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3

1Functional concurrency
foundations

This chapter covers
¡	Why you need concurrency 

¡	Differences between concurrency, parallelism, 
and multithreading 

¡	Avoiding common pitfalls when writing 
concurrent applications 

¡	Sharing variables between threads

¡	Using the functional paradigm to develop 
concurrent programs

In the past, software developers were confident that, over time, their programs 
would run faster than ever. This proved true over the years due to improved hard-
ware that enabled programs to increase speed with each new generation. 

For the past 50 years, the hardware industry has experienced uninterrupted 
improvements. Prior to 2005, the processor evolution continuously delivered faster 
single-core CPUs, until finally reaching the limit of CPU speed predicted by Gordon 
Moore.  Moore, a computer scientist, predicted in 1965 that the density and speed of 
transistors would double every 18 months before reaching a maximum speed beyond 
which technology couldn’t advance. The original prediction for the increase of CPU 
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4 Chapter 1  Functional concurrency foundations

speed presumed a speed-doubling trend for 10 years. Moore’s prediction, known as 
Moore’s Law, was correct—except that progress continued for almost 50 years (decades 
past his estimate). 

Today, the single-processor CPU has nearly reached the speed of light, all the while 
generating an enormous amount of heat due to energy dissipation; this heat is the lim-
iting factor to further improvements. 

CPU has nearly reached the speed of light 
The speed of light is the absolute physical limit for electric transmission, which is also 
the limit for electric signals in the CPU. No data propagation can be transmitted faster 
than the light medium. Consequentially, signals cannot propagate across the surface of 
the chip fast enough to allow higher speeds. Modern chips have a base cycle frequency 
of roughly 3.5 GHz, meaning 1 cycle every 1/3,500,000,000 seconds, or 2.85 nanosec-
onds. The speed of light is about 3e8 meters per second, which means that data can be 
propagated around 0.30 cm (about a foot) in a nanosecond. But the bigger the chip, the 
longer it takes for data to travel through it. 

A fundamental relationship exists between circuit length (CPU physical size) and pro-
cessing speed: the time required to perform an operation is a cycle of circuit length and 
the speed of light. Because the speed of light is constant, the only variable is the size of 
the CPU; that is, you need a small CPU to increase the speed, because shorter circuits 
require smaller and fewer switches. The smaller the CPU, the faster the transmission. 
In fact, creating a smaller chip was the primary approach to building faster CPUs with 
higher clock rates. This was done so effectively that we’ve nearly reached the physical 
limit for improving CPU speed.

For example, if the clock speed is increased to 100 GHz, a cycle will be 0.01 nanosec-
onds, and the signals will only propagate 3 mm in this time. Therefore, a CPU core ideally 
needs to be about 0.3 mm in size. This route leads to a physical size limitation. In addi-
tion, this high frequency rate in such a small CPU size introduces a thermal problem in 
the equation. Power in a switching transistor is roughly the frequency ^2, so in moving 
from 4 GHz to 6 GHz there is a 225% increase of energy (which translates to heat). The 
problem besides the size of the chip becomes its vulnerability to suffer thermal damage 
such as changes in crystal structure.

 

Moore’s prediction about transistor speed has come to fruition (transistors cannot run 
any faster) but it isn’t dead (modern transistors are increasing in density, providing 
opportunities for parallelism within the confines of that top speed). The combination 
of multicore architecture and parallel programming models is keeping Moore’s Law 
alive! As CPU single-core performance improvement stagnates, developers adapt by 
segueing into multicore architecture and developing software that supports and inte-
grates concurrency. 

The processor revolution has begun. The new trend in multicore processor design 
has brought parallel programming into the mainstream. Multicore processor architec-
ture offers the possibility of more efficient computing, but all this power requires addi-
tional work for developers. If programmers want more performance in their code, they 

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996


	 5What you’ll learn from this book

must adapt to new design patterns to maximize hardware utilization, exploiting multi-
ple cores through parallelism and concurrency. 

In this chapter, we’ll cover general information about concurrency by examining 
several of its benefits and the challenges of writing traditional concurrent programs. 
Next, we’ll introduce functional paradigm concepts that make it possible to overcome 
traditional limitations by using simple and maintainable code. By the end of this chap-
ter, you’ll understand why concurrency is a valued programming model, and why the 
functional paradigm is the right tool for writing correct concurrent programs.

1.1	 What you’ll learn from this book
In this book I’ll look at considerations and challenges for writing concurrent multi-
threaded applications in a traditional programming paradigm. I’ll explore how to 
successfully address these challenges and avoid concurrency pitfalls using the func-
tional paradigm. Next, I’ll introduce the benefits of using abstractions in functional 
programming to create declarative, simple-to-implement, and highly performant con-
current programs. Over the course of this book, we’ll examine complex concurrent 
issues providing an insight into the best practices necessary to build concurrent and 
scalable programs in .NET using the functional paradigm. You’ll become familiar with 
how functional programming helps developers support concurrency by encouraging 
immutable data structures that can be passed between threads without having to worry 
about a shared state, all while avoiding side effects. By the end of the book you’ll master 
how to write more modular, readable, and maintainable code in both C# and F# lan-
guages. You’ll be more productive and proficient while writing programs that function 
at peak performance with fewer lines of code. Ultimately, armed with your newfound 
skills, you’ll have the knowledge needed to become an expert at delivering successful 
high-performance solutions.

Here’s what you’ll learn:

¡	How to combine asynchronous operations with the Task Parallel Library
¡	How to avoid common problems and troubleshoot your multithreaded and asyn-

chronous applications
¡	Knowledge of concurrent programming models that adopt the functional para-

digm (functional, asynchronous, event-driven, and message passing with agents 
and actors)

¡	How to build high-performance, concurrent systems using the functional paradigm
¡	How to express and compose asynchronous computations in a declarative style
¡	How to seamlessly accelerate sequential programs in a pure fashion by using 

data-parallel programming
¡	How to implement reactive and event-based programs declaratively with Rx-style 

event streams
¡	How to use functional concurrent collections for building lock-free multi-

threaded programs
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6 Chapter 1  Functional concurrency foundations

¡	How to write scalable, performant, and robust server-side applications
¡	How to solve problems using concurrent programming patterns such as the 

Fork/Join, parallel aggregation, and the Divide and Conquer technique
¡	How to process massive data sets with parallel streams and parallel Map/Reduce 

implementations

This book assumes you have knowledge of general programming, but not functional 
programming. To apply functional concurrency in your coding, you only need a subset 
of the concepts from functional programming, and I’ll explain what you need to know 
along the way. In this fashion, you’ll gain the many benefits of functional concurrency 
in a shorter learning curve, focused on what you can use right away in your day-to-day 
coding experiences.

1.2	 Let’s start with terminology 
This section defines terms related to the topic of this book, so we start on common 
ground. In computer programming, some terms (such as concurrency, parallelism, and 
multithreading) are used in the same context, but have different meanings. Due to their 
similarities, the tendency to treat these terms as the same thing is common, but it is 
not correct. When it becomes important to reason about the behavior of a program, 
it’s crucial to make a distinction between computer programming terms. For example, 
concurrency is, by definition, multithreading, but multithreading isn’t necessarily con-
current. You can easily make a multicore CPU function like a single-core CPU, but not 
the other way around. 

This section aims to establish a common ground about the definitions and terminol-
ogies related to the topic of this book. By the end of this section, you’ll learn the mean-
ing of these terms:

¡	Sequential programming 
¡	Concurrent programming
¡	Parallel programming
¡	Multitasking 
¡	Multithreading 

1.2.1	 Sequential programming performs one task at a time

Sequential programming is the act of accomplishing things in steps. Let’s consider a sim-
ple example, such as getting a cup of cappuccino at the local coffee shop. You first 
stand in line to place your order with the lone barista. The barista is responsible for 
taking the order and delivering the drink; moreover, they are able to make only one 
drink at a time so you must wait patiently—or not—in line before you order. Making a 
cappuccino involves grinding the coffee, brewing the coffee, steaming the milk, froth-
ing the milk, and combining the coffee and milk, so more time passes before you get 
your cappuccino. Figure 1.1 shows this process.
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Combine coffee
and milk

Froth milk

Steam milk

Brew coffee

Grind coffee

Figure 1.1    For each person in line, the barista is sequentially repeating the same set of instructions 
(grind coffee, brew coffee, steam milk, froth milk, and combine the coffee and the milk to make a 
cappuccino).

Figure 1.1 is an example of sequential work, where one task must be completed before 
the next. It is a convenient approach, with a clear set of systematic (step-by-step) 
instructions of what to do and when to do it. In this example, the barista will likely 
not get confused and make any mistakes while preparing the cappuccino because the 
steps are clear and ordered. The disadvantage of preparing a cappuccino step-by-step 
is that the barista must wait during parts of the process. While waiting for the coffee to 
be ground or the milk to be frothed, the barista is effectively inactive (blocked). The 
same concept applies to sequential and concurrent programming models. As shown 
in figure 1.2, sequential programming involves a consecutive, progressively ordered 
execution of processes, one instruction at a time in a linear fashion. 

 Process 1  Process 2  Process 3  Process 4  Action

Figure 1.2    Typical sequential coding involving a consecutive, progressively ordered execution of 
processes

In imperative and object-oriented programming (OOP) we tend to write code that 
behaves sequentially, with all attention and resources focused on the task currently 
running. We model and execute the program by performing an ordered set of state-
ments, one after another.

1.2.2	 Concurrent programming runs multiple tasks at the same time

Suppose the barista prefers to initiate multiple steps and execute them concurrently? 
This moves the customer line along much faster (and, consequently, increases gar-
nered tips). For example, once the coffee is ground, the barista can start brewing the 
espresso. During the brewing, the barista can take a new order or start the process of 
steaming and frothing the milk. In this instance, the barista gives the perception of 
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8 Chapter 1  Functional concurrency foundations

doing multiple operations at the same time (multitasking), but this is only an illusion. 
More details on multitasking are covered in section 1.2.4. In fact, because the barista 
has only one espresso machine, they must stop one task to start or continue another, 
which means the barista executes only one task at a time, as shown in figure 1.3. In 
modern multicore computers, this is a waste of valuable resources. 

Combine coffee
and milk

Steam milk

Froth milk

Brew coffee

Grind coffee

Figure 1.3    The barista switches between the operations (multitasking) of preparing the coffee (grind 
and brew) and preparing the milk (steam and froth). As a result, the barista executes segments of 
multiple tasks in an interleaved manner, giving the illusion of multitasking. But only one operation is 
executed at a time due to the sharing of common resources. 

Concurrency describes the ability to run several programs or multiple parts of a program 
at the same time. In computer programming, using concurrency within an application 
provides actual multitasking, dividing the application into multiple and independent 
processes that run at the same time (concurrently) in different threads. This can hap-
pen either in a single CPU core or in parallel, if multiple CPU cores are available. The 
throughput (the rate at which the CPU processes a computation) and responsiveness 
of the program can be improved through the asynchronous or parallel execution of a 
task. An application that streams video content is concurrent, for example, because it 
simultaneously reads the digital data from the network, decompresses it, and updates 
its presentation onscreen.     

Concurrency gives the impression that these threads are running in parallel and 
that different parts of the program can run simultaneously. But in a single-core envi-
ronment, the execution of one thread is temporarily paused and switched to another 
thread, as is the case with the barista in figure 1.3. If the barista wishes to speed up pro-
duction by simultaneously performing several tasks, then the available resources must 
be increased. In computer programming, this process is called parallelism.

1.2.3	 Parallel programming executes multiples tasks simultaneously   

From the developer’s prospective, we think of parallelism when we consider the ques-
tions, “How can my program execute many things at once?” or “How can my program 
solve one problem faster?” Parallelism is the concept of executing multiple tasks at once 
concurrently, literally at the same time on different cores, to improve the speed of 
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	 9Let’s start with terminology 

the application. Although all parallel programs are concurrent, we have seen that not 
all concurrency is parallel. That’s because parallelism depends on the actual runtime 
environment, and it requires hardware support (multiple cores). Parallelism is achiev-
able only in multicore devices (figure 1.4) and is the means to increasing performance 
and throughput of a program.

Core 1

Core 2

Core 3

Core 4

Processor

To return to the coffee shop example, imagine that you’re the manager and wish to 
reduce the waiting time for customers by speeding up drink production. An intuitive 
solution is to hire a second barista and set up a second coffee station. With two baristas 
working simultaneously, the queues of customers can be processed independently and 
in parallel, and the preparation of cappuccinos (figure 1.5) speeds up.

Combine coffee
and milk

Froth milk

Steam milk

Brew coffee

Grind coffee

Figure 1.5    The production of cappuccinos is faster because two baristas can work in parallel with two 
coffee stations.

No break in production results in a benefit in performance. The goal of parallelism is 
to maximize the use of all available computational resources; in this case, the two baris-
tas are working in parallel at separate stations (multicore processing). 

Figure 1.4    Only multicore machines allow parallelism for 
simultaneously executing different tasks. In this figure, each 
core is performing an independent task.
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10 Chapter 1  Functional concurrency foundations

Parallelism can be achieved when a single task is split into multiple independent 
subtasks, which are then run using all the available cores. In figure 1.5, a multicore 
machine (two coffee stations) allows parallelism for simultaneously executing different 
tasks (two busy baristas) without interruption.

The concept of timing is fundamental for simultaneously executing operations in 
parallel. In such a program, operations are concurrent if they can be executed in parallel, 
and these operations are parallel if the executions overlap in time (see figure 1.6).

Start

End

For i = 0 to n
Evaluate model

Sequential approach

Start

End

Evaluate
model

Evaluate
model

Evaluate
model

Evaluate
model

Parallel approach

Figure 1.6    Parallel computing is a type of computation in which many calculations are carried out 
simultaneously, operating on the principle that large problems can often be divided into smaller ones, 
which are then solved at the same time.

Parallelism and concurrency are related programming models. A parallel program 
is also concurrent, but a concurrent program isn’t always parallel, with parallel pro-
gramming being a subset of concurrent programming. While concurrency refers to 
the design of the system, parallelism relates to the execution. Concurrent and paral-
lel programming models are directly linked to the local hardware environment where 
they’re performed. 

1.2.4	 Multitasking performs multiple tasks concurrently over time

Multitasking is the concept of performing multiple tasks over a period of time by exe-
cuting them concurrently. We’re familiar with this idea because we multitask all the 
time in our daily lives. For example, while waiting for the barista to prepare our cap-
puccino, we use our smartphone to check our emails or scan a news story. We’re doing 
two things at one time: waiting and using a smartphone.

Computer multitasking was designed in the days when computers had a single CPU 
to concurrently perform many tasks while sharing the same computing resources. Ini-
tially, only one task could be executed at a time through time slicing of the CPU. (Time 
slice refers to a sophisticated scheduling logic that coordinates execution between mul-
tiple threads.) The amount of time the schedule allows a thread to run before sched-
uling a different thread is called thread quantum. The CPU is time sliced so that each 
thread gets to perform one operation before the execution context is switched to 
another thread. Context switching is a procedure handled by the operating system to 
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multitask for optimized performance (figure 1.7). But in a single-core computer, it’s 
possible that multitasking can slow down the performance of a program by introducing 
extra overhead for context switching between threads.

Context switching on
a single-core machine

Figure 1.7    Each task has a different shade, indicating that the context switch in a single-core machine 
gives the illusion that multiple tasks run in parallel, but only one task is processed at a time. 

There are two kinds of multitasking operating systems:

¡	Cooperative multitasking systems, where the scheduler lets each task run until it fin-
ishes or explicitly yields execution control back to the scheduler

¡	Preemptive multitasking systems (such as Microsoft Windows), where the scheduler 
prioritizes the execution of tasks, and the underlying system, considering the pri-
ority of the tasks, switches the execution sequence once the time allocation is 
completed by yielding control to other tasks

Most operating systems designed in the last decade have provided preemptive mul-
titasking. Multitasking is useful for UI responsiveness to help avoid freezing the UI 
during long operations. 

1.2.5	 Multithreading for performance improvement 

Multithreading is an extension of the concept of multitasking, aiming to improve 
the performance of a program by maximizing and optimizing computer resources. 
Multithreading is a form of concurrency that uses multiple threads of execution. 
Multithreading implies concurrency, but concurrency doesn’t necessarily imply multi-
threading. Multithreading enables an application to explicitly subdivide specific tasks 
into individual threads that run in parallel within the same process. 

NOTE     A process is an instance of a program running within a computer system. 
Each process has one or more threads of execution, and no thread can exist 
outside a process.

A thread is a unit of computation (an independent set of programming instructions 
designed to achieve a particular result), which the operating system scheduler inde-
pendently executes and manages. Multithreading differs from multitasking: unlike 
multitasking, with multithreading the threads share resources. But this “sharing 
resources” design presents more programming challenges than multitasking does. We 
discuss the problem of sharing variables between threads later in this chapter in sec-
tion 1.4.1.
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12 Chapter 1  Functional concurrency foundations

The concepts of parallel and multithreading programming are closely related. But 
in contrast to parallelism, multithreading is hardware-agnostic, which means that it can 
be performed regardless of the number of cores. Parallel programming is a superset 
of multithreading. You could use multithreading to parallelize a program by sharing 
resources in the same process, for example, but you could also parallelize a program by 
executing the computation in multiple processes or even in different computers. Fig-
ure 1.8 shows the relationship between these terms.

Computer with two or more CPUs

Multitasking

Concurrency Concurrency

Computer with one CPU

Multitasking

Concurrency Concurrency

Multithreading

Parallelism

Multithreading

Parallelism

Figure 1.8    Relationship between concurrency, parallelism, multithreading, and multitasking in a single 
and a multicore device 

To summarize:

¡	Sequential programming refers to a set of ordered instructions executed one at a 
time on one CPU.

¡	Concurrent programming handles several operations at one time and doesn’t 
require hardware support (using either one or multiple cores).

¡	Parallel programming executes multiple operations at the same time on multiple 
CPUs. All parallel programs are concurrent, running simultaneously, but not all 
concurrency is parallel. The reason is that parallelism is achievable only on multi-
core devices.

¡	Multitasking concurrently performs multiple threads from different processes. 
Multitasking doesn’t necessarily mean parallel execution, which is achieved only 
when using multiple CPUs.

¡	Multithreading extends the idea of multitasking; it’s a form of concurrency that 
uses multiple, independent threads of execution from the same process. Each 
thread can run concurrently or in parallel, depending on the hardware support.

1.3	 Why the need for concurrency?
Concurrency is a natural part of life—as humans we’re accustomed to multitasking. 
We can read an email while drinking a cup of coffee, or type while listening to our 
favorite song. The main reason to use concurrency in an application is to increase 
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	 13Why the need for concurrency?

performance and responsiveness, and to achieve low latency. It’s common sense that if 
one person does two tasks one after another it would take longer than if two people did 
those same two tasks simultaneously. 

It’s the same with applications. The problem is that most applications aren’t written 
to evenly split the tasks required among the available CPUs. Computers are used in 
many different fields, such as analytics, finance, science, and health care. The amount 
of data analyzed is increasing year by year. Two good illustrations are Google and Pixar. 

In 2012, Google received more than 2 million search queries per minute; in 2014, that 
number more than doubled. In 1995, Pixar produced the first completely computer-
generated movie, Toy Story. In computer animation, myriad details and information must 
be rendered for each image, such as shading and lighting. All this information changes 
at the rate of 24 frames per second. In a 3D movie, an exponential increase in changing 
information is required. 

The creators of Toy Story used 100 connected dual-processor machines to create their 
movie, and the use of parallel computation was indispensable. Pixar’s tools evolved 
for Toy Story 2; the company used 1,400 computer processors for digital movie editing, 
thereby vastly improving digital quality and editing time. In the beginning of 2000, 
Pixar’s computer power increased even more, to 3,500 processors. Sixteen years later, 
the computer power used to process a fully animated movie reached an absurd 24,000 
cores. The need for parallel computing continues to increase exponentially.

Let’s consider a processor with N (as any number) running cores. In a single-threaded 
application, only one core runs. The same application executing multiple threads will be 
faster, and as the demand for performance grows, so too will the demand for N to grow, 
making parallel programs the standard programming model choice for the future. 

If you run an application in a multicore machine that wasn’t designed with con-
currency in mind, you’re wasting computer productivity because the application as 
it sequences through the processes will only use a portion of the available computer 
power. In this case, if you open Task Manager, or any CPU performance counter, you’ll 
notice only one core running high, possibly at 100%, while all the other cores are 
underused or idle. In a machine with eight cores, running non-concurrent programs 
means the overall use of the resources could be as low as 15% (figure 1.9).

Figure 1.9    Windows Task Manager 
shows a program poorly utilizing CPU 
resources.
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14 Chapter 1  Functional concurrency foundations

Such waste of computing power unequivocally illustrates that sequential code isn’t 
the correct programming model for multicore processers. To maximize the use of the 
available computational resources, Microsoft’s .NET platform provides parallel execu-
tion of code through multithreading. By using parallelism, a program can take full 
advantage of the resources available, as illustrated by the CPU performance counter in 
figure 1.10, where you’ll notice that all the processor cores are running high, possibly 
at 100%. Current hardware trends predict more cores instead of faster clock speeds; 
therefore, developers have no choice but to embrace this evolution and become paral-
lel programmers.

1.3.1	 Present and future of concurrent programming

Mastering concurrency to deliver scalable programs has become a required skill. Com-
panies are interested in hiring and investing in engineers who have a deep knowledge 
of writing concurrent code. In fact, writing correct parallel computation can save 
time and money. It’s cheaper to build scalable programs that use the computational 
resources available with fewer servers, than to keep buying and adding expensive hard-
ware that is underused to reach the same level of performance. In addition, more 
hardware requires more maintenance and electric power to operate.

This is an exciting time to learn to write multithreaded code, and it’s rewarding to 
improve the performance of your program with the functional programming (FP) 
approach. Functional programming is a programming style that treats computation 
as the evaluation of expressions and avoids changing-state and mutable data. Because 
immutability is the default, and with the addition of a fantastic composition and declar-
ative programming style, FP makes it effortless to write concurrent programs. More 
details follow in section1.5.

While it’s a bit unnerving to think in a new paradigm, the initial challenge of learning 
parallel programming diminishes quickly, and the reward for perseverance is infinite. 
You’ll find something magical and spectacular about opening the Windows Task Man-
ager and proudly noticing that the CPU usage spikes to 100% after your code changes. 
Once you become familiar and comfortable with writing highly scalable systems using 
the functional paradigm, it will be difficult to go back to the slow style of sequential code.

Concurrency is the next innovation that will dominate the computer industry, and it 
will transform how developers write software. The evolution of software requirements 

Figure 1.10    A program written with 
concurrency in mind can maximize 
CPU resources, possibly up to 100%.
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in the industry and the demand for high-performance software that delivers great user 
experience through non-blocking UIs will continue to spur the need for concurrency. 
In lockstep with the direction of hardware, it’s evident that concurrency and parallel-
ism are the future of programming. 

1.4	 The pitfalls of concurrent programming 
Concurrent and parallel programming are without doubt beneficial for rapid respon-
siveness and speedy execution of a given computation. But this gain of performance 
and reactive experience comes with a price. Using sequential programs, the execu-
tion of the code takes the happy path of predictability and determinism. Conversely, 
multithreaded programming requires commitment and effort to achieve correctness. 
Furthermore, reasoning about multiple executions running simultaneously is difficult 
because we’re used to thinking sequentially. 

Determinism 
Determinism is a fundamental requirement in building software as computer programs 
are often expected to return identical results from one run to the next. But this prop-
erty becomes hard to resolve in a parallel execution. External circumstances, such as 
the operating system scheduler or cache coherence (covered in chapter 4), could influ-
ence the execution timing and, therefore, the order of access for two or more threads 
and modify the same memory location. This time variant could affect the outcome of the 
program.

 

The process of developing parallel programs involves more than creating and spawn-
ing multiple threads. Writing programs that execute in parallel is demanding and 
requires thoughtful design. You should design with the following questions in mind:  

¡	How is it possible to use concurrency and parallelism to reach incredible compu-
tational performance and a highly responsive application?

¡	How can such programs take full advantage of the power provided by a multicore 
computer?

¡	How can communication with and access to the same memory location between 
threads be coordinated while ensuring thread safety? (A method is called thread-
safe when the data and state don’t get corrupted if two or more threads attempt to 
access and modify the data or state at the same time.)  

¡	How can a program ensure deterministic execution?
¡	How can the execution of a program be parallelized without jeopardizing the 

quality of the final result?

These aren’t easy questions to answer. But certain patterns and techniques can help. 
For example, in the presence of side effects,1 the determinism of the computation 
is lost because the order in which concurrent tasks execute becomes variable. The 

1	 A side effect arises when a method changes some state from outside its scope, or it communicates with 
the “outside world,” such as calling a database or writing to the file system.
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16 Chapter 1  Functional concurrency foundations

obvious solution is to avoid side effects in favor of pure functions. You’ll learn these 
techniques and practices during the course of the book.

1.4.1	 Concurrency hazards 

Writing concurrent programs isn’t easy, and many sophisticated elements must be con-
sidered during program design. Creating new threads or queuing multiple jobs on the 
thread pool is relatively simple, but how do you ensure correctness in the program? 
When many threads continually access shared data, you must consider how to safeguard 
the data structure to guarantee its integrity. A thread should write and modify a memory 
location atomically,2 without interference by other threads. The reality is that programs 
written in imperative programming languages or in languages with variables whose val-
ues can change (mutable variables) will always be vulnerable to data races, regardless of 
the level of memory synchronization or concurrent libraries used. 

NOTE    A data race occurs when two or more threads in a single process access 
the same memory location concurrently, and at least one of the accesses 
updates the memory slot while other threads read the same value without using 
any exclusive locks to control their accesses to that memory.

Consider the case of two threads (Thread 1 and Thread 2) running in parallel, both 
trying to access and modify the shared value x as shown in figure 1.11. For Thread 1 
to modify a variable requires more than one CPU instruction: the value must be read 
from memory, then modified and ultimately written back to memory. If Thread 2 tries 
to read from the same memory location while Thread 1 is writing back an updated 
value, the value of x changed. More precisely, it’s possible that Thread 1 and Thread 2 
read the value x simultaneously, then Thread 1 modifies the value x and writes it back 
to memory, while Thread 2 also modifies the value x. The result is data corruption. 
This phenomenon is called race condition.

Thread 1 x = 42

Mutable shared state x = 42 x = 43 x = 43

x = x + 1

Modify value

Thread 2 x = 42 x = x + 1

Modify value

Time

Read valueRead value

Write value Write value

Figure 1.11    Two threads (Thread 1 and Thread 2) run in parallel, both trying to access and modify the 
shared value x. If Thread 2 tries to read from the same memory location while Thread 1 writes back an 
updated value, the value of x changes. This result is data corruption or race condition.

2	 An atomic operation accesses a shared memory and completes in a single step relative to other threads. 

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996


	 17The pitfalls of concurrent programming 

The combination of a mutable state and parallelism in a program is synonymous with 
problems. The solution from the imperative paradigm perspective is to protect the 
mutable state by locking access to more than one thread at a time. This technique 
is called mutual exclusion because the access of one thread to a given memory loca-
tion prevents access of other threads at that time. The concept of timing is central as 
multiple threads must access the same data at the same time to benefit from this tech-
nique. The introduction of locks to synchronize access by multiple threads to shared 
resources solves the problem of data corruption, but introduces more complications 
that can lead to deadlock. 

Consider the case in figure 1.12 where Thread 1 and Thread 2 are waiting for each 
other to complete work and are blocked indefinitely in that waiting. Thread 1 acquires 
Lock A, and, right after, Thread 2 acquires Lock B. At this point, both threads are wait-
ing on a lock that will never be released. This is a case of deadlock. 

Thread 1

Thread 2

Lock Lock

Lock attempt Lock attempt

Deadlock

Time

Lock A

Lock B

Figure 1.12. In this scenario, Thread 1 acquires Lock A, and Thread 2 acquires Lock B. Then, Thread 2 
tries to acquire Lock A while Thread 1 tries to acquire Lock B that is already acquired by Thread 2, which 
is waiting to acquire Lock A before releasing Lock B. At this point, both threads are waiting at the lock 
that’ll never be released. This is a case of deadlock.

Here is a list of concurrency hazards with a brief explanation. Later, you’ll get more 
details on each, with a specific focus on how to avoid them:

¡	Race condition is a state that occurs when a shared mutable resource (a file, 
image, variable, or collection, for example) is accessed at the same time by multi-
ple threads, leaving an inconsistent state. The consequent data corruption makes 
a program unreliable and unusable.

¡	Performance decline is a common problem when multiple threads share state 
contention that requires synchronization techniques. Mutual exclusion locks (or 
mutexes), as the name suggests, prevent the code from running in parallel by 
forcing multiple threads to stop work to communicate and synchronize memory 
access. The acquisition and release of locks comes with a performance penalty, 
slowing down all processes. As the number of cores gets larger, the cost of lock 
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contention can potentially increase. As more tasks are introduced to share the 
same data, the overhead associated with locks can negatively impact the compu-
tation. Section 1.4.3 demonstrates the consequences and overhead costs due to 
introducing lock synchronization.  

¡	Deadlock is a concurrency problem that originates from using locks. It occurs 
when a cycle of tasks exists in which each task is blocked while waiting for another 
to proceed. Because all tasks are waiting for another task to do something, 
they’re blocked indefinitely. The more that resources are shared among threads, 
the more locks are needed to avoid race condition, and the higher the risk of 
deadlocks.

¡	Lack of composition is a design problem originating from the introduction of 
locks in the code. Locks don’t compose. Composition encourages problem dis-
mantling by breaking up a complex problem into smaller pieces that are easier to 
solve, then gluing them back together. Composition is a fundamental tenet in FP. 

1.4.2	 The sharing of state evolution 

Real-world programs require interaction between tasks, such as exchanging infor-
mation to coordinate work. This cannot be implemented without sharing data that’s 
accessible to all the tasks. Dealing with this shared state is the root of most problems 
related to parallel programming, unless the shared data is immutable or each task has 
its own copy. The solution is to safeguard all the code from those concurrency prob-
lems. No compiler or tool can help you position these primitive synchronization locks 
in the correct location in your code. It all depends on your skill as a programmer.

Because of these potential problems, the programming community has cried out, 
and in response, libraries and frameworks have been written and introduced into 
mainstream object-oriented languages (such as C# and Java) to provide concurrency 
safeguards, which were not part of the original language design. This support is a 
design correction, illustrated with the presence of shared memory in imperative and 
object-oriented, general-purpose programming environments. Meanwhile, functional 
languages don’t need safeguards because the concept of FP maps well onto concurrent 
programming models.

1.4.3	 A simple real-world example: parallel quicksort    

Sorting algorithms are used generally in technical computing and can be a bottleneck. 
Let’s consider a Quicksort algorithm,3 a CPU-bound computation amenable to paralleliza-
tion that orders the elements of an array. This example aims to demonstrate the pitfalls of 
converting a sequential algorithm into a parallel version and points out that introducing 

parallelism in your code requires extra thinking before making any decisions. Otherwise, 
performance could potentially have an opposite outcome to that expected. 

Quicksort is a Divide and Conquer algorithm; it first divides a large array into two 
smaller sub-arrays of low elements and high elements. Quicksort can then recursively 
sort the sub-arrays, and is amenable to parallelization. It can operate in place on an 
array, requiring small additional amounts of memory to perform the sorting. The algo-
rithm consists of three simple steps, as shown in figure 1.13:

1	 Select a pivot element.

2	 Partition the sequence into subsequences according to their order relative to the 
pivot.

3	 Quicksort the subsequences. 

125,000
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250,000
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125,000
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125,000
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items

125,000
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Figure 1.13. The recursive function divides and conquers. Each block is divided into equal halves, where 
the pivot element must be the median of the sequence, until each portion of code can be executed 
independently. When all the single blocks are completed, they send the result back to the previous caller 
to be aggregated. Quicksort is based on the idea of picking a pivot point and partitioning the sequence 
into sub-sequence elements smaller than the pivot and bigger than the pivot elements before recursively 
sorting the two smaller sequences.

Recursive algorithms, especially ones based on a form of Divide and Conquer, are a 
great candidate for parallelization and CPU-bound computations.

The Microsoft Task Parallel Library (TPL), introduced after the release of .NET 4.0, 
makes it easier to implement and exploit parallelism for this type of algorithm. Using 
the TPL, you can divide each step of the algorithm and perform each task in parallel, 
recursively. It’s a straight and easy implementation, but you must be careful of the level 
of depth to which the threads are created to avoid adding more tasks than necessary. 

To implement the Quicksort algorithm, you’ll use the FP language F#. Due to its 
intrinsic recursive nature, however, the idea behind this implementation can also be 3	 Tony Hoare invented the Quicksort algorithm in 1960, and it remains one of the most acclaimed algo-

rithms with great practical value.
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parallelism in your code requires extra thinking before making any decisions. Otherwise, 
performance could potentially have an opposite outcome to that expected. 

Quicksort is a Divide and Conquer algorithm; it first divides a large array into two 
smaller sub-arrays of low elements and high elements. Quicksort can then recursively 
sort the sub-arrays, and is amenable to parallelization. It can operate in place on an 
array, requiring small additional amounts of memory to perform the sorting. The algo-
rithm consists of three simple steps, as shown in figure 1.13:

1	 Select a pivot element.

2	 Partition the sequence into subsequences according to their order relative to the 
pivot.

3	 Quicksort the subsequences. 
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Figure 1.13. The recursive function divides and conquers. Each block is divided into equal halves, where 
the pivot element must be the median of the sequence, until each portion of code can be executed 
independently. When all the single blocks are completed, they send the result back to the previous caller 
to be aggregated. Quicksort is based on the idea of picking a pivot point and partitioning the sequence 
into sub-sequence elements smaller than the pivot and bigger than the pivot elements before recursively 
sorting the two smaller sequences.

Recursive algorithms, especially ones based on a form of Divide and Conquer, are a 
great candidate for parallelization and CPU-bound computations.

The Microsoft Task Parallel Library (TPL), introduced after the release of .NET 4.0, 
makes it easier to implement and exploit parallelism for this type of algorithm. Using 
the TPL, you can divide each step of the algorithm and perform each task in parallel, 
recursively. It’s a straight and easy implementation, but you must be careful of the level 
of depth to which the threads are created to avoid adding more tasks than necessary. 

To implement the Quicksort algorithm, you’ll use the FP language F#. Due to its 
intrinsic recursive nature, however, the idea behind this implementation can also be 3	 Tony Hoare invented the Quicksort algorithm in 1960, and it remains one of the most acclaimed algo-

rithms with great practical value.
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applied to C#, which requires an imperative for loop approach with a mutable state. C# 
doesn’t support optimized tail-recursive functions such as F#, so a hazard exists of rais-
ing a stack overflow exception when the call-stack pointer exceeds the stack constraint. 
In chapter 3, we’ll go into detail on how to overcome this C# limitation. 

Listing 1.1 shows a Quicksort function in F# that adopts the Divide and Conquer 
strategy. For each recursive iteration, you select a pivot point and use that to partition 
the total array. You partition the elements around the pivot point using the List.par-
tition API, then recursively sort the lists on each side of the pivot. F# has great built-in 
support for data structure manipulation. In this case, you’re using the List.parti-
tion API, which returns a tuple containing two lists: one that satisfies the predicate and 
another that doesn’t. 

Listing 1.1    Simple Quicksort algorithm

let rec quicksortSequential aList =
    match aList with
    | [] -> []
    | firstElement :: restOfList ->
        let smaller, larger =
            List.partition (fun number -> number < firstElement) restOfList
        quicksortSequential smaller @ (firstElement :: 
➥ quicksortSequential larger)

Running this Quicksort algorithm against an array of 1 million random, unsorted inte-
gers on my system (eight logical cores; 2.2 GHz clock speed) takes an average of 6.5 
seconds. But when you analyze this algorithm design, the opportunity to parallelize is 
evident. At the end of quicksortSequential, you recursively call into quicksortSe-
quential with each partition of the array identified by the (fun number -> number < 
firstElement) restOfList. By spawning new tasks using the TPL, you can rewrite in 
parallel this portion of the code. 

Listing 1.2    Parallel Quicksort algorithm using the TPL

let rec quicksortParallel aList =
    match aList with
    | [] -> []
    | firstElement :: restOfList ->
        let smaller, larger =
            List.partition (fun number -> number < firstElement) restOfList
        let left  = Task.Run(fun () -> quicksortParallel smaller) 
        let right = Task.Run(fun () -> quicksortParallel larger)  
        left.Result @ (firstElement :: right.Result)              

Task.Run executes the recursive calls in tasks that can run in 
parallel; for each recursive call, tasks are dynamically created.

Appends the result for each 
task into a sorted array
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The algorithm in listing 1.2 is running in parallel, which now is using more CPU resources 
by spreading the work across all available cores. But even with improved resource utiliza-
tion, the overall performance result isn’t meeting expectations.

Execution time dramatically increases instead of decreases. The parallelized Quick-
sort algorithm is passed from an average of 6.5 seconds per run to approximately 12 sec-
onds. The overall processing time has slowed down. In this case, the problem is that the 
algorithm is over-parallelized. Each time the internal array is partitioned, two new tasks are 
spawned to parallelize this algorithm. This design is spawning too many tasks in relation 
to the cores available, which is inducing parallelization overhead. This is especially true 
in a Divide and Conquer algorithm that involves parallelizing a recursive function. It’s 
important that you don’t add more tasks than necessary. The disappointing result demon-
strates an important characteristic of parallelism: inherent limitations exist on how much 
extra threading or extra processing will help a specific algorithmic implementation. 

To achieve better optimization, you can refactor the previous quicksortParallel 
function by stopping the recursive parallelization after a certain point. In this way, the 
algorithm’s first recursions will still be executed in parallel until the deepest recursion, 
which will revert to the serial approach. This design guarantees taking full advantage of 
cores. Plus, the overhead added by parallelizing is dramatically reduced.

Listing 1.3 shows this new design approach. It takes into account the level where the 
recursive function is running; if the level is below a predefined threshold, it stops par-
allelizing. The function quicksortParallelWithDepth has an extra argument, depth, 
whose purpose is to reduce and control the number of times a recursive function is 
parallelized. The depth argument is decremented on each recursive call, and new tasks 
are created until this argument value reaches zero. In this case, you’re passing the value 
resulting from Math.Log(float System.Enviroment.ProcessorCount, 2.) + 4. for 
the max depth. This ensures that every level of the recursion will spawn two child tasks 
until all the available cores are enlisted. 

Listing 1.3    A better parallel Quicksort algorithm using the TPL

let rec quicksortParallelWithDepth depth aList =    
    match aList with
    | [] -> []
    | firstElement :: restOfList ->
        let smaller, larger =
            List.partition (fun number -> number < firstElement) restOfList
        if depth < 0 then   
            let left  = quicksortParallelWithDepth depth smaller  
            let right = quicksortParallelWithDepth depth larger   
            left @ (firstElement :: right)
        else
            let left  = Task.Run(fun () -> 
➥ quicksortParallelWithDepth (depth - 1) smaller) 
            let right = Task.Run(fun () -> 
➥ quicksortParallelWithDepth (depth - 1) larger)  
            left.Result @ (firstElement :: right.Result)

Tracks the function 
recursion level with 
the depth parameter 

If the value of depth 
is negative, skips the 

parallelization 

Sequentially executes the Quicksort using the current thread

If the value of depth is 
positive, allows the function 
to be called recursively, 
spawning two new tasks
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One relevant factor in selecting the number of tasks is how similar the predicted run 
time of the tasks will be. In the case of quicksortParallelWithDepth, the duration of 
the tasks can vary substantially, because the pivot points depend on the unsorted data. 
They don’t necessarily result in segments of equal size. To compensate for the uneven 
sizes of the tasks, the formula in this example calculates the depth argument to pro-
duce more tasks than cores. The formula limits the number of tasks to approximately 
16 times the number of cores because the number of tasks can be no larger than 2 ^ 
depth. Our objective is to have a Quicksort workload that is balanced, and that doesn’t 
start more tasks than required.  Starting a Task during each iteration (recursion), when 
the depth level is reached, saturates the processors. 

In most cases, the Quicksort generates an unbalanced workload because the frag-
ments produced are not of equal size. The conceptual formula log2(ProcessorCount) 
+ 4 calculates the depth argument to limit and adapt the number of running tasks 
regardless of the cases.4 If you substitute depth = log2(ProcessorCount) + 4 and 
simplify the expression, you see that the number of tasks is 16 times ProcessorCount. 
Limiting the number of subtasks by measuring the recursion depth is an extremely 
important technique.5 

For example, in the case of four-core machines, the depth is calculated as follows: 

depth = log2(ProcessorCount) + 4
depth = log2(2) + 4
depth = 2 + 4

The result is a range between approximately 36 to 64 concurrent tasks, because during 
each iteration two tasks are started for each branch, which in turn double in each itera-
tion. In this way, the overall work of partitioning among threads has a fair and suitable 
distribution for each core.

1.4.4	 Benchmarking in F# 

You executed the Quicksort sample using the F# REPL (Read-Evaluate-Print-Loop), 
which is a handy tool to run a targeted portion of code because it skips the compilation 
step of the program. The REPL fits quite well in prototyping and data-analysis devel-
opment because it facilitates the programming process. Another benefit is the built-in 
#time functionality, which toggles the display of performance information. When it’s 
enabled, F# Interactive measures real time, CPU time, and garbage collection infor-
mation for each section of code that’s interpreted and executed. 

Table 1.1 sorts a 3 GB array, enabling the 64-bit environment flag to avoid size restric-
tion. It’s run on a computer with eight logical cores (four physical cores with hyper-thread-
ing). On an average of 10 runs, table 1.1 shows the execution times in seconds.

4	 The function log2 is an abbreviation for Log in base 2. For example, log2(x) represents the logarithm of 
x to the base 2.

5	 Recall that for any value a, 2 ̂  (a + 4) is the same as 16 × 2^a; and that if a = log2(b), 2^a = b.
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Table 1.1    Benchmark of sorting with Quicksort

Serial Parallel Parallel 4 threads Parallel 8 threads

6.52 12.41 4.76 3.50

It’s important to mention that for a small array, fewer than 100 items, the parallel sort 
algorithms are slower than the serial version due to the overhead of creating and/or 
spawning new threads. Even if you correctly write a parallel program, the overhead 
introduced with concurrency constructors could overwhelm the program runtime, 
delivering the opposite expectation by decreasing performance. For this reason, it’s 
important to benchmark the original sequential code as a baseline and then continue 
to measure each change to validate whether parallelism is beneficial. A complete strat-
egy should consider this factor and approach parallelism only if the array size is greater 
than a threshold (recursive depth), which usually matches the number of cores, after 
which it defaults back to the serial behavior. 

1.5	 Why choose functional programming for concurrency?

The trouble is that essentially all the interesting applications of concurrency involve the 
deliberate and controlled mutation of shared state, such as screen real estate, the file system, 
or the internal data structures of the program. The right solution, therefore, is to provide 
mechanisms which allow the safe mutation of shared state section.

—Peyton Jones, Andrew Gordon, and Sigbjorn Finne (“Concurrent Haskell,” 
Proceedings of the 23rd ACM Symposium on Principles of Programming 

Languages, St. Petersburg Beach, FL, January 1996)

FP is about minimizing and controlling side effects, commonly referred to as pure func-
tional programming. FP uses the concept of transformation, where a function creates a 
copy of a value x and then modifies the copy, leaving the original value x unchanged 
and free to be used by other parts of the program. It encourages considering whether 
mutability and side effects are necessary when designing the program. FP allows muta-
bility and side effects, but in a strategic and explicit manner, isolating this area from 
the rest of the code by utilizing methods to encapsulate them. 

The main reason for adopting functional paradigms is to solve the problems that 
exist in the multicore era. Highly concurrent applications, such as web servers and 
data-analysis databases, suffer from several architectural issues. These systems must be 
scalable to respond to a large number of concurrent requests, which leads to design 
challenges for handling maximum resource contention and high-scheduling fre-
quency. Moreover, race conditions and deadlocks are common, which makes trouble-
shooting and debugging code difficult. 

In this chapter, we discussed a number of common issues specific to developing con-
current applications in either imperative or OOP. In these programming paradigms, 
we’re dealing with objects as a base construct. Conversely, in terms of concurrency, deal-
ing with objects has caveats to consider when passing from a single-thread program to 
a massively parallelizing work, which is a challenging and entirely different scenario. 
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NOTE    A thread is an operating system construct that functions like a virtual 
CPU. At any given moment, a thread is allowed to run on the physical CPU for 
a slice of time. When the time for a thread to run expires, it’s swapped off the 
CPU for another thread. Therefore, if a single thread enters an infinite loop, it 
cannot monopolize all the CPU time on the system. At the end of its time slice, 
it will be switched out for another thread.

The traditional solution for these problems is to synchronize access to resources, 
avoiding contention between threads. But this same solution is a double-edged sword 
because using primitives for synchronization, such as lock for mutual exclusion, leads 
to possible deadlock or race conditions. In fact, the state of a variable (as the name 
variable implies) can mutate. In OOP, a variable usually represents an object that’s lia-
ble to change over time. Because of this, you can never rely on its state and, consequen-
tially, you must check its current value to avoid unwanted behaviors (figure 1.14). 

Core 1

Core 2

Core 3

Core 4

Processor Mutable

Immutable

Shared state

Nondeterminism

Determinism

Functional
programming

Imperative
and OO 

programming

Figure 1.14    In the functional paradigm, due to immutability as a default construct, concurrent 
programming guarantees deterministic execution, even in the case of a shared state. Conversely, 
imperative and OOP use mutable states, which are hard to manage in a multithread environment, and this 
leads to nondeterministic programs.

It’s important to consider that components of systems that embrace the FP concept 
can no longer interfere with each other, and they can be used in a multithreaded envi-
ronment without using any locking strategies. 

Development of safe parallel programs using a share of mutable variables and side-
effect functions takes substantial effort from the programmer, who must make critical 
decisions, often leading to synchronization in the form of locking. By removing those 
fundamental problems through functional programming, you can also remove those 
concurrency-specific issues. This is why FP makes an excellent concurrent program-
ming model. It is an exceptional fit for concurrent programmers to achieve correct 
high performance in highly multithreaded environments using simple code. At the 
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heart of FP, neither variables nor state are mutable and cannot be shared, and functions 
may not have side effects. 

FP is the most practical way to write concurrent programs. Trying to write them in 
imperative languages isn’t only difficult, it also leads to bugs that are difficult to dis-
cover, reproduce, and fix.

How are you going to take advantage of every computer core available to you? The 
answer is simple: embrace the functional paradigm!  

1.5.1	 Benefits of functional programming

There are real advantages to learning FP, even if you have no plans to adopt this style 
in the immediate future. Still, it’s hard to convince someone to spend their time on 
something new without showing immediate benefits. The benefits come in the form 
of idiomatic language features that can initially seem overwhelming. FP, however, is a 
paradigm that will give you great coding power and positive impact in your programs 
after a short learning curve. Within a few weeks of using FP techniques, you’ll improve 
the readability and correctness of your applications. 

The benefits of FP (with focus on concurrency) include the following:

¡	Immutability —A property that prevents modification of an object state after cre-
ation. In FP, variable assignment is not a concept. Once a value has been asso-
ciated with an identifier, it cannot change. Functional code is immutable by 
definition. Immutable objects can be safely transferred between threads, lead-
ing to great optimization opportunities. Immutability removes the problems of 
memory corruption (race condition) and deadlocks because of the absence of 
mutual exclusion.

¡	Pure function —This has no side effects, which means that functions don’t change 
any input or data of any type outside the function body. Functions are said to be 
pure if they’re transparent to the user, and their return value depends only on 
the input arguments. By passing the same arguments into a pure function, the 
result won’t change, and each process will return the same value, producing con-
sistent and expected behavior.

¡	Referential transparency —The idea of a function whose output depends on and 
maps only to its input. In other words, each time a function receives the same 
arguments, the result is the same. This concept is valuable in concurrent pro-
gramming because the definition of the expression can be replaced with its value 
and will have the same meaning. Referential transparency guarantees that a set 
of functions can be evaluated in any order and in parallel, without changing the 
application's behavior. 

¡	Lazy evaluation —Used in FP to retrieve the result of a function on demand or to 
defer the analysis of a big data stream until needed. 

¡	Composability —Used to compose functions and create higher-level abstractions 
out of simple functions. Composability is the most powerful tool to defeat com-
plexity, letting you define and build solutions for complex problems. 
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Learning to program functionally allows you to write more modular, expression-
oriented, and conceptually simple code. The combinations of these FP assets will let 
you understand what your code is doing, regardless of how many threads the code is 
executing.

Later in this book, you’ll learn techniques to apply parallelism and bypass issues 
associated with mutable states and side effects. The functional paradigm approach to 
these concepts aims to simplify and maximize efficiency in coding with a declarative 
programming style.

1.6	 Embracing the functional paradigm 
Sometimes, change is difficult. Often, developers who are comfortable in their domain 
knowledge lack the motivation to look at programming problems from a different per-
spective. Learning any new program paradigm is hard and requires time to transition 
to developing in a different style. Changing your programming perspective requires a 
switch in your thinking and approach, not solely learning new code syntax for a new 
programming language.

Going from a language such as Java to C# isn’t difficult; in terms of concepts, they’re 
the same. Going from an imperative paradigm to a functional paradigm is a far more 
difficult challenge. Core concepts are replaced. You have no more state. You have no 
more variables. You have no more side effects. 

But the effort you make to change paradigms will pay large dividends. Most develop-
ers will agree that learning a new language makes you a better developer, and liken that 
to a patient whose doctor prescribes 30 minutes of exercise per day to be healthy. The 
patient knows the real benefits in exercise, but is also aware that daily exercise implies 
commitment and sacrifice. 

Similarly, learning a new paradigm isn’t hard, but does require dedication, engage-
ment, and time. I encourage everyone who wants to be a better programmer to con-
sider learning the FP paradigm. Learning FP is like riding a roller coaster: during the 
process there will be times when you feel excited and levitated, followed by times when 
you believe that you understand a principle only to descend steeply—screaming—but 
the ride is worth it. Think of learning FP as a journey, an investment in your personal 
and professional career with guaranteed return. Keep in mind that part of the learning 
is to make mistakes and develop skills to avoid those in the future.

Throughout this process, you should identify the concepts that are difficult to under-
stand and try to overcome those difficulties. Think about how to use these abstractions 
in practice, solving simple problems to begin with. My experience shows that you can 
break through a mental roadblock by finding out what the intent of a concept is by using 
a real example. This book will walk you through the benefits of FP applied to concur-
rency and a distributed system. It’s a narrow path, but on the other side, you’ll emerge 
with several great foundational concepts to use in your everyday programming. I am 
confident you’ll gain new insights into how to solve complex problems and become a 
superior software engineer using the immense power of FP.
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1.7	 Why use F# and C# for functional concurrent programming?
The focus of this book is to develop and design highly scalable and performant sys-
tems, adopting the functional paradigm to write correct concurrent code. This doesn’t 
mean you must learn a new language; you can apply the functional paradigm by using 
tools that you’re already familiar with, such as the multipurpose languages C# and F#. 
Over the years several functional features have been added to those languages, making 
it easier for you to shift to incorporating this new paradigm. 

The intrinsically different approach to solving problems is the reason these lan-
guages were chosen. Both programming languages can be used to solve the same prob-
lem in very different ways, which makes a case for choosing the best tool for the job. 
With a well-rounded toolset, you can design a better and easier solution. In fact, as soft-
ware engineers, you should think of programming languages as tools. 

Ideally, a solution should be a combination of C# and F# projects that work together 
cohesively. Both languages cover a different programming model, but the option to 
choose which tool to use for the job provides an enormous benefit in terms of produc-
tivity and efficiency. Another aspect to selecting these languages is their different con-
current programming model support, which can be mixed. For instance:

¡	F# offers a much simpler model than C# for asynchronous computation, called 
asynchronous workflows. 

¡	Both C# and F# are strongly typed, multipurpose programming languages with 
support for multiple paradigms that encompass functional, imperative, and 
OOP techniques. 

¡	Both languages are part of the .NET ecosystem and derive a rich set of libraries 
that can be used equally by both languages. 

¡	F# is a functional-first programming language that provides an enormous pro-
ductivity boost. In fact, programs written in F# tend to be more succinct and lead 
to less code to maintain. 

¡	F# combines the benefits of a functional declarative programming style with sup-
port from the imperative object-oriented style. This lets you develop applications 
using your existing object-oriented and imperative programming skills. 

¡	F# has a set of built-in lock-free data structures, due to default immutable con-
structors. An example is the discriminated union and the record types. These 
types have structural equality and don’t allow nulls that lead to “trusting” the 
integrity of the data and easier comparisons.

¡	F#, different from C#, strongly discourages the use of null values, also known as 
the billion-dollar mistake, and, instead, encourages the use of immutable data 
structures. This lack of null reference helps to minimize the number of bugs in 
programming.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996


28 Chapter 1  Functional concurrency foundations

The null reference origin
Tony Hoare introduced the null reference in 1965, while he was designing the ALGOL 
object-oriented language. Some 44 years later, he apologized for inventing it by calling it 
the billion-dollar mistake. He also said this:

“. . . I couldn't resist the temptation to put in a null reference, simply because it was 
so easy to implement. This has led to innumerable errors, vulnerabilities, and system 
crashes . . ..” 6

¡	F# is naturally parallelizable because it uses immutably as a default type construc-
tor, and because of its .NET foundation, it integrates with the C# language with 
state-of-the-art capability at the implementation level. 

¡	C# design tends toward an imperative language, first with full support for OOP. (I 
like to define this as imperative OO.) The functional paradigm, during the past 
years and since the release of .NET 3.5, has influenced the C# language with the 
addition of features like lambda expressions and LINQ for list comprehension.

¡	C# also has great concurrency tools that let you easily write parallel programs and 
readily solve tough real-world problems. Indeed, exceptional multicore devel-
opment support within the C# language is versatile, and capable of rapid devel-
opment and prototyping of highly parallel symmetric multiprocessing (SMP) 
applications. These programming languages are great tools for writing concur-
rent software, and the power and options for workable solutions aggregate when 
used in coexistence. SMP is the processing of programs by multiple processors 
that share a common operating system and memory.

¡	F# and C# can interoperate. In fact, an F# function can call a method in a C# 
library, and vice versa.

In the coming chapters, we’ll discuss alternative concurrent approaches, such as data 
parallelism, asynchronous, and the message-passing programming model. We’ll build 
libraries using the best tools that each of these programming languages can offer and 
compare those with other languages. We’ll also examine tools and libraries like the 
TPL and Reactive Extensions (Rx) that have been successfully designed, inspired, and 
implemented by adopting the functional paradigm to obtain composable abstraction. 

It’s obvious that the industry is looking for a reliable and simple concurrent pro-
gramming model, shown by the fact that software companies are investing in libraries 
that remove the level of abstraction from the traditional and complex memory-synchro-
nization models. Examples of these higher-level libraries are Intel’s Threading Building 
Blocks (TBB) and Microsoft’s TPL. 

There are also interesting open source projects, such as OpenMP (which provides 
pragmas [compiler-specific definitions that you can use to create new preprocessor 

6	 From a speech at QCon London in 2009: http://mng.bz/u74T.
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functionality or to send implementation-defined information to the compiler] that you 
can insert into a program to make parts of it parallel) and OpenCL (a low-level language 
to communicate with Graphic Processing Units [GPUs]). GPU programming has traction 
and has been sanctioned by Microsoft with C++ AMP extensions and Accelerator .NET. 

Summary
¡	No silver bullet exists for the challenges and complexities of concurrent and 

parallel programming. As a professional engineer, you need different types of 
ammunition, and you need to know how and when to use them to hit the target. 

¡	Programs must be designed with concurrency in mind; programmers cannot 
continue writing sequential code, turning a blind eye to the benefits of parallel 
programming. 

¡	Moore’s Law isn’t incorrect. Instead, it has changed direction toward an increased 
number of cores per processor rather than increased speed for a single CPU. 

¡	While writing concurrent code, you must keep in mind the distinction between 
concurrency, multithreading, multitasking, and parallelism.

¡	The share of mutable states and side effects are the primary concerns to avoid 
in a concurrent environment because they lead to unwanted program behaviors 
and bugs.

¡	To avoid the pitfalls of writing concurrent applications, you should use program-
ming models and tools that raise the level of abstraction.

¡	The functional paradigm gives you the right tools and principles to handle con-
currency easily and correctly in your code. 

¡	Functional programming excels in parallel computation because immutability is 
the default, making it simpler to reason about the share of data. 

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996


Glossary
Asynchronicity —When a program performs requests that don’t complete immediately 
but that are fulfilled later, and where the program issuing the request must do meaning-
ful work in the meantime.

Concurrency —The notion of multiple things happening at the same time. Usually, con-
current programs have multiple threads of execution, each typically executing differ-
ent code.

Parallelism —The state of a program when more than one thread runs simultaneously to 
speed up the program’s execution.

Process —A standard operating system process. Each instance of the .NET CLR runs in 
its own process. Processes are typically independent.

Thread —The smallest sequence of programmed instructions that the OS can manage 
independently. Each .NET process has many threads running within the one process 
and sharing the same heap.

Selecting the right concurrent pattern

Application characteristic Concurrent pattern

You have a sequential loop where each iteration 
runs an independent operation.

Use the Parallel Loop pattern to run autonomous opera-
tions simultaneously (chapter 3).

You write an algorithm that divides the problem 
domain dynamically at runtime.

Use dynamic task parallelism, which uses a Divide and 
Conquer technique to spawn new tasks on demand 
(chapter 4).

You have to parallelize the execution of a distinct 
set of operations without dependencies and 
aggregate the result.

Use the Fork/Join pattern to run in parallel a set of 
tasks that permit you to reduce the results of all the 
operations when completed (chapter 4).

You need to parallelize the execution of a dis-
tinct set of operations where order of execution 
depends on dataflow constraints.

Use the Task Graph pattern to make the dataflow 
dependencies between tasks clear (chapter 13).

You have to analyze and accumulate a result for 
a large data set by performing operations such 
as filtering, grouping, and aggregating.

Use the MapReduce pattern to parallelize the process-
ing in a different and independent step of a massive 
volume of data in a timely manner (chapter 5).

You need to aggregate a large data set by apply-
ing a common operation.

Use the Parallel Aggregation, or Reducer, pattern to 
merge partial results (chapter 5).

You implement a program that repetitively per-
forms a series of independent operations con-
nected as a chain.

Use the Pipeline pattern to run in parallel a set of oper-
ations that are connected by queues, preserving the 
order of inputs (chapters 7 and 12).

You have multiple processes running inde-
pendently for which work must be synchronized.

Use the Producer/Consumer pattern to safely share 
a common buffer. This buffer is used by the producer 
to queue the generated data in a thread-safe manner; 
the data is then picked up by the consumer to perform 
some operation (chapters 8 and 13).
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