
M A N N I N G

Edwin Brady

SAMPLE CHAPTER

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

Type-Driven Development with Idris
by Edwin Brady

Chapter 1

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

v

brief contents
PART 1 INTRODUCTION.. 1

1 ■ Overview 3
2 ■ Getting started with Idris 25

PART 2 CORE IDRIS .. 53
3 ■ Interactive development with types 55
4 ■ User-defined data types 87
5 ■ Interactive programs: input and output processing 123
6 ■ Programming with first-class types 147
7 ■ Interfaces: using constrained generic types 182
8 ■ Equality: expressing relationships between data 208
9 ■ Predicates: expressing assumptions and contracts in types 236

10 ■ Views: extending pattern matching 258

PART 3 IDRIS AND THE REAL WORLD ... 289
11 ■ Streams and processes: working with infinite data 291
12 ■ Writing programs with state 324
13 ■ State machines: verifying protocols in types 352
14 ■ Dependent state machines: handling feedback and errors 373
15 ■ Type-safe concurrent programming 403

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

3

Overview

This book teaches a new approach to building robust software, type-driven develop-
ment, using the Idris programming language. Traditionally, types are seen as a tool
for checking for errors, with the programmer writing a complete program first and
using either the compiler or the runtime system to detect type errors. In type-
driven development, we use types as a tool for constructing programs. We put the
type first, treating it as a plan for a program, and use the compiler and type checker
as our assistant, guiding us to a complete and working program that satisfies the
type. The more expressive the type is that we give up front, the more confidence we
can have that the resulting program will be correct.

TYPES AND TESTS The name “type-driven development” suggests an anal-
ogy to test-driven development. There’s a similarity, in that writing tests
first helps establish a program’s purpose and whether it satisfies some basic
requirements. The difference is that, unlike tests, which can usually only
be used to show the presence of errors, types (used appropriately) can show
the absence of errors. But although types reduce the need for tests, they
rarely eliminate it entirely.

This chapter covers
 Introducing type-driven development

 The essence of pure functional programming

 First steps with Idris

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

4 CHAPTER 1 Overview

Idris is a relatively young programming language, designed from the beginning to
support type-driven development. A prototype implementation first appeared in 2008,
with development of the current implementation beginning in 2011. It builds on
decades of research into the theoretical and practical foundations of programming
languages and type systems.

 In Idris, types are a first-class language construct. Types can be manipulated, used,
passed as arguments to functions, and returned from functions just like any other
value, such as numbers, strings, or lists. This is a simple but powerful idea:

 It allows relationships to be expressed between values; for example, that two
lists have the same length.

 It allows assumptions to be made explicit and checkable by the compiler. For
example, if you assume that a list is non-empty, Idris can ensure this assumption
always holds before the program is run.

 If desired, it allows program behavior to be formally stated and proven correct.

In this chapter, I’ll introduce the Idris programming language and give a brief tour of
its features and environment. I’ll also provide an overview of type-driven develop-
ment, discussing why types matter in programming languages and how they can be
used to guide software development. But first, it’s important to understand exactly
what we mean when we talk about “types.”

1.1 What is a type?
We’re taught from an early age to recognize and distinguish types of objects. As a
young child, you may have had a shape-sorter toy. This consists of a box with variously
shaped holes in the top (see figure 1.1) and some shapes that fit through the holes.
Sometimes they’re equipped with a small plastic hammer. The idea is to fit each shape
(think of this as a “value”) into the appropriate hole (think of this as a “type”), possi-
bly with coercion from the hammer.

 In programming, types are a means of classifying values. For example, the values
94, "thing", and [1,2,3,4,5] could respec-
tively be classified as an integer, a string, and a
list of integers. Just as you can’t put a square
shape in a round hole in the shape sorter, you
can’t use a string like "thing" in a part of a pro-
gram where you need an integer.

 All modern programming languages classify
values by type, although they differ enormously
in when and how they do so (for example,
whether they’re checked statically at compile
time or dynamically at runtime, whether con-
versions between types are automatic or not,
and so on).

Figure 1.1 The top of a shape-sorter toy.
The shapes correspond to the types of
objects that will fit through the holes.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

5Introducing type-driven development

 Types serve several important roles:

 For a machine, types describe how bit patterns in memory are to be interpreted.
 For a compiler or interpreter, types help ensure that bit patterns are interpreted

consistently when a program runs.
 For a programmer, types help name and organize concepts, aiding documenta-

tion and supporting interactive editing environments.

From our point of view in this book, the most important purpose of types is the third.
Types help programmers in several ways:

 By allowing for the naming and organization of concepts (such as Square,
Circle, Triangle, and Hexagon)

 By providing explicit documentation of the purposes of variables, functions,
and programs

 By driving code completion in an interactive editing environment

As you’ll see, type-driven development makes extensive use of code completion in par-
ticular. Although all modern, statically typed languages support code completion to
some extent, the expressivity of the Idris type system leads to powerful automatic code
generation.

1.2 Introducing type-driven development
Type-driven development is a style of pro-
gramming in which we write types first and
use those types to guide the definition of
functions. The overall process is to write the
necessary data types, and then, for each func-
tion, do the following:

1 Write the input and output types.
2 Define the function, using the struc-

ture of the input types to guide the
implementation.

3 Refine and edit the type and function
definition as necessary.

In type-driven development, instead of think-
ing of types in terms of checking, with the type
checker criticizing you when you make a mis-
take, you can think of types as being a plan,
with the type checker acting as your guide,
leading you to a working, robust program.
Starting with a type and an empty function
body, you gradually add details to the defini-
tion until it’s complete, regularly using the

Types as models
When you write a program, you’ll
often have a conceptual model in
your head (or, if you’re disci-
plined, even on paper) of how it’s
supposed to work, how the com-
ponents interact, and how the
data is organized. This model is
likely to be quite vague at first
and will become more precise as
the program evolves and your
understanding of the concept
develops.

Types allow you to make these
models explicit in code and
ensure that your implementation
of a program matches the model
in your head. Idris has an expres-
sive type system that allows you
to describe a model as precisely
as you need, and to refine the
model at the same time as devel-
oping the implementation.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

6 CHAPTER 1 Overview

compiler to check that the program so far satisfies the type. Idris, as you’ll soon see,
strongly encourages this style of programming by allowing incomplete function defini-
tions to be checked, and by providing an expressive language for describing types.

 To illustrate further, in this section I’ll show some examples of how you can use
types to describe in detail what a program is intended to do: matrix arithmetic, model-
ing an automated teller machine (ATM), and writing concurrent programs. Then, I’ll
summarize the process of type-driven development and introduce the concept of
dependent types, which will allow you to express detailed properties of your programs.

1.2.1 Matrix arithmetic

A matrix is a rectangular grid of numbers, arranged in rows and columns. They have
several scientific applications, and in programming they have applications in cryptog-
raphy, 3D graphics, machine learning, and data analytics. The following, for example,
is a 3 × 4 matrix:

You can implement various arithmetic operations on matrices, such as addition and
multiplication. To add two matrices, you add the corresponding elements, as you see
here:

When programming with matrices, if you begin by defining a Matrix data type, then
addition requires two inputs of type Matrix and gives an output of type Matrix. But
because adding matrices involves adding corresponding elements of the inputs, what
happens if the two inputs have different dimensions, as here?

It’s likely that if you’re trying to add matrices of different dimensions, then you’ve
made a mistake somewhere. So, instead of using a Matrix type, you could refine the

1
5
9

2
6
10

3
7
11

4
8

12

1 2
3 4
5 6

 7 8

9 10
11 12

+
8 10
12 14
16 18

=

1 2
3 4
5 6

7 8
9 10

+ ???=

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

7Introducing type-driven development

type so that it includes the dimensions of the matrix, and require that the two input
matrices have the same dimensions:

 The first example of a 3 × 4 matrix now has type Matrix 3 4 .
 The first (correct) example of addition takes two inputs of type Matrix 3 2 and

gives an output of type Matrix 3 2.

By including the dimensions in the type of a matrix, you can describe the input and
output types of addition in such a way that it’s a type error to try to add matrices of dif-
ferent sizes. If you try to add a Matrix 3 2 and a Matrix 2 2, your program won’t
compile, let alone run.

 If you include the dimensions of a matrix in its type, then you need to think about
the relationship between the dimensions of the input and output for every matrix
operation. For example, transposing a matrix involves switching the rows to columns
and vice versa, so if you transpose a 3 × 2 matrix, you’ll end up with a 2 × 3 matrix:

The input type of this transposition is Matrix 3 2, and the output type is Matrix 2 3.
 In general, rather than giving exact dimensions in the type, we’ll use variables to

describe the relationship between the dimensions of the inputs and the dimensions of
the outputs. Table 1.1 shows the relationships between the dimensions of inputs and
outputs for three matrix operations: addition, multiplication, and transposition.

We’ll look at matrices in depth in chapter 3, where we’ll work through an implemen-
tation of matrix transposition in detail.

1.2.2 An automated teller machine

As well as using types to describe the relationships between the inputs and outputs of
functions, as with matrix operations, you can describe precisely when operations are
valid. For example, if you’re implementing software to drive an ATM, you’ll want to
guarantee that the machine will dispense cash only after a user has entered a card and
validated their personal identification number (PIN).

Table 1.1 Input and output types for matrix operations. The names x, y, and z
describe, in general, how the dimensions of the inputs and outputs are related.

Operation Input types Output type

Add Matrix x y, Matrix x y Matrix x y

Multiply Matrix x y, Matrix y z Matrix x z

Transpose Matrix x y Matrix y x

1 2
3 4
5 6

 ... transposed to ...
1 3 5
2 4 6

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

8 CHAPTER 1 Overview

 To see how this works, we’ll need to consider the possible states that an ATM can be in:

 Ready—The ATM is ready and waiting for a user to insert a card.
 CardInserted—The ATM is waiting for a user, having inserted a card, to enter

their PIN.
 Session—A validated session is in progress, with the ATM, having validated the

user’s PIN, ready to dispense cash.

An ATM supports several basic operations, each of which is valid only when the
machine is in a specific state, and each of which might change the state of the
machine, as illustrated in figure 1.2. These are the basic operations:

 InsertCard—Waits for the user to insert a card
 EjectCard—Ejects a card from the machine
 GetPIN—Prompts the user to enter a PIN

 CheckPIN—Checks whether an entered PIN is correct
 Dispense—Dispenses cash

Whether an operation is valid or not depends on the state of the machine. For exam-
ple, InsertCard is valid only in the Ready state, because that’s the only state where
there’s no card already in the machine. Also, Dispense is valid only in the Session
state, because that’s the only state where there’s a validated card in the machine.

 Furthermore, executing one of these operations can change the state of the
machine. For example, InsertCard changes the state from Ready to CardInserted,
and CheckPIN changes the state from CardInserted to Session, provided that the
entered PIN is correct.

STATE MACHINES AND TYPES Figure 1.2 illustrates a state machine, describing
how operations affect the overall state of a system. State machines are often
present, implicitly, in real-world systems. For example, when you open, read,

CardInserted

Session

Ready

EjectCard

Dispense

GetPIN,
CheckPIN (Incorrect)

InsertCard

EjectCard CheckPIN (Correct)

Figure 1.2 The states and valid operations on an ATM. Each operation is valid only in specific
states and can change the state of the machine. CheckPIN changes the state only if the
entered PIN is correct.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

9Introducing type-driven development

and then close a file, you change the state of the file with the open and close
operations. As you’ll see in chapter 13, types allow you to make these state
changes explicit, guarantee that you’ll execute operations only when they’re
valid, and help you use resources correctly.

By defining precise types for each of the operations on the ATM, you can guarantee,
by type checking, that the ATM will execute only valid operations. If, for example, you
try to implement a program that dispenses cash without validating a PIN, the pro-
gram won’t compile. By defining valid state transitions explicitly in types, you get
strong and machine-checkable guarantees about the correctness of their implementa-
tion. We’ll look at state machines in chapter 13, and then implement the ATM exam-
ple in chapter 14.

1.2.3 Concurrent programming

A concurrent program consists of multiple processes running at the same time and
coordinating with each other. Concurrent programs can be responsive and continue
to interact with a user while a large computation is running. For example, a user can
continue browsing a web page while a large file is downloading. Moreover, by writing
concurrent programs we can take full advantage of the processor power of modern
CPUs, dividing work among multiple processes on separate CPU cores.

 In Idris, processes coordinate with each other by sending and receiving messages.
Figure 1.3 shows one way this can work, with two processes, main and adder. The adder
process waits for a request to add numbers from other processes. After it receives a mes-
sage from main asking it to add two numbers, it sends a response back with the result.

 Despite its advantages, however, concurrent programming is notoriously error
prone. The need for processes to interact with each other can greatly increase a sys-
tem’s complexity. For each process, you need to ensure that the messages it sends and

Concurrent processes
in Idris coordinate
through messages.

main adder

Add 2 3

5

Time

Figure 1.3 Two interacting
concurrent processes, main and
adder. The main process sends a
request to adder, which then sends a
response back to main.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

10 CHAPTER 1 Overview

receives are properly coordinated with other processes. If, for example, main and
adder aren’t properly coordinated and each is expecting to receive a message from
the other at the same time, they’ll deadlock.

TYPES VERSUS TESTING FOR CONCURRENT PROGRAMS Testing a concurrent
program is difficult because, unlike a purely sequential program, there’s no
guarantee about the order in which operations from different processes will
execute. Even if two processes are correctly coordinated when you run a test
once, there’s no guarantee they’ll be correctly coordinated when you next
run the test. On the other hand, if you can express the coordination between
processes in types, you can be sure that a concurrent program that type-checks
has properly coordinated processes.

When you write concurrent programs, you’ll ideally have a model of how processes
should interact. Using types, you can make this model explicit in code. Then, if a con-
current program type-checks, you’ll know that it correctly follows the model. In partic-
ular, you can do two things:

 Define an interface for adder that describes the form of messages it will handle.
 Define a protocol that defines the order of message passing, ensuring that main

will always send a message to adder and then receive a reply, and adder will
always do the opposite.

Concurrent programming is an extensive topic, and there are several ways you can use
types to model coordination between processes. We’ll look at one example of how to
do this in chapter 15.

1.2.4 Type, define, refine: the process of type-driven development

In each of these introductory examples, we’ve discussed in general terms how we
might model a system: by describing the valid forms of inputs and outputs for matrix
operations, the valid states of an interactive system, or the order of transmission of
messages between concurrent processes. In each case, to implement the system, you
start by trying to find a type that captures the important details of the model, and then
define functions to work with that type, refining the type as necessary.

 To put it succinctly, you can characterize type-driven development as an iterative
process of type, define, refine: writing a type, implementing a function to satisfy that
type, and refining the type or definition as you learn more about the problem.

 With matrix addition, for example, you do the following:

 Type—Write a Matrix data type, and use it as the input and output types for an
addition function.

 Define—Write an addition function that satisfies its input and output types.
 Refine—Notice that the input and output types for your addition function allow

you to give invalid inputs with different dimensions, and then make the type
more precise by including the dimensions of the matrices.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

11Introducing type-driven development

In general, you’ll write a type to represent the system you’re modeling, define func-
tions using that type, and then refine the type and definition as necessary to capture
any missing properties. You’ll see a lot more of this type-define-refine process
throughout this book, both on a small scale when implementing individual functions,
and on a larger scale when deciding how to write function and data types.

1.2.5 Dependent types

In the matrix arithmetic example, we began with a Matrix type and then refined it to
include the number of rows and columns. This means, for example, that Matrix 3 4
is the type of 3 × 4 matrices. In this type, 3 and 4 are ordinary values. A dependent type,
such as Matrix, is a type that’s calculated from some other values. In other words, it
depends on other values.

 By including values in a type like this, you can make types as precise as required. For
example, some languages have a simple list type, describing lists of objects. You can
make this more precise by parameterizing over the element type: a generic list of
strings is more precise than a simple list and differs from a list of integers. You can be
more precise still with a dependent type: a list of 4 strings differs from a list of 3 strings.

 Table 1.2 illustrates how types in Idris can have differing levels of precision even
for fundamental operations such as appending lists. Suppose you have two specific
input lists of strings:

["a", "b", "c", "d"]
["e", "f", "g"]

When you append them, you’ll expect the following output list:

["a", "b", "c", "d", "e", "f", "g"]

Using a simple type, both input lists have type AnyList, as does the output list. Using a
generic type, you can specify that the input lists are both lists of strings, as is the output
list. The more-precise types mean that, for example, the output is clearly related to the
input in that the element type is unchanged. Finally, using a dependent type, you can
specify the sizes of the input and output lists. It’s clear from the type that the length of
the output list is the sum of the lengths of the input lists. That is, a list of 3 strings
appended to a list of 4 strings results in a list of 7 strings.

Table 1.2 Appending specific typed lists. Unlike simple types, where there’s no difference between the
input and output list types, dependent types allow the length to be encoded in the type.

Input
["a", "b", "c", "d"]

Input
["e", "f", "g"]

Output type

Simple AnyList AnyList AnyList

Generic List String List String List String

Dependent Vect 4 String Vect 3 String Vect 7 String

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

12 CHAPTER 1 Overview

LISTS AND VECTORS The syntax for the types in table 1.2 is valid Idris syntax.
Idris provides several ways of building list types, with varying levels of preci-
sion. In the table, you can see two of these, List and Vect. AnyList is
included in the table purely for illustrative purposes and is not defined in
Idris. List encodes generic lists with no explicit length, and Vect (short for
“vector”) encodes lists with the length explicitly in the type. You’ll see much
more of both these types throughout this book.

Table 1.3 illustrates how the input and output types of an append function can be writ-
ten with increasing levels of precision in Idris. Using simple types, you can write the
input and output types as AnyList, suggesting that you have no interest in the types of
the elements of the list. Using generic types, you can write the input and output types as
List elem. Here, elem is a type variable standing for the element types. Because the
type variable is the same for both inputs and the output, the types specify that both
the input lists and the output list have a consistent element type. If you append two
lists of integers, the types guarantee that the output will also be a list of integers.
Finally, using dependent types, you can write the inputs as Vect n elem and Vect m
elem, where n and m are variables representing the length of each list. The output type
specifies that the resulting length will be the sum of the lengths of the inputs.

TYPE VARIABLES Types often contain type variables, like n, m, and elem in
table 1.3. These are very much like parameters to generic types in Java or C#,
but they’re so common in Idris that they have a very lightweight syntax. In
general, concrete type names begin with an uppercase letter, and type vari-
able names begin with a lowercase letter.

In the dependent type for the append function in table 1.3, the parameters n and m are
ordinary numeric values, and the + operator is the normal addition operator. All of
these could appear in programs just as they’ve appeared here in the types.

Introductory exercises

Throughout this book, exercises will help reinforce the concepts you’ve learned. As a
warm-up, take a look at the following selection of function specifications, given purely
in the form of input and output types. For each of them, suggest possible operations

Table 1.3 Appending typed lists, in general. Type variables describe the relationships between
the inputs and outputs, even though the exact inputs and outputs are unknown.

Input 1 type Input 2 type Output type

Simple AnyList AnyList AnyList

Generic List elem List elem List elem

Dependent Vect n elem Vect m elem Vect (n + m) elem

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

13Pure functional programming

that would satisfy the given input and output types. Note that there could be more
than one answer in each case.

1 Input type: Vect n elem

Output type: Vect n elem

2 Input type: Vect n elem

Output type: Vect (n * 2) elem

3 Input type: Vect (1 + n) elem

Output type: Vect n elem

4 Assume that Bounded n represents a number between zero and n - 1.
Input types: Bounded n, Vect n elem
Output type: elem

1.3 Pure functional programming
Idris is a pure functional programming language, so before we begin exploring Idris in
depth, we should look at what it means for a language to be functional, and what we
mean by the concept of purity. Unfortunately, there’s no universally agreed-on defini-
tion of exactly what it means for a programming language to be functional, but for our
purposes we’ll take it to mean the following:

 Programs are composed of functions.
 Program execution consists of the evaluation of functions.
 Functions are a first-class language construct.

This differs from an imperative programming language primarily in that functional
programming is concerned with the evaluation of functions, rather than the execu-
tion of statements.

 In a pure functional language, the following are also true:

 Functions don’t have side effects such as modifying global variables, throwing
exceptions, or performing console input or output.

 As a result, for any specific inputs, a function will always give the same result.

You may wonder, very reasonably, how it’s possible to write any useful software under
these constraints. In fact, far from making it more difficult to write realistic programs,
pure functional programming allows you to treat tricky concepts such as state and
exceptions with the respect they deserve. Let’s explore further.

1.3.1 Purity and referential transparency

The key property of a pure function is that the same inputs always produce the same
result. This property is known as referential transparency. An expression (such as a func-
tion call) in a function is referentially transparent if it can be replaced with its result
without changing the behavior of the function. If functions produce only results, with
no side effects, this property is clearly true. Referential transparency is a very useful
concept in type-driven development, because if a function has no side effects and is

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

14 CHAPTER 1 Overview

defined entirely by its inputs and outputs, then you can look at its input and output
types and have a clear idea of the limits of what the function can do.

 Figure 1.4 shows example inputs and outputs for the append function. It takes two
inputs and produces a result, but there’s no interaction with a user, such as reading
from the keyboard, and no informative output, such as logging or progress bars.

 Figure 1.5 shows pure functions in general. There can be no observable side
effects when running these programs, other than perhaps making the computer
slightly warmer or taking a different amount of time to run.

Pure functions are very common in practice, particularly for constructing and manip-
ulating data structures. It’s possible to reason about their behavior because the func-
tion always gives the same result for the same inputs; these functions are important
components of larger programs. The preceding append function is pure, and it’s a
valuable component for any program that works with lists. It produces a list as a result,
and because it’s pure, you know that it won’t require any input, output any logging, or
do anything destructive like delete files.

1.3.2 Side-effecting programs

Realistically, programs must have side effects in order to be useful, and you’re always
going to have to deal with unexpected or erroneous inputs in practical software. At
first, this would seem to be impossible in a pure language. There is a way, however:
pure functions may not be able to perform side effects, but they can describe them.

 Consider a function that reads two lists from a file, appends them, prints the result-
ing list, and returns it. The following listing outlines this function in imperative-style
pseudocode, using simple types.

List appendFromFile(File h) {
list1 = readListFrom(h)
list2 = readListFrom(h)

result = append(list1, list2)
print(result)

Listing 1.1 Appending lists read from a file (pseudocode)

["a", "b", "c", "d"]
["a", "b", "c", "d", "e", "f", "g"]append

["e", "f", "g"]

Figure 1.4 A pure function, taking inputs and producing outputs with no observable side effects

ResultInputs Pure function Figure 1.5 Pure functions, in general, take
only inputs and have no observable side effects.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

15Pure functional programming

return result
}

This program takes a file handle as an input and returns a List with some side effects.
It reads two lists from the given file and prints the list before returning. Figure 1.6
illustrates this for the situation when the file contains the two lists ["a", "b", "c",
"d"] and ["e", "f", "g"].

 The appendFromFile function doesn’t satisfy the referential transparency prop-
erty. Referential transparency requires that an expression can be replaced by its result
without changing the program’s behavior. Here, however, replacing a call to append-
FromFile with its result means that nothing will be read from the file, and nothing will
be output to the screen. The function’s input and output types tell us that the input is a
file and the output is a list, but nothing in the type describes the side effects the func-
tion may execute.

 In pure functional programming in general, and Idris in particular, you can solve
this problem by writing functions that describe side effects, rather than functions that
execute them, and defer the details of execution to the compiler and runtime system.
We’ll explore this in greater detail in chapter 5; for now, it’s sufficient to recognize
that a program with side effects has a type that makes this explicit. For example,
there’s a distinction between the following:

 String is the type of a program that results in a String and is guaranteed to
perform no input or output as side effects.

 IO String is the type of a program that describes a sequence of input and out-
put operations that result in a String.

Type-driven development takes this idea much further. As you’ll see from chapter 12
onward, you can define types that describe the specific side effects a program can
have, such as console interaction, reading and writing global state, or spawning con-
current processes and sending messages.

File handle appendFromFile ["a", "b", "c", "d", "e", "f", "g"]

Read ["a", "b", "c", "d"]

Print ["a", "b", "c", "d", "e", "f", "g"]

Read ["e", "f", "g"]

Figure 1.6 A side-effecting program, reading inputs from a file, printing the result, and
returning the result

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

16 CHAPTER 1 Overview

1.3.3 Partial and total functions

Idris supports an even stronger property than purity for functions, making a distinc-
tion between partial and total functions. A total function is guaranteed to produce a
result, meaning that it will return a value in a finite time for every possible well-typed
input, and it’s guaranteed not to throw any exceptions. A partial function, on the
other hand, might not return a result for some inputs. Here are a couple of examples:

 The append function is total for finite lists, because it will always return a new
list.

 The function that returns the first element of a list is partial, because it’s not
defined if the list is empty, and it will therefore crash.

TOTAL FUNCTIONS AND LONG-RUNNING PROGRAMS A total function is guaran-
teed to produce a finite prefix of a potentially infinite result. As you’ll see in
chapter 11, you can write command shells or servers as total functions that
guarantee a response for every user input, indefinitely.

The distinction is important because knowing that a function is total allows you to
make much stronger claims about its behavior based on its type. If you have a function
with a return type of String, for example, you can make different claims depending
on whether the function is partial or total.

 If it’s total—It will return a value of type String in finite time.
 If it’s partial—If it doesn’t crash or enter an infinite loop, the value it returns will

be a String.

In most modern languages, we must assume that functions are partial and can there-
fore only make the latter, weaker, claim. Idris checks whether functions are total, so we
can therefore often make the former, stronger, claim.

A useful pattern in type-driven development is to write a type that precisely describes
the valid states of a system (like the ATM in section 1.2.2) and that constrains the oper-

Total functions and the halting problem
The halting problem is the problem of determining whether a program terminates for
some specific input. Thanks to Alan Turing, we know that it’s not possible to write a
program that solves the halting problem in general. Given this, it’s reasonable to won-
der how Idris can determine that a function is total, which is essentially checking that
a function terminates for all inputs.

Although it can’t solve the problem in general, Idris can identify a large class of func-
tions that are definitely total. You’ll learn more about how it does so, along with some
techniques for writing total functions, in chapters 10 and 11.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

17A quick tour of Idris

ations the system is allowed to perform. A total function with that type is then guaran-
teed by the type checker to perform those operations as precisely as the type requires.

1.4 A quick tour of Idris
The Idris system consists of an interactive environment and a batch mode compiler. In
the interactive environment, you can load and type-check source files, evaluate
expressions, search libraries, browse documentation, and compile and run complete
programs. We’ll use these features extensively throughout this book.

 In this section, I’ll briefly introduce the most important features of the environ-
ment, which are evaluation and type checking, and describe how to compile and run
Idris programs. I’ll also introduce the two most distinctive features of the Idris lan-
guage itself:

 Holes, which stand for incomplete programs
 The use of types as first-class language constructs

As you’ll see, by using holes you can define functions incrementally, asking the type
checker for contextual information to help complete definitions. Using first-class
types, you can be very precise about what a function is intended to do, and even ask
the type checker to fill in some of the details of functions for you.

1.4.1 The interactive environment

Much of your interaction with Idris will be through an interactive environment called
the read-eval-print loop, typically abbreviated as REPL. As the name suggests, the REPL
will read input from the user, usually in the form of an expression, evaluate the expres-
sion, and then print the result.

 Once Idris is installed, you can start the REPL by typing idris at a shell prompt.
You should see something like the following:

____ __ _
/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.
Idris>

INSTALLING IDRIS You can find instructions on how to download and install
Idris for Linux, OS X, or Windows in appendix A.

You can enter expressions to be evaluated at the Idris> prompt. For example, arith-
metic expressions work in the conventional way, with the usual precedence rules (that
is, * and / have higher precedence than + and -):

Idris> 2 + 2
4 : Integer

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

18 CHAPTER 1 Overview

Idris> 2.1 * 20
42.0 : Double

Idris> 6 + 8 * 11
94 : Integer

You can also manipulate Strings. The ++ operator concatenates Strings, and the
reverse function reverses a String:

Idris> "Hello" ++ " " ++ "World!"
"Hello World!" : String

Idris> reverse "abcdefg"
"gfedcba" : String

Notice that Idris prints not only the result of evaluating the expression, but also its
type. In general, if you see something of the form x : T—some expression x, a colon,
and some other expression T—this can be read as “x has type T.” In the previous exam-
ples, you have the following:

 4 has type Integer.
 42.0 has type Double.
 "Hello World!" has type String.

1.4.2 Checking types

The REPL provides a number of commands, all prefixed by a colon. One of the most
commonly useful is :t, which allows you to check the types of expressions without eval-
uating them:

Idris> :t 2 + 2
2 + 2 : Integer

Idris> :t "Hello!"
"Hello!" : String

Types, such as Integer and String, can be manipulated just like any other value, so
you can check their types too:

Idris> :t Integer
Integer : Type

Idris> :t String
String : Type

It’s natural to wonder what the type of Type itself might be. In practice, you’ll never
need to worry about this, but for the sake of completeness, let’s take a look:

Idris> :t Type
Type : Type 1

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

19A quick tour of Idris

That is, Type has type Type 1, Type 1 has type Type 2, and so on forever, as far as
we’re concerned. The good news is that Idris will take care of the details for you, and
you can always write Type alone.

1.4.3 Compiling and running Idris programs

As well as evaluating expressions and inspecting the types of functions, you’ll want to
be able to compile and run complete programs. The following listing shows a minimal
Idris program.

module Main

main : IO ()
main = putStrLn "Hello, Idris World!"

At this stage, there’s no need to worry too much about the syntax or how the program
works. For now, you just need to know that Idris source files consist of a module
header and a collection of function and data type definitions. They may also import
other source files.

WHITESPACE SIGNIFICANCE Whitespace is significant in Idris, so when you
type listing 1.2, make sure there are no spaces at the beginning of each line.

Here, the module is called Main, and there’s only one function definition, called main.
The entry point to any Idris program is the main function in the Main module.

 To run the program, follow these steps:

1 Create a file called Hello.idr in a text editor.1 Idris source files all have the
extension .idr.

2 Enter the code in listing 1.2.
3 In the working directory where you saved Hello.idr, start up an Idris REPL with

the command idris Hello.idr.
4 At the Idris prompt, type :exec.

If all is well, you should see something like the following:

$ idris Hello.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.
Type checking ./Hello.idr

Listing 1.2 Hello, Idris World! (Hello.idr)

1 I recommend Atom because it has a mode for interactive editing of Idris programs, which we’ll use in this
book.

Module header

Function declaration
Function definition

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

20 CHAPTER 1 Overview

*Hello> :exec
Hello, Idris World

Here, $ stands for your shell prompt. Alternatively, you can create a standalone exe-
cutable by invoking the idris command with the -o option, as follows:

$ idris Hello.idr -o Hello
$./Hello
Hello, Idris World

THE REPL PROMPT The REPL prompt, by default, tells you the name of the
file that’s currently loaded. The Idris> prompt indicates that no file is
loaded, whereas the prompt *Hello> indicates that the Hello.idr file is
loaded.

1.4.4 Incomplete definitions: working with holes

Earlier, I compared working with types and values to inserting shapes into a shape-
sorter toy. Much as the square shape will only fit through a square hole, the argument
"Hello, Idris World!" will only fit into a function in a place where a String type is
expected.

 Idris functions themselves can contain holes, and a function with a hole is incom-
plete. Only a value of an appropriate type will fit into the hole, just as a square shape
will only fit into a square hole in the shape sorter. Here’s an incomplete implementa-
tion of the “Hello, Idris World!” program:

module Main

main : IO ()
main = putStrLn ?greeting

If you edit Hello.idr to replace the string "Hello, Idris World!" with ?greeting and
load it into the Idris REPL, you should see something like the following:

Type checking ./Hello.idr
Holes: Main.greeting
*Hello>

The syntax ?greeting introduces a hole, which is a part of the program yet to be writ-
ten. You can type-check programs with holes and evaluate them at the REPL.

 Here, when Idris encounters the ?greeting hole, it creates a new name, greeting,
that has a type but no definition. You can inspect the type using :t at the REPL:

*Hello> :t greeting

greeting : String

If you try to evaluate it, on the other hand, Idris will show you that it’s a hole:

*Hello> greeting
?greeting : String

?greeting is a hole, standing
for a missing part of the
program.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

21A quick tour of Idris

Holes allow you to develop programs incrementally, writing the parts you know and ask-
ing the machine to help you by identifying the types for the parts you don’t. For exam-
ple, let’s say you’d like to print a character (with type Char) instead of a String. The
putStrLn function requires a String argument, so you can’t simply pass a Char to it.

module Main

main : IO ()
main = putStrLn 'x'

If you try loading this program into the REPL, Idris will report an error:

Hello.idr:4:17:When checking right hand side of main:
When checking an application of function Prelude.putStrLn:

Type mismatch between
Char (Type of 'x')

and
String (Expected type)

You have to convert a Char to a String somehow. Even if you don’t know exactly how
to do this at first, you can start by adding a hole to stand in for a conversion.

module Main

main : IO ()
main = putStrLn (?convert 'x')

Then you can check the type of the convert hole:

*Hello> :t convert

convert : Char -> String

The type of the hole, Char -> String, is the type of a function that takes a Char as an
input and returns a String as an output. We’ll discuss type conversions in more detail
in chapter 2, but an appropriate function to complete this definition is cast:

main : IO ()
main = putStrLn (cast 'x')

Listing 1.3 A program with a type error

Reloading
Instead of exiting the REPL and restarting, you can also reload Hello.idr with the :r
REPL command as follows:

*Hello> :r
Type checking ./Hello.idr
Holes: Main.greeting
*Hello>

Type error, giving a
character instead of a string

This is a function type, taking a Char
as input and returning a String.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

22 CHAPTER 1 Overview

1.4.5 First-class types

A first-class language construct is one that’s treated as a value, with no syntactic restric-
tions on where it can be used. In other words, a first-class construct can be passed to
functions, returned from functions, stored in variables, and so on.

 In most statically typed languages, there are restrictions on where types can be
used, and there’s a strict syntactic separation between types and values. You can’t, for
example, say x = int in the body of a Java method or C function. In Idris, there are
no such restrictions, and types are first-class; not only can types be used in the same
way as any other language construct, but any construct can appear as part of a type.

 This means that you can write functions that compute types, and the return type of
a function can differ depending on the input value to a function. This idea comes up
regularly when programming in Idris, and there are several real-world situations
where it’s useful:

 A database schema determines the allowed forms of queries on a database.
 A form on a web page determines the number and type of inputs expected.
 A network protocol description determines the types of values that can be sent

or received over a network.

In each of these cases, one piece of data tells you about the expected form of some
other data. If you’ve programmed in C, you’ll have seen a similar idea with the
printf function, where one argument is a format string that describes the number
and expected types of the remaining arguments. The C type system can’t check that
the format string is consistent with the arguments, so this check is often hardcoded
into C compilers. In Idris, however, you can write a function similar to printf
directly, by taking advantage of types as first-class constructs. You’ll see this specific
example in chapter 6.

 The following listing illustrates the concept of first-class types with a small exam-
ple: computing a type from a Boolean input.

StringOrInt : Bool -> Type
StringOrInt x = case x of

True => Int
False => String

getStringOrInt : (x : Bool) -> StringOrInt x
getStringOrInt x = case x of

True => 94
False => "Ninety four"

Listing 1.4 Calculating a type, given a Boolean value (FCTypes.idr)

This function calculates a type
given a Boolean value as an input.

If the input is True,
return the type Int.

If the input is False,
return the type String.

The return type is calculated
from the value of the input.

The input x was True, so
this needs to be an Int.

The input x was False, so
this needs to be a String.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

23A quick tour of Idris

valToString : (x : Bool) -> StringOrInt x -> String
valToString x val = case x of

True => cast val
False => val

Here, StringOrInt is a function that computes a type. Listing 1.4 uses it in two ways:

 In getStringOrInt, StringOrInt calculates the return type. If the input is
True, getStringOrInt returns an Int; otherwise it returns a String.

 In valToString, StringOrInt calculates an argument type. If the first input is
True, the second input must be an Int; otherwise it must be a String.

You can see in detail what’s going on by introducing holes in the definition of valTo-
String:

valToString : (x : Bool) -> StringOrInt x -> String
valToString x val = case x of

True => ?xtrueType
False => ?xfalseType

Inspecting the type of a hole with :t gives you not only the type of the hole itself, but
also the types of any local variables in scope. If you check the type of xtrueType, you’ll
see the type of val, which is computed when x is known to be True:

*FCTypes> :t xtrueType
x : Bool
val : Int

xtrueType : String

The argument type is
calculated from the value
of the input.

The input x was True, so the
argument val must be an Int and
needs to be converted to a String.

The input x was False, so the
argument val must be a String
and can be returned directly.

Function syntax
We’ll go into much more detail on Idris syntax in the coming chapters. For now, just
keep the following in mind:

 A function type takes the form a -> b -> ... -> t, where a, b, and so on,
are the input types, and t is the output type. Inputs may also be annotated
with names, taking the form (x : a) -> (y : b) -> ... -> t.

 name : type declares a new function, name, of type type.
 Functions are defined by equations:

square x = x * x

This defines a function called square that multiplies its input by itself.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

24 CHAPTER 1 Overview

So, if x is True, then val must be an Int, as computed by the StringOrInt function.
Similarly, you can check the type of xfalseType to see the type of val when x is known
to be False:

*FCTypes> :t xfalseType
x : Bool
val : String

xfalseType : String

This is a small example, but it illustrates a fundamental concept of type-driven devel-
opment and programming with dependent types: the idea that the type of a variable
can be computed from the value of another. In each case, Idris has used StringOrInt
to refine the type of val, given what it knows about the value of x.

1.5 Summary
 Types are a means of classifying values. Programming languages use types to

decide how to lay out data in memory, and to ensure that data is interpreted
consistently.

 A type can be viewed as a specification, so that a language implementation (spe-
cifically, its type checker) can check whether a program conforms to that speci-
fication.

 Type-driven development is an iterative process of type, define, refine, creating
a type to model a system, then defining functions, and finally refining the types
as necessary.

 In type-driven development, a type is viewed more like a plan, helping an inter-
active environment guide the programmer to a working program.

 Dependent types allow you to give more-precise types to programs, and hence
more informative plans to the machine.

 In a functional programming language, program execution consists of evaluat-
ing functions.

 In a purely functional programming language, additionally, functions have no
side effects.

 Instead of writing programs that perform side effects, you can write programs
that describe side effects, with the side effects stated explicitly in a program’s
type.

 A total function is guaranteed to produce a result for any well-typed input in
finite time.

 Idris is a programming language that’s specifically designed to support type-
driven development. It’s a purely functional programming language with first-
class dependent types.

 Idris allows programs to contain holes that stand for incomplete programs.
 In Idris, types are first-class, meaning that they can be stored in variables, passed

to functions, or returned from functions like any other value.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

Edwin Brady

S
top fi ghting type errors! Type-driven development is an
approach to coding that embraces types as the foundation
of your code—essentially as built-in documentation your

compiler can use to check data relationships and other
assumptions. With this approach, you can defi ne specifi cations
early in development and write code that’s easy to maintain,
test, and extend. Idris is a Haskell-like language with fi rst-
class, dependent types that’s perfect for learning type-driven
programming techniques you can apply in any codebase.

Type-Driven Development with Idris teaches you how to im-
prove the performance and accuracy of your code by taking
advantage of a state-of-the-art type system. In this book, you’ll
learn type-driven development of real-world software, as well
as how to handle side-effects, interaction, state, and concur-
rency. By the end, you’ll be able to develop robust and verifi ed
software in Idris and apply type-driven development methods
to other languages.

What’s Inside
● Understanding dependent types
● Types as fi rst-class language constructs
● Types as a guide to program construction
● Expressing relationships between data

Written for programmers with knowledge of functional
programming concepts.

Edwin Brady leads the design and implementation of the Idris
language.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/type-driven-development-with-idris

$49.99 / Can $65.99 [INCLUDING eBOOK]

Type-Driven Development with Idris

SOFTWARE DEVELOPMENT

M A N N I N G

“This book will turn your
approach to software

upside-down,
in the best way.”

—Ian Dees, New Relic

“Highly recommended
for anyone developing
software with serious

 safety requirements.”
—Arnaud Bailly, GorillaSpace

“After reading this book,
TDD took on a new
 meaning for me.”—Giovanni Ruggiero, Eligotech

“A clear and complete view
of type-driven development

that reveals the power
 of dependent types.”

—Nicolas Biri
Luxembourg Institute of Science

and Technology

SEE INSERT

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

	Copyright
	BriefContents
	SampleCh01

