen ● Jonathan Anstey

A
pache Camel is a Java framework that implements
enterprise integration patterns (EIPs) and comes with
over 200 adapters to third-party systems. A concise

DSL lets you build integration logic into your app with just
a few lines of Java or XML. By using Camel, you benefi t
from the testing and experience of a large and vibrant open
source community.

Camel in Action, Second Edition is the defi nitive guide to the
Camel framework. It starts with core concepts like sending,
receiving, routing, and transforming data. It then goes in
depth on many topics such as how to develop, debug, test,
deal with errors, secure, scale, cluster, deploy, and monitor
your Camel applications. The book also discusses how to run
Camel with microservices, reactive systems, containers, and in
the cloud.

What’s Inside
● Coverage of all relevant EIPs
● Camel microservices with Spring Boot
● Camel on Docker and Kubernetes
● Error handling, testing, security, clustering,
 monitoring, and deployment
● Hundreds of examples in Java and XML

Readers should be familiar with Java. This book is accessible
to beginners and invaluable to experts.

Claus Ibsen is a senior principal engineer for Red Hat and the
head of the Apache Camel project. Jonathan Anstey is an engi-
neering manager at Red Hat and a core Camel contributor.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/camel-in-action-second-edition

$69.99 / Can $92.99 [INCLUDING eBOOK]

Camel IN ACTION Second Edition

ENTERPRISE JAVA

M A N N I N G

“I highly recommend this
book to anyone with even a
passing interest in Apache

Camel. Do take Camel
for a ride ... and don’t

 get the hump!”
—From the Foreword by

James Strachan
Creator of Apache Camel

“Claus and Jon are great
writers, relying on fi gures

and diagrams where needed
and presenting lots of code

snippets and worked
 examples.”—From the Foreword by
Dr. Mark Little

Technical Director of JBoss

“The second edition of
this all-time classic is an

indispensable companion for
your Apache Camel rides.”—Gregor Zurowski

Apache Camel Committer

Go to
manning.com/

freebook

www.itbook.store/books/9781617292934

https://itbook.store/books/9781617292934

	Camel in Action, Second Edition Sample Chapter
	3 Transforming
	3.1	Data transformation overview
	3.2	Transforming data by using EIPs and Java
	3.2.1	Using the Message Translator EIP
	3.2.2	Using the Content Enricher EIP

	3.3	Transforming XML
	3.3.1	Transforming XML with XSLT
	3.3.2	Transforming XML with object marshaling

	3.4	Transforming with data formats
	3.4.1	Data formats provided with Camel
	3.4.2	Using Camel’s CSV data format
	3.4.3	Using Camel’s Bindy data format
	3.4.4	Using Camel’s JSON data format
	3.4.5	Configuring Camel data formats

	3.5	Transforming with templates
	3.5.1	Using Apache Velocity

	3.6	Understanding Camel type converters
	3.6.1	How the Camel type-converter mechanism works
	3.6.2	Using Camel type converters
	3.6.3	Writing your own type converter

	3.7	Summary and best practices

