
M A N N I N G

Riccardo Terrell

Modern patterns of concurrent and
 parallel programming

Sample Chapter

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

Chapter dependency graph

Chapter 1
• Why concurrency and definitions?
• Pitfalls of concurrent programming

Chapter 2
• Solving problems by composing simple solutions
• Simplifying programming with closures

Chapter 3
• Immutable data structures
• Lock-free concurrent code

Chapter 6
• Functional reactive programming
• Querying real-time event streams

Chapter 4
• Big data parallelism
• The Fork/Join pattern

Chapter 7
• Composing parallel operations
• Querying real-time event streams

Chapter 5
• Isolating and controlling side effects

Chapter 8
• Parallel asynchronous computations
• Composing asynchronous executions

Chapter 11
• Agent (message-passing) model

Chapter 10
• Task combinators
• Async combinators and conditional operators

Chapter 13
• Reducing memory consumption
• Parallelizing dependent tasks

Chapter 12
• Composing asynchronous TPL Dataflow blocks
• Concurrent Producer/Consumer pattern

Chapter 14
• Scalable applications using CQRS pattern

Chapter 9
• Cooperating asynchronous computations
• Extending asynchronous F# computational expressions

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

Concurrency in .NET
Modern patterns of concurrent

and parallel programming

by Riccardo Terrell

Chapter 7

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

vii

brief contents

Part 1 Benefits of functional programming applicable to
concurrent programs .. 1
1 ■	 Functional concurrency foundations 3
2 ■	 Functional programming techniques for concurrency 30
3 ■	 Functional data structures and immutability 59

Part 2 How to approach the different parts of a
concurrent program ..95
4 ■	 The basics of processing big data: data parallelism, part 1 97
5 ■	 PLINQ and MapReduce: data parallelism, part 2 118
6 ■	 Real-time event streams: functional reactive programming 148
7 ■	 Task-based functional parallelism 182
8 ■	 Task asynchronicity for the win 213
9 ■	 Asynchronous functional programming in F# 247

10 ■	 	Functional combinators for fluent concurrent
programming 275

11 ■	 Applying reactive programming everywhere with agents 328
12 ■	 	Parallel workflow and agent programming with TPL

Dataflow 365

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

viiiviii brief contents

Part 3 Modern patterns of concurrent
programming applied ...395
13 ■	 	Recipes and design patterns for successful

concurrent programming 397
14 ■	 	Building a scalable mobile app with concurrent

functional programming 449

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

182

7Task-based functional
parallelism

This chapter covers
¡	Task parallelism and declarative programming

semantics

¡	Composing parallel operations with functional
combinators

¡	Maximizing resource utilization with the Task
Parallel Library

¡	Implementing a parallel functional pipeline
pattern

The task parallelism paradigm splits program execution and runs each part in par-
allel by reducing the total runtime. This paradigm targets the distribution of tasks
across different processors to maximize processor utilization and improve perfor-
mance. Traditionally, to run a program in parallel, code is separated into distinct
areas of functionality and then computed by different threads. In these scenarios,
primitive locks are used to synchronize the access to shared resources in the pres-
ence of multiple threads. The purpose of locks is to avoid race conditions and mem-
ory corruption by ensuring concurrent mutual exclusion. The main reason locks are

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 183A short introduction to task parallelism

7
used is due to the design legacy of waiting for the current thread to complete before a
resource is available to continue running the thread.

A newer and better mechanism is to pass the rest of the computation to a callback
function (which runs after the thread completes execution) to continue the work. This
technique in FP is called continuation-passing style (CPS). In this chapter, you’ll learn how
to adopt this mechanism to run multiple tasks in parallel without blocking program
execution. With this technique, you’ll also learn how to implement task-based parallel
programs by isolating side effects and mastering function composition, which simplifies
the achievement of task parallelism in your code. Because compositionality is one of the
most important features in FP, it eases the adoption of a declarative programming style.
Code that’s easy to understand is also simple to maintain. Using FP, you’ll engage task
parallelism in your programs without introducing complexity, as compared to conven-
tional programming.

7.1 A short introduction to task parallelism
Task parallelism refers to the process of running a set of independent tasks in parallel
across several processors. This paradigm partitions a computation into a set of smaller
tasks and executes those smaller tasks on multiple threads. The execution time is
reduced by simultaneously processing multiple functions.

In general, parallel jobs begin from the same point, with the same data, and can
either terminate in a fire-and-forget fashion or complete altogether in a task-group con-
tinuation. Any time a computer program simultaneously evaluates different and auton-
omous expressions using the same starting data, you have task parallelism. The core of
this concept is based on small units of computations called futures. Figure 7.1 shows the
comparison between data parallelism and task parallelism.

Data
setParallelism

Data
set

Task 2

Task 3

Task 4

Task 5

Task 6

Data
setParallelism

Data parallelism Task parallelism

Task 1
1N 1/6

Data
set

Task 2
2N 1/6

Task 3
3N 1/6

Task 4
4N 1/6

Task 5
5N 1/6

Task 6
6N 1/6

Task 1

Figure 7.1 Data parallelism is the simultaneous execution of the same function across the elements of
a data set. Task parallelism is the simultaneous execution of multiple and different functions across the
same or different data sets.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

184 chapter 7 Task-based functional parallelism

Task parallelism isn’t data parallelism
Chapter 4 explains the differences between task parallelism and data parallelism. To
refresh your memory, these paradigms are at two ends of the spectrum. Data parallelism
occurs when a single operation is applied to many inputs. Task parallelism occurs when
multiple diverse operations perform against their own input. It is used to query and call
multiple Web APIs at one time, or to store data against different database servers. In
short, task parallelism parallelizes functions; data parallelism parallelizes data.

Task parallelism achieves its best performance by adjusting the number of running
tasks, depending on the amount of parallelism available on your system, which corre-
sponds to the number of available cores and, possibly, their current loads.

7.1.1 Why task parallelism and functional programming?

In the previous chapters, you’ve seen code examples that deal with data parallelism
and task composition. Those data-parallel patterns, such as Divide and Conquer, Fork/
Join, and MapReduce, aim to solve the computational problem of splitting and com-
puting in parallel smaller, independent jobs. Ultimately, when the jobs are terminated,
their outputs are combined into the final result.

In real-world parallel programming, however, you commonly deal with different
and more complex structures that aren’t so easily split and reduced. For example,
the computations of a task that processes input data could rely on the result of other
tasks. In this case, the design and approach to coordinating the work among multiple
tasks is different than for the data parallelism model and can sometimes be challeng-
ing. This challenge is due to task dependencies, which can reach convoluted connec-
tions where execution times can vary, making the job distribution tough to manage.

The purpose of task parallelism is to tackle these scenarios, providing you, the devel-
oper, with a toolkit of practices, patterns, and, in the case of programming, the .NET
Framework, a rich library that simplifies task-based parallel programming. In addition,
FP eases the compositional aspect of tasks by controlling side effects and managing
their dependencies in a declarative programming style.

Functional paradigm tenets play an essential role in writing effective and deterministic
task-based parallel programs. These functional concepts were discussed in the early chap-
ters of this book. To summarize, here’s a list of recommendations for writing parallel code:

¡	Tasks should evaluate side-effect-free functions, which lead to referential trans-
parency and deterministic code. Pure functions make the program more pre-
dictable because the functions always behave in the same way, regardless of the
external state.

¡	Remember that pure functions can run in parallel because the order of execu-
tion is irrelevant.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 185A short introduction to task parallelism

¡	If side effects are required, control them locally by performing the computation
in a function with run-in isolation.

¡	Avoid sharing data between tasks by applying a defensive copy approach.
¡	Use immutable structures when data sharing between tasks cannot be avoided.

NOTE A defensive copy is a mechanism that reduces (or eliminates) the negative
side effects of modifying a shared mutable object. The idea is to create a copy
of the original object that can be safely shared; its modification won’t affect the
original object.

7.1.2 Task parallelism support in .NET

Since its first release, the .NET Framework has supported the parallel execution of
code through multithreading. Multithreaded programs are based on an indepen-
dent execution unit called a thread, which is a lightweight process responsible for
multitasking within a single application. (The Thread class can be found in the Base
Class Library (BCL) System.Threading namespace.) Threads are handled by the
CLR. The creation of new threads is expensive in terms of overhead and memory.
For example, the memory stack size associated with the creation of a thread is about
1 MB in an x86 architecture-based processor because it involves the stack, thread
local storage, and context switches.

Fortunately, the .NET Framework provides a class ThreadPool that helps to over-
come these performance problems. In fact, it’s capable of optimizing the costs asso-
ciated with complex operations, such as creating, starting, and destroying threads.
Furthermore, the .NET ThreadPool is designed to reuse existing threads as much as
possible to minimize the costs associated with the instantiation of new ones. Figure 7.2
compares the two processes.

The ThreadPool class
The .NET Framework provides a ThreadPool static class that loads a set of threads during
the initialization of a multithreaded application and then reuses those threads, instead of
creating new threads, to run new tasks as required. In this way, the ThreadPool class lim-
its the number of threads that are running at any given point, avoiding the overhead of
creating and destroying application threads. In the case of parallel computation, Thread-
Pool optimizes the performance and improves the application’s responsiveness by avoid-
ing context switches.

The ThreadPool class exposes the static method QueueUserWorkItem, which accepts a
function (delegate) that represents an asynchronous operation.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

186 chapter 7 Task-based functional parallelism

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1 Thread 1

Conventional threads
An instance of a new thread is created

for each operation or task. This can lead
to memory-consumption issues.

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1 Work item 1

Thread pool
Task are queued in a pool of work items, which are lightweight
compared to threads. The thread pool schedules tasks, reusing
each thread for the next work item and returning it to the pool

when the job is completed.

Work item 2

Work item 3

Work item 4

Worker 1

Worker 2

Worker 3

Figure 7.2 If using conventional threads, you must create an instance of a new thread for each operation or
task. This can create memory consumption issues. By contrast, if using a thread pool, you queue a task in a
pool of work items, which are lightweight compared to threads. The thread pool then schedules these tasks,
reusing the thread for the next work item and returning it back to the pool when the job is completed.

The following listing compares starting a thread in a traditional way versus starting a
thread using the ThreadPool.QueueUserWorkItem static method.

Listing 7.1 Spawning threads and ThreadPool.QueueUserWorkItem

Action<string> downloadSite = url => {
 var content = new WebClient().DownloadString(url);
 Console.WriteLine($"The size of the web site {url} is
➥ {content.Length}");

};

var threadA = new Thread(() => downloadSite("http://www.nasdaq.com"));
var threadB = new Thread(() => downloadSite("http://www.bbc.com"));

threadA.Start();
threadB.Start();
threadA.Join();
threadB.Join();

ThreadPool.QueueUserWorkItem(o => downloadSite("http://www.nasdaq.com"));
ThreadPool.QueueUserWorkItem(o => downloadSite("http://www.bbc.com"));

A thread starts explicitly, but the Thread class provides an option using the instance
method Join to wait for the thread. Each thread then creates an additional mem-
ory load, which is harmful to the runtime environment. Initiating an asynchronous

Uses a function to download
a given website

Threads must start explicitly, providing
the option to wait (join) for completion.

The ThreadPool.QueueUserWorkItem immediately
starts an operation considered “fire and forget,”

which means the work item needs to produce side
effects in order for the calculation to be visible.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 187The .NET Task Parallel Library

computation using ThreadPool’s QueueUserWorkItem is simple, but there are a few
restraints when using this technique that introduce serious complications in develop-
ing a task-based parallel system:

¡	No built-in notification mechanism when an asynchronous operation completes
¡	No easy way to get back a result from a ThreadPool worker
¡	No built-in mechanism to propagate exceptions to the original thread
¡	No easy way to coordinate dependent asynchronous operations

To overcome these limitations, Microsoft introduced the notion of tasks with the TPL,
accessible through the System.Threading.Tasks namespace. The tasks concept is the
recommended approach for building task-based parallel systems in .NET.

7.2 The .NET Task Parallel Library
The .NET TPL implements a number of extra optimizations on top of ThreadPool,
including a sophisticated TaskScheduler work-stealing algorithm (http://mng.bz/j4K1)
to scale dynamically the degree of concurrency, as shown in figure 7.3. This algorithm
guarantees an effective use of the available system processor resources to maximize the
overall performance of the concurrent code.

Worker 1
Work-stealing algorithm

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1 Work item 6 Work item 1

Work item 4

1. The work item is sent
 to the main queue.

2. The work item
 is dispatched to
 a worker thread,
 which has a private,
 dedicated queue of
 work items to
 process.

3. If the main queue is
 empty, workers look
 in the private queues
 of other workers to
 “steal” work.

Work item 3

Worker 2

Work item 2

Work item 5

Figure 7.3 The TPL uses the work-stealing algorithm to optimize the scheduler. Initially, the TPL sends
jobs to the main queue (step 1). Then it dispatches the work items to one of the worker threads, which
has a private and dedicated queue of work items to process (step 2). If the main queue is empty, the
workers look in the private queues of the other workers to “steal” work (step 3).

www.itbook.store/books/9781617292996

http://mng.bz/j4K1
https://itbook.store/books/9781617292996

188 chapter 7 Task-based functional parallelism

With the introduction of the task concept in place of the traditional and limited thread
model, the Microsoft TPL eases the process of adding concurrency and parallelism to
a program with a set of new types. Furthermore, the TPL provides support through the
Task object to cancel and manage state, to handle and propagate exceptions, and to
control the execution of working threads. The TPL abstracts away the implementation
details from the developer, offering control over executing the code in parallel.

When using a task-based programming model, it becomes almost effortless to intro-
duce parallelism in a program and concurrently execute parts of the code by convert-
ing those parts into tasks.

NOTE The TPL provides the necessary infrastructure to achieve optimal utili-
zation of CPU resources, regardless of whether you’re running a parallel pro-
gram on a single or multicore computer.

You have several ways to invoke parallel tasks. This chapter reviews the relevant tech-
niques to implement task parallelism.

7.2.1 Running operations in parallel with TPL Parallel.Invoke

Using the .NET TPL, you can schedule a task in several ways, the Parallel.Invoke
method being the simplest. This method accepts an arbitrary number of actions (del-
egates) as an argument in the form ParamArray and creates a task for each of the del-
egates passed. Unfortunately, the action-delegate signature has no input arguments,
and it returns void, which is contrary to functional principles. In imperative program-
ming languages, functions returning void are used for side effects.

When all the tasks terminate, the Parallel.Invoke method returns control to the
main thread to continue the execution flow. One important distinction of the Paral-
lel.Invoke method is that exception handling, synchronous invocation, and schedul-
ing are handled transparently to the developer.

Let’s imagine a scenario where you need to execute a set of independent, hetero-
geneous tasks in parallel as a whole, then continue the work after all tasks complete.
Unfortunately, PLINQ and parallel loops (discussed in the previous chapters) cannot
be used because they don’t support heterogeneous operations. This is the typical case
for using the Parallel.Invoke method.

NOTE Heterogeneous tasks are a set of operations that compute as a whole regard-
less of having different result types or diverse outcomes.

Listing 7.2 runs functions in parallel against three given images and then saves the
result in the filesystem. Each function creates a locally defensive copy of the original
image to avoid unwanted mutation. The code example is in F#; the same concept
applies to all .NET programming languages.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 189The .NET Task Parallel Library

Listing 7.2 Parallel.Invoke executing multiple heterogeneous tasks

let convertImageTo3D (sourceImage:string) (destinationImage:string) =
 let bitmap = Bitmap.FromFile(sourceImage) :?> Bitmap
 let w,h = bitmap.Width, bitmap.Height
 for x in 20 .. (w-1) do
 for y in 0 .. (h-1) do
 let c1 = bitmap.GetPixel(x,y)
 let c2 = bitmap.GetPixel(x - 20,y)
 let color3D = Color.FromArgb(int c1.R, int c2.G, int c2.B)
 bitmap.SetPixel(x - 20 ,y,color3D)
 bitmap.Save(destinationImage, ImageFormat.Jpeg)

let setGrayscale (sourceImage:string) (destinationImage:string) =
 let bitmap = Bitmap.FromFile(sourceImage) :?> Bitmap
 let w,h = bitmap.Width, bitmap.Height
 for x = 0 to (w-1) do
 for y = 0 to (h-1) do
 let c = bitmap.GetPixel(x,y)
 let gray = int(0.299 * float c.R + 0.587 * float c.G + 0.114 *
➥ float c.B)
 bitmap.SetPixel(x,y, Color.FromArgb(gray, gray, gray))
 bitmap.Save(destinationImage, ImageFormat.Jpeg)

let setRedscale (sourceImage:string) (destinationImage:string) =
 let bitmap = Bitmap.FromFile(sourceImage) :?> Bitmap
 let w,h = bitmap.Width, bitmap.Height
 for x = 0 to (w-1) do
 for y = 0 to (h-1) do
 let c = bitmap.GetPixel(x,y)
 bitmap.SetPixel(x,y, Color.FromArgb(int c.R,
➥ abs(int c.G – 255), abs(int c.B – 255)))
 bitmap.Save(destinationImage, ImageFormat.Jpeg)

System.Threading.Tasks.Parallel.Invoke(
 Action(fun ()-> convertImageTo3D "MonaLisa.jpg" "MonaLisa3D.jpg"),
 Action(fun ()-> setGrayscale "LadyErmine.jpg" "LadyErmineRed.jpg"),
 Action(fun ()-> setRedscale "GinevraBenci.jpg" "GinevraBenciGray.jpg"))

In the code, Parallel.Invoke creates and starts the three tasks independently, one for
each function, and blocks the execution flow of the main thread until all tasks com-
plete. Due to the parallelism achieved, the total execution time coincides with the time
to compute the slower method.

NOTE The source code intentionally uses the methods GetPixel and SetPixel
to modify a Bitmap. These methods (especially GetPixel) are notoriously slow;
but for the sake of the example we want to test the parallelism creating little

Creates an image with a 3D effect from a given image

Creates a copy of
an image from a

given file path
A nested for loop accesses
the pixels of the image.

Saves the newly created
image in the filesystemCreates an image, transforming the colors to shades of gray

A nested for loop accesses
the pixels of the image.

Creates an image by applying the Red color filter

A nested for loop
accesses the pixels
of the image.

Saves the newly created image in the filesystem

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

190 chapter 7 Task-based functional parallelism

extra overhead to induce extra CPU stress. In production code, if you need
to iterate throughout an entire image, you’re better off marshaling the entire
image into a byte array and iterating through that.

It’s interesting to notice that the Parallel.Invoke method could be used to implement a
Fork/Join pattern, where multiple operations run in parallel and then join when they’re
all completed. Figure 7.4 shows the images before and after the image processing.

Ginevra de’ Benci Ginevra de’ Benci, red filter

Mona Lisa Mona Lisa, 3D

Lady with an Ermine Lady with an Ermine, shades of gray

Figure 7.4 The resulting
images from running the code
in listing 7.2. You can find
the full implementation in the
downloadable source code.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 191The problem of void in C#

Despite the convenience of executing multiple tasks in parallel, Parallel.Invoke
limits the control of the parallel operation because of the void signature type. This
method doesn’t expose any resources to provide details regarding the status and out-
come, either succeed or fail, of each individual task. Parallel.Invoke can either
complete successfully or throw an exception in the form of an AggregateException
instance. In the latter case, any exception that occurs during the execution is post-
poned and rethrown when all tasks have completed. In FP, exceptions are side effects
that should be avoided. Therefore, FP provides a better mechanism to handle errors, a
subject which will be covered in chapter 11.

Ultimately, there are two important limitations to consider when using the Parallel
.Invoke method:

¡	The signature of the method returns void, which prevents compositionality.
¡	The order of task execution isn’t guaranteed, which constrains the design of

computations that have dependencies.

7.3 The problem of void in C#
It’s common, in imperative programming languages such as C#, to define methods
and delegates that don’t return values (void), such as the Parallel.Invoke method.
This method’s signature prevents compositionality. Two functions can compose when
the output of a function matches the input of the other function.

In function-first programming languages such as F#, every function has a return
value, including the case of the unit type, which is comparable to a void but is treated as
a value, conceptually not much different from a Boolean or integer.

unit is the type of any expression that lacks any other specific value. Think of func-
tions used for printing to the screen. There’s nothing specific that needs to be returned,
and therefore functions may return unit so that the code is still valid. This is the F#
equivalent of C#’s void. The reason F# doesn’t use void is that every valid piece of code
has a return type, whereas void is the absence of a return. Rather than the concept of
void, a functional programmer thinks of unit. In F#, the unit type is written as (). This
design enables function composition.

In principle, it isn’t required for a programming language to support methods with
return values. But a method without a defined output (void) suggests that the function
performs some side effect, which makes it difficult to run tasks in parallel.

7.3.1 The solution for void in C#: the unit type

In functional programming, a function defines a relationship between its input and out-
put values. This is similar to the way mathematical theorems are written. For example,
in the case of a pure function, the return value is only determined by its input values.

In mathematics, every function returns a value. In FP, a function is a mapping, and a
mapping has to have a value to map. This concept is missing in mainstream imperative
programming languages such as C#, C++, and Java, which treat voids as methods that
don’t return anything, instead of as functions that can return something meaningful.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

192 chapter 7 Task-based functional parallelism

In C#, you can implement a Unit type as a struct with a single value that can be
used as a return type in place of a void-returning method. Alternatively, the Rx, dis-
cussed in chapter 6, provides a unit type as part of its library. This listing shows the
implementation of the Unit type in C#, which was borrowed from the Microsoft Rx
(http://bit.ly/2vEzMeM).

Listing 7.3 Unit type implementation in C#

public struct Unit : IEquatable<Unit>
{

 public static readonly Unit Default = new Unit();
 public override int GetHashCode() => 0;
 public override bool Equals(object obj) => obj is Unit;
 public override string ToString() => "()";

 public bool Equals(Unit other) => true;
 public static bool operator ==(Unit lhs, Unit rhs) => true;
 public static bool operator !=(Unit lhs, Unit rhs) => false;
}

The Unit struct implements the IEquatable interface in such a way that forces all val-
ues of the Unit type to be equal. But what’s the real benefit of having the Unit type as a
value in a language type system? What is its practical use?

Here are two main answers:

¡	The type Unit can be used to publish an acknowledgment that a function is
completed.

¡	Having a Unit type is useful for writing generic code, including where a generic
first-class function is required, which reduces code duplication.

Using the Unit type, for example, you could avoid repeating code to implement
Action<T> or Func<T, R>, or functions that return a Task or a Task<T>. Let’s consider
a function that runs a Task<TInput> and transforms the result of the computation into
a TResult type:

TResult Compute<TInput, TResult>(Task<TInput> task,
 Func<TInput, TResult> projection) => projection(task.Result);

Task<int> task = Task.Run<int>(() => 42);
bool isTheAnswerOfLife = Compute(task, n => n == 42);

This function has two arguments. The first is a Task<TInput> that evaluates to an
expression. The result is passed into the second argument, a Func<TInput, TResult>
delegate, to apply a transformation and then return the final value.

The unit struct that implements the IEquatable
interface to force the definition of a type-
specific method for determining equality

Uses a helper static method to retrieve
the instance of the Unit type

Overrides the base methods to
force equality between Unit types

Equality between unit types is always true.

www.itbook.store/books/9781617292996

http://bit.ly/2vEzMeM
https://itbook.store/books/9781617292996

 193Continuation-passing style: a functional control flow

NOTE This code implementation is for demo purposes only. It isn’t recom-
mended to block the evaluation of the task to retrieve the result as the Compute
function does in the previous code snippet. Section 7.4 covers the right approach.

How would you convert the Compute function into a function that prints the result?
You’re forced to write a new function to replace the Func<T> delegate projection into
an Action delegate type. The new method has this signature:

void Compute<TInput>(Task<TInput> task, Action<TInput> action) =>
 action(task.Result);

Task<int> task = Task.Run<int>(() => 42);
Compute(task, n => Console.WriteLine($"Is {n} the answer of life?
➥ {n == 42}"));

It’s also important to point out that the Action delegate type is performing a side
effect: in this case, printing the result on the console, which is a function conceptually
similar to the previous one.

It would be ideal to reuse the same function instead of having to duplicate code for
the function with the Action delegate type as an argument. To do so, you’ll need to pass
a void into the Func delegate, which isn’t possible in C#. This is the case where the Unit
type removes code repetition. By using the struct Unit type definition, you can use
the same function that takes a Func delegate to also produce the same behavior as the
function with the Action delegate type:

Task<int> task = Task.Run<int>(() => 42);

Unit unit = Compute(task, n => {
 Console.WriteLine($"Is {n} the answer of life? {n == 42}");
 return Unit.Default;});

In that way, introducing the Unit type in the C# language, you can write one Compute
function to handle both cases of returning a value or computing a side effect. Ulti-
mately, a function returning a Unit type indicates the presence of side effects, which
is meaningful information for writing concurrent code. Moreover, there are FP lan-
guages, such as Haskell, where the Unit type notifies the compiler, which then distin-
guishes between pure and impure functions to apply more granular optimization.

7.4 Continuation-passing style: a functional control flow
Task continuation is based on the functional idea of the CPS paradigm, discussed in
chapter 3. This approach gives you execution control, in the form of continuation, by
passing the result of the current function to the next one. Essentially, function contin-
uation is a delegate that represents “what happens next.” CPS is an alternative for the
conventional control flow in imperative programming style, where each command is
executed one after another. Instead, using CPS, a function is passed as an argument
into a method, explicitly defining the next operation to execute after its own computa-
tion is completed. This lets you design your own flow-of-control commands.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

194 chapter 7 Task-based functional parallelism

7.4.1 Why exploit CPS?

The main benefit of applying CPS in a concurrent environment is avoiding inconve-
nient thread blocking that negatively impacts the performance of the program. For
example, it’s inefficient for a method to wait for one or more tasks to complete, block-
ing the main execution thread until its child tasks complete. Often the parent task,
which in this case is the main thread, can continue, but cannot proceed immediately
because its thread is still executing one of the other tasks. The solution: CPS, which
allows the thread to return to the caller immediately, without waiting on its children.
This ensures that the continuation will be invoked when it completes.

One downside of using explicit CPS is that code complexity can escalate quickly
because CPS makes programs longer and less readable. You’ll see later in this chapter
how to combat this issue by combining TPL and functional paradigms to abstract the
complexity behind the code, making it flexible and simple to use. CPS enables several
helpful task advantages:

¡	Function continuations can be composed as a chain of operations.
¡	A continuation can specify the conditions under which the function is called.
¡	A continuation function can invoke a set of other continuations.
¡	A continuation function can be canceled easily at any time during computation

or even before it starts.

In the .NET Framework, a task is an abstraction of the classic (traditional) .NET thread
(http://mng.bz/DK6K), representing an independent asynchronous unit of work. The
Task object is part of the System.Threading.Tasks namespace. The higher level of
abstraction provided by the Task type aims to simplify the implementation of concur-
rent code and facilitate the control of the life cycle for each task operation. It’s possible,
for example, to verify the status of the computation and confirm whether the operation
is terminated, failed, or canceled. Moreover, tasks are composable in a chain of opera-
tions by using continuations, which permit a declarative and fluent programming style.

The following listing shows how to create and run operations using the Task type.
The code uses the functions from listing 7.2.

Listing 7.4 Creating and starting tasks

Task monaLisaTask = Task.Factory.StartNew(() =>
 convertImageTo3D("MonaLisa.jpg", "MonaLisa3D.jpg"));

Task ladyErmineTask = new Task(() =>
 setGrayscale("LadyErmine.jpg", "LadyErmine3D.jpg"));
ladyErmineTask.Start();

Task ginevraBenciTask = Task.Run(() =>
 setRedscale("GinevraBenci.jpg", "GinevraBenci3D.jpg"));

Runs the method
convertImageTo3D
using the StartNew Task
static helper method

Runs the method setGrayscale by
creating a new Task instance, and then
calls the Start() Task instance method

Runs the method setRedscale using the
simplified static method Run(), which runs
a task with the default common properties

www.itbook.store/books/9781617292996

http://mng.bz/DK6K
https://itbook.store/books/9781617292996

 195Continuation-passing style: a functional control flow

The code shows three different ways to create and execute a task:

¡	The first technique creates and immediately starts a new task using the built-in
Task.Factory.StartNew method constructor.

¡	The second technique creates a new instance of a task, which needs a function as
a constructor parameter to serve as the body of the task. Then, calling the Start
instance method, the Task begins the computation. This technique provides the
flexibility to delay task execution until the Start function is called; in this way,
the Task object can be passed into another method that decides when to sched-
ule the task for execution.

¡	The third approach creates the Task object and then immediately calls the Run
method to schedule the task. This is a convenient way to create and work with
tasks using the default constructor that applies the standard option values.

The first two options are a better choice if you need a particular option to instantiate
a task, such as setting the LongRunning option. In general, tasks promote a natural way
to isolate data that depends on functions to communicate with their related input and
output values, as shown in the conceptual example in figure 7.5.

Result is
coffee

Task: grind coffee beans
beans powderInput is

coffee beans

Output is
coffee powder

Input is
coffee powder

Task: brew coffee
powder coffee

Figure 7.5 When two tasks are composed together, the output of the first task becomes the input for
the second. This is the same as function composition.

NOTE The Task object can be instantiated with different options to control
and customize its behavior. The TaskCreationOptions.LongRunning option
notifies the underlying scheduler that the task will be a long-running one, for
example. In this case, the task scheduler might be bypassed to create an addi-
tional and dedicated thread whose work won’t be impacted by thread-pool
scheduling. For more information regarding TaskCreationOptions, see the
Microsoft MSDN documentation online (http://bit.ly/2uxg1R6).

7.4.2 Waiting for a task to complete: the continuation model

You’ve seen how to use tasks to parallelize independent units of work. But in common
cases the structure of the code is more complex than launching operations in a fire-
and-forget manner. The majority of task-based parallel computations require a more
sophisticated level of coordination between concurrent operations, where order of
execution can be influenced by the underlying algorithms and control flow of the pro-
gram. Fortunately, the .NET TPL library provides mechanisms for coordinating tasks.

Let’s start with an example of multiple operations running sequentially, and incre-
mentally redesign and refactor the program to improve the code compositionality and

www.itbook.store/books/9781617292996

http://bit.ly/2uxg1R6
https://itbook.store/books/9781617292996

196 chapter 7 Task-based functional parallelism

performance. You’ll start with the sequential implementation, and then you’ll apply dif-
ferent techniques incrementally to improve and maximize the overall computational
performance.

Listing 7.5 implements a face-detection program that can detect specific faces in a
given image. For this example, you’ll use the images of the presidents of the United
States on $20, $50, and $100 bills, using the side on which the president’s image is
printed. The program will detect the face of the president in each image and return a
new image with a square box surrounding the detected face. In this example, focus on
the important code without being distracted by the details of the UI implementation.
The full source code is downloadable from the book’s website.

Listing 7.5 Face-detection function in C#

Bitmap DetectFaces(string fileName) {
 var imageFrame = new Image<Bgr, byte>(fileName);
 var cascadeClassifier = new CascadeClassifier();
 var grayframe = imageFrame.Convert<Gray, byte>();
 var faces = cascadeClassifier.DetectMultiScale(
 grayframe, 1.1, 3, System.Drawing.Size.Empty);
 foreach (var face in faces)
 imageFrame.Draw(face,
 new Bgr(System.Drawing.Color.BurlyWood), 3);
 return imageFrame.ToBitmap();
}

void StartFaceDetection(string imagesFolder) {
 var filePaths = Directory.GetFiles(imagesFolder);
 foreach (string filePath in filePaths) {
 var bitmap = DetectFaces(filePath);
 var bitmapImage = bitmap.ToBitmapImage();
 Images.Add(bitmapImage);
 }
}

The function DetectFaces loads an image from the filesystem using the given filename
path and then detects the presence of any faces. The library Emgu.CV is responsible
for performing the face detection. The Emgu.CV library is a .NET wrapper that per-
mits interoperability with programming languages such as C# and F#, both of which
can interact and call the functions of the underlying Intel OpenCV image-processing
library.1 The function StartFaceDetection initiates the execution, getting the filesys-
tem path of the images to evaluate, and then sequentially processes the face detection
in a for-each loop by calling the function DetectFaces. The result is a new BitmapIm-
age type, which is added to the observable collection Images to update the UI. Fig-
ure 7.6 shows the expected result—the detected faces are highlighted in a box.

Instance of an Emgu.CV
image to interop with the
OpenCV library

Uses a
classifier to
detect face
features in

an image
Face-detection
process

The detected face(s) is
highlighted here, using a box

that’s drawn around it.

The processed image
is added to the Images
observable collection
to update the UI.

1 OpenCV (Open Source Computer Vision Library) is a high-performance image processing library by
Intel (https://opencv.org).

www.itbook.store/books/9781617292996

https://opencv.org
https://itbook.store/books/9781617292996

 197Continuation-passing style: a functional control flow

The first step in improving the performance of the program is to run the face- detection
function in parallel, creating a new task for each image to evaluate.

Listing 7.6 Parallel-task implementation of the face-detection program

void StartFaceDetection(string imagesFolder)
{
 var filePaths = Directory.GetFiles(imagesFolder);

 var bitmaps = from filePath in filePaths
 select Task.Run<Bitmap>(() => DetectFaces(filePath));

 foreach (var bitmap in bitmaps) {
 var bitmapImage = bitmap.Result;
 Images.Add(bitmapImage.ToBitmapImage());
 }
}

In this code, a LINQ expression creates an IEnumerable of Task<Bitmap>, which is
constructed with the convenient Task.Run method. With a collection of tasks in place,
the code starts an independent computation in the for-each loop; but the perfor-
mance of the program isn’t improved. The problem is that the tasks still run sequen-
tially, one by one. The loop processes one task at a time, awaiting its completion before
continuing to the next task. The code isn’t running in parallel.

You could argue that choosing a different approach, such as using Parallel.ForEach
or Parallel.Invoke to compute the DetectFaces function, could avoid the problem
and guarantee parallelism. But you’ll see why this isn’t a good idea.

Let’s adjust the design to fix the problem by analyzing what the foundational issue
is. The IEnumerable of Task<Bitmap> generated by the LINQ expression is material-
ized during the execution of the for-each loop. During each iteration, a Task<Bitmap>
is retrieved, but at this point, the task isn’t competed; in fact, it’s not even started. The
reason lies in the fact that the IEnumerable collection is lazily evaluated, so the under-
lying task starts the computation at the last possible moment during its materialization.
Consequently, when the result of the task bitmap inside the loop is accessed through the
Task<Bitmap>.Result property, the task will block the joining thread until the task is

Figure 7.6 Result of the face-
detection process. The right
side has the images with the
detected face surrounded by a
box frame.

Starts a task sequentially
from the TPL for each

image to process

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

198 chapter 7 Task-based functional parallelism

done. The execution will resume after the task terminates the computation and returns
the result.

To write scalable software, you can’t have any blocked threads. In the previous code,
when the task’s Result property is accessed because the task hasn’t yet finished running,
the thread pool will most likely create a new thread. This increases resource consumption
and hurts performance.

After this analysis, it appears that there are two issues to be corrected to ensure
parallelism (figure 7.7):

¡	Ensure that the tasks run in parallel.
¡	Avoid blocking the main working thread and waiting for each task to complete.

Worker 1

Image 2

Image 1

Image 3

Work item 2 Work item 3

Work item 4

1. Images are sent to the task
 scheduler and become work
 items to be processed.

2. Work items 1 and 3 are stolen
 by workers 2 and 1, respectively.

3. Worker 1 completes the
 work and notifies the scheduler,
 which schedules the continuation
 of work item 3 in the form of
 work item 4.

4. When work item 4 is processed,
 the result updates the UI.

Worker 2

Work item 1

Figure 7.7 The images are sent to the task scheduler, becoming work items to be processed (step 1).
Work item 3 and work item 1 are then “stolen” by worker 1 and worker 2, respectively (step 2). Worker 1
completes the work and notifies the task scheduler, which schedules the rest of the work for continuation
in the form of the new work item 4, which is the continuation of work item 3 (step 3). When work item 4 is
processed, the result updates the UI (step 4).

Here is how to fix issues to ensure the code runs in parallel and reduces memory
consumption.

Listing 7.7 Correct parallel-task implementation of the DetectFaces function

ThreadLocal<CascadeClassifier> CascadeClassifierThreadLocal =
 new ThreadLocal<CascadeClassifier>(() => new CascadeClassifier());

Bitmap DetectFaces(string fileName) { Uses a ThreadLocal instance to ensure
a defensive copy of CascadeClassifier

for each working task

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 199Continuation-passing style: a functional control flow

 var imageFrame = new Image<Bgr, byte>(fileName);
 var cascadeClassifier = CascadeClassifierThreadLocal.Value;
 var grayframe = imageFrame.Convert<Gray, byte>();
 var faces = cascadeClassifier.DetectMultiScale(grayframe, 1.1, 3,
➥ System.Drawing.Size.Empty);

 foreach (var face in faces)
 imageFrame.Draw(face, new Bgr(System.Drawing.Color.BurlyWood), 3);
 return imageFrame.ToBitmap();
}

void StartFaceDetection(string imagesFolder) {
 var filePaths = Directory.GetFiles(imagesFolder);
 var bitmapTasks =
 (from filePath in filePaths
 select Task.Run<Bitmap>(() => DetectFaces(filePath))).ToList();

 foreach (var bitmapTask in bitmapTasks)
 bitmapTask.ContinueWith(bitmap => {
 var bitmapImage = bitmap.Result;
 Images.Add(bitmapImage.ToBitmapImage());
 }, TaskScheduler.FromCurrentSynchronizationContext());
}

In the example, to keep the code structure simple, there’s the assumption that each
computation completes successfully. A few code changes exist, but the good news is that
true parallel computation is achieved without blocking any threads (by continuing the
task operation when it completes). The main function StartFaceDetection guarantees
executing the tasks in parallel by materializing the LINQ expression immediately with a
call to ToList() on the IEnumerable of Task<Bitmap>.

NOTE When you write a computation that creates a load of tasks, fire a LINQ
query and make sure to materialize the query first. Otherwise, there’s no benefit,
because parallelism will be lost and the task will be computed sequentially in the
for-each loop.

Next, a ThreadLocal object is used to create a defensive copy of CascadeClassifier
for each thread accessing the function DetectFaces. CascadeClassifier loads into
memory a local resource, which isn’t thread safe. To solve this problem of thread
unsafety, a local variable CascadeClassifier is instantiated for each thread that runs
the function. This is the purpose of the ThreadLocal object (discussed in detail in
chapter 4).

Then, in the function StartFaceDetection, the for-each loop iterates through the
list of Task<Bitmap>, creating a continuation for each task instead of blocking the exe-
cution if the task is not completed. Because bitmapTask is an asynchronous operation,
there’s no guarantee that the task has completed executing before the Result property
is accessed. It’s good practice to use task continuation with the function ContinueWith
to access the result as part of a continuation. Defining a task continuation is similar to

Uses a LINQ expression on
the file paths that starts

image processing in parallel

Task continuation ensures no blocking;
the operation passes the continuation

of the work when it completes.

TaskScheduler FromCurrentSynchronizationContext
chooses the appropriate context to schedule work on
the relevant UI.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

200 chapter 7 Task-based functional parallelism

creating a regular task, but the function passed with the ContinueWith method takes as
an argument a type of Task<Bitmap>. This argument represents the antecedent task,
which can be used to inspect the status of the computation and branch accordingly.

When the antecedent task completes, the function ContinueWith starts execution
as a new task. Task continuation runs in the captured current synchronization context,
TaskScheduler.FromCurrentSynchronizationContext, which automatically chooses
the appropriate context to schedule work on the relevant UI thread.

NOTE When the ContinueWith function is called, it’s possible to initiate starting
the new task only if the first task terminates with certain conditions, such as if the
task is canceled, by specifying the TaskContinuationOptions.OnlyOn Canceled
flag, or if an exception is thrown, by using the TaskContinuationOptions
.OnlyOnFaulted flag.

As previously mentioned, you could have used Parallel.ForEach, but the problem is
that this approach waits until all the operations have finished before continuing, block-
ing the main thread. Moreover, it makes it more complex to update the UI directly
because the operations run in different threads.

7.5 Strategies for composing task operations
Continuations are the real power of the TPL. It’s possible, for example, to execute
multiple continuations for a single task and to create a chain of task continuations
that maintains dependencies with each other. Moreover, using task continuation, the
underlying scheduler can take full advantage of the work-stealing mechanism and opti-
mize the scheduling mechanisms based on the available resources at runtime.

Let’s use task continuation in the face-detection example. The final code runs in paral-
lel, providing a boost in performance. But the program can be further optimized in terms
of scalability. The function DetectFaces sequentially performs the series of operations
as a chain of computations. To improve resource use and overall performance, a better
design is to split the tasks and subsequent task continuations for each DetectFaces oper-
ation run in a different thread.

Using task continuation, this change is simple. The following listing shows a new
DetectFaces function, with each step of the face-detection algorithm running in a
dedicated and independent task.

Listing 7.8 DetectFaces function using task continuation

Task<Bitmap> DetectFaces(string fileName)
{
 var imageTask = Task.Run<Image<Bgr, byte>>(
 () => new Image<Bgr, byte>(fileName)
);
 var imageFrameTask = imageTask.ContinueWith(
 image => image.Result.Convert<Gray, byte>()
);

Uses task continuation to pass the result of the
work into the attached function without blocking

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 201Strategies for composing task operations

 var grayframeTask = imageFrameTask.ContinueWith(
 imageFrame => imageFrame.Result.Convert<Gray, byte>()
);

 var facesTask = grayframeTask.ContinueWith(grayFrame =>
 {
 var cascadeClassifier = CascadeClassifierThreadLocal.Value;
 return cascadeClassifier.DetectMultiScale(
 grayFrame.Result, 1.1, 3, System.Drawing.Size.Empty);
 }
);

 var bitmapTask = facesTask.ContinueWith(faces =>
 {
 foreach (var face in faces.Result)
 imageTask.Result.Draw(
 face, new Bgr(System.Drawing.Color.BurlyWood), 3);
 return imageTask.Result.ToBitmap();
 }
);
 return bitmapTask;
}

The code works as expected; the execution time isn’t enhanced, although the program
can potentially handle a larger number of images to process while still maintaining
lower resource consumption. This is due to the smart TaskScheduler optimization.
Because of this, the code has become cumbersome and hard to change. For example,
if you add error handling or cancellation support, the code becomes a pile of spaghetti
code—hard to understand and to maintain. It can be better. Composition is the key to
controlling complexity in software.

The objective is to be able to apply a LINQ-style semantic to compose the functions
that run the face-detection program, as shown here (the command and module names
to note are in bold):

from image in Task.Run<Emgu.CV.Image<Bgr, byte>()
from imageFrame in Task.Run<Emgu.CV.Image<Gray, byte>>()
from faces in Task.Run<System.Drawing.Rectangle[]>()
select faces;

This is an example of how mathematical patterns can help to exploit declarative
compositional semantics.

7.5.1 Using mathematical patterns for better composition

Task continuation provides support to enable task composition. How do you combine
tasks? In general, function composition takes two functions and injects the result from
the first function into the input of the second function, thereby forming one function.
In chapter 2, you implemented this Compose function in C# (in bold):

 Func<A, C> Compose<A, B, C>(this Func<A, B> f, Func<B, C> g) =>
 (n) => g(f(n));

Uses task continuation to pass the result of the
work into the attached function without blocking

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

202 chapter 7 Task-based functional parallelism

Can you use this function to combine two tasks? Not directly, no. First, the return type
of the compositional function should be exposing the task’s elevated type as follows
(noted in bold):

Func<A, Task<C>> Compose<A, B, C>(this Func<A, Task> f,
 Func<B, Task<C>> g) => (n) => g(f(n));

But there’s a problem: the code doesn’t compile. The return type from the function f
doesn’t match the input of the function g: the function f(n) returns a type Task,
which isn’t compatible with the type B in function g.

The solution is to implement a function that accesses the underlying value of the
elevated type (in this case, the task) and then passes the value into the next function.
This is a common pattern, called Monad, in FP; the Monad pattern is another design
pattern, like the Decorator and Adapter patterns. This concept was introduced in sec-
tion 6.4.1, but let’s analyze this idea further so you can apply the concept to improve the
face-detection code.

Monads are mathematical patterns that control the execution of side effects by
encapsulating program logic, maintaining functional purity, and providing a powerful
compositional tool to combine computations that work with elevated types. According
to the monad definition, to define a monadic constructor, there are two functions, Bind
and Return, to implement.

the monadic operators, bind and return

Bind takes an instance of an elevated type, unwraps the underlying value, and then
invokes the function over the extracted value, returning a new elevated type. This func-
tion is performed in the future when it’s needed. Here the Bind signature uses the
Task object as an elevated type:

Task<R> Bind<T, R>(this Task<T> m, Func<T, Task<R>> k)

The Return value is an operator that wraps any type T into an instance of the elevated
type. Following the example of the Task type, here’s the signature:

Task<T> Return(T value)

NOTE The same applies to other elevated types: for example, replacing the
Task type with another elevated type such as the Lazy and Observable types.

the monad laws

Ultimately, to define a correct monad, the Bind and Return operations need to satisfy
the monad laws:

1 Left identity—Applying the Bind operation to a value wrapped by the Return oper-
ation and then passed into a function is the same as passing the value straight
into the function:

Bind(Return value, function) = function(value)

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 203Strategies for composing task operations

2 Right identity—Returning a bind-wrapped value is equal to the wrapped value
directly:

Bind(elevated-value, Return) = elevated-value

3 Associative—Passing a value into a function f whose result is passed into a second
function g is the same as composing the two functions f and g and then passing
the initial value:

Bind(elevated-value, f(Bind(g(elevated-value)) =
 Bind(elevated-value, Bind(f.Compose(g), elevated-value))

Now, using these monadic operations, you can fix the error in the previous Compose
function to combine the Task elevated types as shown here:

Func<A, Task<C>> Compose<A, B, C>(this Func<A, Task> f,
 Func<B, Task<C>> g) => (n) => Bind(f(n), g);

Monads are powerful because they can represent any arbitrary operations against ele-
vated types. In the case of the Task elevated type, monads let you implement function
combinators to compose asynchronous operations in many ways, as shown in figure 7.8.

41 + 1

Apply
function

Unwrap
value

Rewrap
value

Monadic
bind

Task<int>(41) int Task<int>

M a (a -> M b) M b

x Task<int>(x => x + 1) x Task<int>(x => x + 1)Bind(Task<int>(41),

Task<int>(42)

Figure 7.8 The monadic Bind operator takes the elevated value Task that acts as a container
(wrapper) for the value 42, and then it applies the function x ➔ Task<int>(x => x + 1), where x is
the number 41 unwrapped. Basically, the Bind operator unwraps an elevated value (Task<int>(41))
and then applies a function (x + 1) to return a new elevated value (Task<int>(42).

Surprisingly, these monadic operators are already built into the .NET Framework in
the form of LINQ operators. The LINQ SelectMany definition corresponds directly
to the monadic Bind function. Listing 7.9 shows both the Bind and Return opera-
tors applied to the Task type. The functions are then used to implement a LINQ-style
semantic to compose asynchronous operations in a monadic fashion. The code is in
F# and then consumed in C# to keep proving the easy interoperability between these
programming languages (the code to note is in bold).

Listing 7.9 Task extension in F# to enable LINQ-style operators for tasks

[<Sealed; Extension; CompiledName("Task")>]
type TaskExtensions =
 // 'T -> M<'T>
 static member Return value : Task<'T> = Task.FromResult<'T> (value)

The Return monadic operator takes
any type T and returns a Task<T>.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

204 chapter 7 Task-based functional parallelism

 // M<'T> * ('T -> M<'U>) -> M<'U>

 static member Bind (input : Task<'T>, binder : 'T -> Task<'U>) =
 let tcs = new TaskCompletionSource<'U>()
 input.ContinueWith(fun (task:Task<'T>) ->
 if (task.IsFaulted) then
 tcs.SetException(task.Exception.InnerExceptions)
 elif (task.IsCanceled) then
 tcs.SetCanceled()
 else
 try

 (binder(task.Result)).ContinueWith(fun
➥ (nextTask:Task<'U>) -> tcs.SetResult(nextTask.Result)) |> ignore
 with
 | ex -> tcs.SetException(ex)) |> ignore
 tcs.Task

 static member Select (task : Task<'T>, selector : 'T -> 'U) : Task<'U> =
 task.ContinueWith(fun (t:Task<'T>) -> selector(t.Result))

 static member SelectMany(input:Task<'T>, binder:'T -> Task<'I>,
projection:'T -> 'I -> 'R): Task<'R> =

 TaskExtensions.Bind(input,
 fun outer -> TaskExtensions.Bind(binder(outer), fun inner ->
 TaskExtensions.Return(projection outer inner)))

 static member SelectMany(input:Task<'T>, binder:'T -> Task<'R>) : Task<'R>
=

 TaskExtensions.Bind(input,
 fun outer -> TaskExtensions.Bind(binder(outer), fun inner ->
 TaskExtensions.Return(inner)))

The implementation of the Return operation is straightforward, but the Bind opera-
tion is a little more complex. The Bind definition can be reused to create other LINQ-
style combinators for tasks, such as the Select and two variants of the SelectMany
operators. In the body of the function Bind, the function ContinueWith, from the
underlying task instance, is used to extract the result from the computation of the
input task. Then to continue the work, it applies the binder function to the result of
the input task. Ultimately, the output of the nextTask continuation is set as the result
of the tcs TaskCompletionSource. The returning task is an instance of the underly-
ing TaskCompletionSource, which is introduced to initialize a task from any opera-
tion that starts and finishes in the future. The idea of the TaskCompletionSource is to
create a task that can be governed and updated manually to indicate when and how
a given operation completes. The power of the TaskCompletionSource type is in the
capability of creating tasks that don’t tie up threads.

The Bind operator takes a Task object as an
elevated type, applies a function to the underlying

type, and returns a new elevated type Task<U>

TaskCompletionSource initializes a behavior in the form
of Task, so it can be treated like one.

The Bind operator unwraps the result from
the Task elevated type and passes the result

into the continuation that executes the
monadic function binder.

The LINQ SelectMany operator acts as
the Bind monadic operator.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 205Strategies for composing task operations

TaskCompletionSource
The purpose of the TaskCompletionSource<T> object is to provide control and refer to
an arbitrary asynchronous operation as a Task<T>. When a TaskCompletionSource
(http://bit.ly/2vDOmSN) is created, the underlying task properties are accessible
through a set of methods to manage the lifetime and completion of the task. This includes
SetResult, SetException, and SetCanceled.

applying the monad pattern to task operations
With the LINQ operations SelectMany on tasks in place, you can rewrite the DetectFaces
function using an expressive and comprehension query (the code to note is in bold).

Listing 7.10 DetectFaces using task continuation based on a LINQ expression

Task<Bitmap> DetectFaces(string fileName) {
 Func<System.Drawing.Rectangle[],Image<Bgr, byte>, Bitmap>
➥	drawBoundries =
 (faces, image) => {
 faces.ForAll(face => image.Draw(face, new
➥ Bgr(System.Drawing.Color.BurlyWood), 3));
 return image.ToBitmap();
 };

 return from image in Task.Run(() => new Image<Bgr, byte>(fileName))
 from imageFrame in Task.Run(() => image.Convert<Gray,

byte>())
 from bitmap in Task.Run(() =>
 CascadeClassifierThreadLocal.Value.DetectMultiScale(imageFrame,
➥ 1.1, 3, System.Drawing.Size.Empty)).Select(faces =>
 drawBoundries(faces, image))
 select bitmap;
}

This code shows the power of the monadic pattern, providing composition semantics
over elevated types such as tasks. Moreover, the code of the monadic operations is con-
centrated into the two operators Bind and Return, making the code maintainable and
easy to debug. To add logging functionality or special error handling, for example, you
only need to change one place in code, which is convenient.

In listing 7.10, the Return and Bind operators were exposed in F# and consumed in
C#, as a demonstration of the simple interoperability between the two programming
languages. The source code for this book contains the implementation in C#. A beau-
tiful composition of elevated types requires monads; the continuation monad shows how
monads can readily express complex computations.

using the hidden fmap functor pattern to apply transformation
One important function in FP is Map, which transforms one input type into a different
one. The signature of the Map function is

Map : (T -> R) -> [T] -> [R]

The detected face(s) are highlighted
using a box that’s drawn around them.

Task composition using the LINQ-like Task operators
defined with the Task monadic operators

www.itbook.store/books/9781617292996

http://bit.ly/2vDOmSN
https://itbook.store/books/9781617292996

206 chapter 7 Task-based functional parallelism

An example in C# is the LINQ Select operator, which is a map function for IEnumer-
able types:

IEnumerable<R> Select<T,R>(IEnumerable<T> en, Func<T, R> projection)

In FP, this similar concept is called a functor, and the map function is defined as fmap.
Functors are basically types that can be mapped over. In F#, there are many:

Seq.map : ('a -> 'b) -> 'a seq -> 'b seq
List.map : ('a -> 'b) -> 'a list -> 'b list
Array.map : ('a -> 'b) -> 'a [] -> 'b []
Option.map : ('a -> 'b) -> 'a Option -> 'b Option

This mapping idea seems simple, but the complexity starts when you have to map ele-
vated types. This is when the functor pattern becomes useful.

Think about a functor as a container that wraps an elevated type and offers a way to
transform a normal function into one that operates on the contained values. In the case
of the Task type, this is the signature:

fmap : ('T -> 'R) -> Task<'T> -> Task<'R>

This function has been previously implemented for the Task type in the form of the
Select operator as part of the LINQ-style operators set for tasks built in F#. In the last
LINQ expression computation of the function DetectFaces, the Select operator proj-
ects (map) the input Task<Rectangle[]> into a Task<Bitmap>:

from image in Task.Run(() => new Image<Bgr, byte>(fileName))
from imageFrame in Task.Run(() => image.Convert<Gray, byte>())
from bitmap in Task.Run(() =>
 CascadeClassifierThreadLocal.Value.DetectMultiScale
 (imageFrame, 1.1, 3, System.Drawing.Size.Empty))
 .select(faces => drawBoundries(faces, image))
select bitmap;

The concept of functors becomes useful when working with another functional pat-
tern, applicative functors, which will be covered in chapter 10.

NOTE The concepts of functors and monads come from the branch of math-
ematics called category theory,2 but it isn’t necessary to have any category theory
background to follow and use these patterns.

the abilities behind monads
Monads provide an elegant solution to composing elevated types. Monads aim to con-
trol functions with side effects, such as those that perform I/O operations, providing
a mechanism to perform operations directly on the result of the I/O without having a
value from impure functions floating around the rest of your pure program. For this
reason, monads are useful in designing and implementing concurrent applications.

2 For more information, see https://wiki.haskell.org/Category_theory.

www.itbook.store/books/9781617292996

https://wiki.haskell.org/Category_theory
https://itbook.store/books/9781617292996

 207The parallel functional Pipeline pattern

7.5.2 Guidelines for using tasks

Here are several guidelines for using tasks:

¡	It’s good practice to use immutable types for return values. This makes it easier to
ensure that your code is correct.

¡	It’s good practice to avoid tasks that produce side effects; instead, tasks should
communicate with the rest of the program only with their returned values.

¡	It’s recommended that you use the task continuation model to continue with the
computation, which avoids unnecessary blocking.

7.6 The parallel functional Pipeline pattern
In this section, you’re going to implement one of the most common coordination
techniques—the Pipeline pattern. In general, a pipeline is composed of a series of
computational steps, composed as a chain of stages, where each stage depends on the
output of its predecessor and usually performs a transformation on the input data.
You can think of the Pipeline pattern as an assembly line in a factory, where each item
is constructed in stages. The evolution of an entire chain is expressed as a function,
and it uses a message queue to execute the function each time new input is received.
The message queue is non-blocking because it runs in a separate thread, so even if the
stages of the pipeline take a while to execute, it won’t block the sender of the input
from pushing more data to the chain.

This pattern is similar to the Producer/Consumer pattern, where a producer man-
ages one or more worker threads to generate data. There can be one or more consum-
ers that consume the data being created by the producer. Pipelines allow these series
to run in parallel. The implementation of the pipeline in this section follows a slightly
different design as compared to the traditional one seen in figure 7.9.

The traditional Pipeline pattern with serial stages has a speedup, measured in
throughput, which is limited to the throughput of the slowest stage. Every item pushed
into the pipeline must pass through that stage. The traditional Pipeline pattern cannot
scale automatically with the number of cores, but is limited to the number of stages.
Only a linear pipeline, where the number of stages matches the number of available
logical cores, can take full advantage of the computer power. In a computer with eight
cores, a pipeline composed of four stages can use only half of the resources, leaving
50% of the cores idle.

FP promotes composition, which is the concept the Pipeline pattern is based on. In
listing 7.11, the pipeline embraces this tenet by composing each step into a single func-
tion and then distributing the work in parallel, fully using the available resources. In an
abstract way, each function acts as the continuation of the previous one, behaving as a
continuation-passing style. The code listing implementing the pipeline is in F#, then
consumed in C#. But in the downloadable source code, you can find the full imple-
mentation in both programming languages. Here the IPipeline interface defines the
functionality of the pipeline.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

208 chapter 7 Task-based functional parallelism

Task 2

Task 3

Task 1 Stage 1 Buffer

Result 2

Result 3

Result 1

Result 2

Result 3

Result 1

Stage 3

Worker 1

WorkItem 1

WorkItem 2

WorkItem 1
Stage 1

Stage 2

Stage 3
WorkItem 2

Worker 2

Traditional parallel pipeline
The pipeline creates a buffer between each stage that works as a parallel Producer/Consumer pattern. There

are almost as many buffers as there are stages. Each work item is sent to stage 1; the result is passed
into the first buffer, which coordinates the work in parallel to push it into stage 2. This process

continues until the end of the pipeline, when all the stages are computed.

Stage 2 Buffer

Functional parallel pipeline
The pipeline combines all the stages into one, as if composing multiple functions.

Each work item is pushed into the combined steps to be processed
in parallel, using the TPL and the optimized scheduler.

WorkItem 1

WorkItem 2

Task 2

Task 3

Task 1

Figure 7.9 The traditional pipeline creates a buffer between each stage that works as a parallel Producer/
Consumer pattern. There are almost as many buffers as there are number of stages. With this design,
each work item to process is sent to the initial stage, then the result is passed into the first buffer, which
coordinates the work in parallel to push it into the second stage. This process continues until the end of
the pipeline when all the stages are computed. By contrast, the functional parallel pipeline combines all the
stages into one, as if composing multiple functions. Then, using a Task object, each work item is pushed
into the combined steps to be processed in parallel and uses the TPL and the optimized scheduler.

Listing 7.11 IPipeline interface

[<Interface>]
type IPipeline<'a,'b> =
 abstract member Then : Func<'b, 'c> -> IPipeline<'a,'c>

 abstract member Enqueue : 'a * Func<('a * 'b), unit)> -> unit

Interface that defines the pipeline contract

Uses a function to expose a fluent API approach Uses a function to push new input to
process into the pipeline

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 209The parallel functional Pipeline pattern

 abstract member Execute : (int * CancellationToken) -> IDisposable
 abstract member Stop : unit -> unit

The function Then is the core of the pipeline, where the input function is composed of
the previous one, applying a transformation. This function returns a new instance of
the pipeline, providing a convenient and fluent API to build the process.

The Enqueue function is responsible for pushing work items into the pipeline for
processing. It takes a Callback as an argument, which is applied at the end of the pipe-
line to further process the final result. This design gives flexibility to apply any arbitrary
function for each item pushed.

The Execute function starts the computation. Its input arguments set the size of the
internal buffer and a cancellation token to stop the pipeline on demand. This function
returns an IDisposable type, which can be used to trigger the cancellation token to
stop the pipeline. Here is the full implementation of the pipeline (the code to note is
in bold).

Listing 7.12 Parallel functional pipeline pattern

[<Struct>]
type Continuation<'a, 'b>(input:'a, callback:Func<('a * 'b), unit) =
 member this.Input with get() = input
 member this.Callback with get() = callback

type Pipeline<'a, 'b> private (func:Func<'a, 'b>) as this =
 let continuations = Array.init 3 (fun _ -> new
 BlockingCollection<Continuation<'a,'b>>(100))

 let then' (nextFunction:Func<'b,'c>) =
 Pipeline(func.Compose(nextFunction)) :> IPipeline<_,_>

 let enqueue (input:'a) (callback:Func<('a * 'b), unit>) =
 BlockingCollection<Continuation<_,_>>.AddToAny(continuations,
➥ Continuation(input, callback))

 let stop() = for continuation in continuations do continuation.
CompleteAdding()

Starts the pipeline
executionThe pipeline can be stopped at any time; this

function triggers the underlying cancellation token.

The Continuation struct encapsulates the
input value for each task with the callback
to run when the computation completes. Initializes the

BlockingCollection
that buffers the work

Uses function composition to combine the
current function of the pipeline with the new

one passed and returns a new pipeline. The
compose function was introduced in chapter 2.

The Enqueue function pushes the
work into the buffer.

The BlockingCollection is notified to complete,
which stops the pipeline.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

210 chapter 7 Task-based functional parallelism

 let execute blockingCollectionPoolSize
(cancellationToken:CancellationToken) =

 cancellationToken.Register(Action(stop)) |> ignore

 for i = 0 to blockingCollectionPoolSize - 1 do
 Task.Factory.StartNew(fun ()->
 while (not <| continuations.All(fun bc -> bc.IsCompleted))
 && (not <| cancellationToken.IsCancellationRequested) do
 let continuation = ref
➥ Unchecked.defaultof<Continuation<_,_>>
 BlockingCollection.TakeFromAny(continuations,
➥ continuation)
 let continuation = continuation.Value
 continuation.Callback.Invoke(continuation.Input,
➥ func.Invoke(continuation.Input)),
 cancellationToken, TaskCreationOptions.LongRunning,
➥ TaskScheduler.Default) |> ignore

 static member Create(func:Func<'a, 'b>) =
 Pipeline(func) :> IPipeline<_,_>

 interface IPipeline<'a, 'b> with
 member this.Then(nextFunction) = then' nextFunction
 member this.Enqueue(input, callback) = enqueue input callback
 member this.Stop() = stop()
 member this.Execute (blockingCollectionPoolSize,cancellationToken) =
 execute blockingCollectionPoolSize cancellationToken
 { new IDisposable with member self.Dispose() = stop() }

The Continuation structure is used internally to pass through the pipeline functions
to compute the items. The implementation of the pipeline uses an internal buffer com-
posed by an array of the concurrent collection BlockingCollection<Collection>,
which ensures thread safety during parallel computation of the items. The argument
to this collection constructor specifies the maximum number of items to buffer at any
given time. In this case, the value is 100 for each buffer.

Each item pushed into the pipeline is added to the collection, which in the future
will be processed in parallel. The Then function is composing the function argument
nextFunction with the function func, which is passed into the pipeline constructor.
Note that you use the Compose function defined in chapter 2 in listing 2.3 to combine
the functions func and nextFunction:

Func<A, C> Compose<A, B, C>(this Func<A, B> f, Func<B, C> g) =>
(n) => g(f(n));

When the pipeline starts the process, it applies the final composed function to each
input value. The parallelism in the pipeline is achieved in the Execute function, which
spawns one task for each BlockingCollection instantiated. This guarantees a buffer
for running the thread. The tasks are created with the LongRunning option to schedule
a dedicated thread. The BlockingCollection concurrent collection allows thread-safe
access to the items stored using the static methods TakeFromAny and AddToAny, which

Registers the cancellation token to run
the stop function when it’s triggered

Starts the tasks to
compute in parallel

The static method creates a new
instance of the pipeline.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

 211The parallel functional Pipeline pattern

internally distribute the items and balance the workload among the running threads.
This collation is used to manage the connection between the input and output of the
pipeline, which behave as producer/consumer threads.

NOTE Using BlockingCollection, remember to call GetConsumingEnumer-
able because the BlockingCollection class implements IEnumerable<T>.
Enumerating over the blocking collection instance won’t consume values.

The pipeline constructor is set as private to avoid direct instantiation. Instead, the
static method Create initializes a new instance of the pipeline. This facilitates a fluent
API approach to manipulate the pipeline.

This pipeline design ultimately resembles a parallel Produce/Consumer pattern
capable of managing the concurrent communication between many-producers to
many-consumers.

The following listing uses the implemented pipeline to refactor the DetectFaces
program from the previous section. In C#, a fluent API approach is a convenient way to
express and compose the steps of the pipeline.

Listing 7.13 Refactored DetectFaces code using the parallel pipeline

var files = Directory.GetFiles(ImagesFolder);

var imagePipe = Pipeline<string, Image<Bgr, byte>>
 .Create(filePath => new Image<Bgr, byte>(filePath))
 .Then(image => Tuple.Create(image, image.Convert<Gray, byte>()))
 .Then(frames => Tuple.Create(frames.Item1,
 CascadeClassifierThreadLocal.Value.DetectMultiScale(frames.Item2, 1.1,
 3, System.Drawing.Size.Empty)))
 .Then(faces =>{
 foreach (var face in faces.Item2)
 faces.Item1.Draw(face,
➥ new Bgr(System.Drawing.Color.BurlyWood), 3);
 return faces.Item1.ToBitmap();
 });

imagePipe.Execute(cancellationToken);

foreach (string fileName in files)
 imagePipe.Enqueue(file, (_, bitmapImage)
 => Images.Add(bitmapImage));

By exploiting the pipeline you developed, the code structure is changed considerably.

NOTE The F# pipeline implementation, in the previous section, uses the Func
delegate to be consumed effortlessly by C# code. In the source code of the
book you can find the implementation of the same pipeline that uses F# func-
tions in place of the .NET Func delegate, which makes it a better fit for proj-
ects completely built in F#. In the case of consuming native F# functions from
C#, the helper extension method ToFunc provides support for interoperability.
The ToFunc extension method can be found in the source code.

Constructs the pipeline
using fluent API.

Starts the execution of the pipeline.
The cancellation token stops the
pipeline at any given time.

The iteration pushes (enqueues) the
file paths into the pipeline queue,
whose operation is non-blocking.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

212 chapter 7 Task-based functional parallelism

The pipeline definition is elegant, and it can be used to construct the process to detect
the faces in the images using a nice, fluent API. Each function is composed step by step,
and then the Execute function is called to start the pipeline. Because the underlying
pipeline processing is already running in parallel, the loop to push the file path of the
images is sequential. The Enqueue function of the pipeline is non-blocking, so there are
no performance penalties involved. Later, when an image is returned from the computa-
tion, the Callback passed into the Enqueue function will update the result to update the
UI. Table 7.1 shows the benchmark to compare the different approaches implemented.

Table 7.1 Benchmark processing of 100 images using four logical core computers with 16 GB RAM. The
results, expressed in seconds, represent the average from running each design three times.

Serial loop Parallel
Parallel

continuation
Parallel LINQ
combination

Parallel pipeline

68.57 22.89 19.73 20.43 17.59

The benchmark shows that, over the average of downloading 100 images for three times,
the pipeline parallel design is the fastest. It’s also the most expressive and concise pattern.

Summary
¡	Task-based parallel programs are designed with the functional paradigm in mind

to guarantee more reliable and less vulnerable (or corrupt) code from functional
properties such as immutability, isolation of side effects, and defensive copy. This
makes it easier to ensure that your code is correct.

¡	The Microsoft TPL embraces functional paradigms in the form of using a con-
tinuation-passing style. This allows for a convenient way to chain a series of
non-blocking operations.

¡	A method that returns void in C# code is a string signal that can produce side
effects. A method with void as output doesn’t permit composition in tasks using
continuation.

¡	FP unmasks mathematical patterns to ease parallel task composition in a declar-
ative and fluent programming style. (The monad and functor patterns are hid-
den in LINQ.) The same patterns can be used to reveal monadic operations with
tasks, exposing a LINQ-semantic style.

¡	A functional parallel pipeline is a pattern designed to compose a series of oper-
ations into one function, which is then applied concurrently to a sequence of
input values queued to be processed. Pipelines are often useful when the data
elements are received from a real-time event stream.

¡	Task dependency is the Achilles heel of parallelism. Parallelism is restricted when
two or more operations cannot run until other operations have completed. It’s
essential to use tools and patterns to maximize parallelism as much as possible.
A functional pipeline, CPS, and mathematical patterns like monad are the keys.

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

Glossary
Asynchronicity —When a program performs requests that don’t complete immediately
but that are fulfilled later, and where the program issuing the request must do meaning-
ful work in the meantime.

Concurrency —The notion of multiple things happening at the same time. Usually, con-
current programs have multiple threads of execution, each typically executing differ-
ent code.

Parallelism —The state of a program when more than one thread runs simultaneously to
speed up the program’s execution.

Process —A standard operating system process. Each instance of the .NET CLR runs in
its own process. Processes are typically independent.

Thread —The smallest sequence of programmed instructions that the OS can manage
independently. Each .NET process has many threads running within the one process
and sharing the same heap.

Selecting the right concurrent pattern

Application characteristic Concurrent pattern

You have a sequential loop where each iteration
runs an independent operation.

Use the Parallel Loop pattern to run autonomous opera-
tions simultaneously (chapter 3).

You write an algorithm that divides the problem
domain dynamically at runtime.

Use dynamic task parallelism, which uses a Divide and
Conquer technique to spawn new tasks on demand
(chapter 4).

You have to parallelize the execution of a distinct
set of operations without dependencies and
aggregate the result.

Use the Fork/Join pattern to run in parallel a set of
tasks that permit you to reduce the results of all the
operations when completed (chapter 4).

You need to parallelize the execution of a dis-
tinct set of operations where order of execution
depends on dataflow constraints.

Use the Task Graph pattern to make the dataflow
dependencies between tasks clear (chapter 13).

You have to analyze and accumulate a result for
a large data set by performing operations such
as filtering, grouping, and aggregating.

Use the MapReduce pattern to parallelize the process-
ing in a different and independent step of a massive
volume of data in a timely manner (chapter 5).

You need to aggregate a large data set by apply-
ing a common operation.

Use the Parallel Aggregation, or Reducer, pattern to
merge partial results (chapter 5).

You implement a program that repetitively per-
forms a series of independent operations con-
nected as a chain.

Use the Pipeline pattern to run in parallel a set of oper-
ations that are connected by queues, preserving the
order of inputs (chapters 7 and 12).

You have multiple processes running inde-
pendently for which work must be synchronized.

Use the Producer/Consumer pattern to safely share
a common buffer. This buffer is used by the producer
to queue the generated data in a thread-safe manner;
the data is then picked up by the consumer to perform
some operation (chapters 8 and 13).

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

Riccardo Terrell

U
nlock the incredible performance built into your multi-
processor machines. Concurrent applications run
faster because they spread work across processor cores,

performing several tasks at the same time. Modern tools and
techniques on the .NET platform, including parallel LINQ,
functional programming, asynchronous programming, and the
Task Parallel Library, offer powerful alternatives to traditional
thread-based concurrency.

Concurrency in .NET teaches you to write code that delivers the
speed you need for performance-sensitive applications. Featur-
ing examples in both C# and F#, this book guides you through
concurrent and parallel designs that emphasize functional
programming in theory and practice. You’ll start with the
foundations of concurrency and master essential techniques
and design practices to optimize code running on modern
multiprocessor systems.

What’s Inside
● The most important concurrency abstractions
● Employing the agent programming model
● Implementing real-time event-stream processing
● Executing unbounded asynchronous operations
● Best concurrent practices and patterns that apply
 to all platforms

For readers skilled with C# or F#.

Riccardo Terrell is a seasoned .NET software engineer, senior
software architect, and Microsoft MVP who is passionate
about functional programming.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/concurrency-in-dot-net

$59.99 / Can $79.99 [INCLUDING eBOOK]

Concurrency in .NET

.NET PROGRAMMING

M A N N I N G

“A complementary source
of knowledge about modern

concurrent functional
programming on the .NET

platform—an absolute
must-read.”

—Pawel Klimczyk, Microsoft MVP

“Not just for those cutting
code on Windows. You can

use the gold dust in this
 book on any platform!”
—Kevin Orr, Sumus Solutions

“Presents real-world problems
and offers different kinds of

concurrency to solve them.”—Andy Kirsch, Rally Health

“Easiest entry into
concurrency I’ve

 come across so far!”
—Anton Herzog

AFMG Technologies

See first page

www.itbook.store/books/9781617292996

https://itbook.store/books/9781617292996

	Concurrency in .NET
	brief contents
	7 Task-based functional parallelism
	7.1	A short introduction to task parallelism
	7.1.1	Why task parallelism and functional programming?
	7.1.2	Task parallelism support in .NET

	7.2	The .NET Task Parallel Library
	7.2.1	Running operations in parallel with TPL Parallel.Invoke

	7.3	The problem of void in C#
	7.3.1	The solution for void in C#: the unit type

	7.4	Continuation-passing style: a functional control flow
	7.4.1	Why exploit CPS?
	7.4.2	Waiting for a task to complete: the continuation model

	7.5	Strategies for composing task operations
	7.5.1	Using mathematical patterns for better composition
	7.5.2	Guidelines for using tasks

	7.6	The parallel functional Pipeline pattern

