
M A N N I N G

Edwin Brady

SAMPLE CHAPTER

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

Type-Driven Development with Idris

by Edwin Brady

Chapter 13

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

v

brief contents
PART 1 INTRODUCTION.. 1

1 ■ Overview 3
2 ■ Getting started with Idris 25

PART 2 CORE IDRIS .. 53
3 ■ Interactive development with types 55
4 ■ User-defined data types 87
5 ■ Interactive programs: input and output processing 123
6 ■ Programming with first-class types 147
7 ■ Interfaces: using constrained generic types 182
8 ■ Equality: expressing relationships between data 208
9 ■ Predicates: expressing assumptions and contracts in types 236

10 ■ Views: extending pattern matching 258

PART 3 IDRIS AND THE REAL WORLD ... 289
11 ■ Streams and processes: working with infinite data 291
12 ■ Writing programs with state 324
13 ■ State machines: verifying protocols in types 352
14 ■ Dependent state machines: handling feedback and errors 373
15 ■ Type-safe concurrent programming 403

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

352

State machines:
verifying protocols in types

In the previous chapter, you saw how to manage mutable state by defining a type
for representing sequences of commands in a system, and a function for running
those commands. This follows a common pattern: the data type describes a sequence
of operations, and the function interprets that sequence in a particular context. For
example, State describes sequences of stateful operations, and runState inter-
prets those operations with a specific initial state.

 In this chapter, we’ll look at one of the advantages of using a type for describing
sequences of operations and keeping the execution function separate. It allows you
to make the descriptions more precise, so that certain operations can only be run
when the state has a specific form. For example, some operations require access to
a resource, such as a file handle or database connection, before they’re executed:

This chapter covers
 Specifying protocols in types

 Describing preconditions and postconditions of
operations

 Using dependent types in state

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

353State machines: tracking state in types

 You need an open file handle to read from a file successfully.
 You need a connection to a database before you can run a query on the data-

base.

When you write programs that work with resources like this, you’re really working with
a state machine. A database client might have two states, such as Closed and Connected,
referring to its connection status to a database. Some operations (such as querying the
database) are only valid in the Connected state; some (such as connecting to the data-
base) are only valid in the Closed state; and some (such as connecting and closing)
also change the state of the system. Figure 13.1 illustrates this system.

State machines like the one illustrated in figure 13.1 exist, implicitly, in lots of real-
world systems. When you’re implementing communicating systems, for example,
whether over a network or using concurrent processes, you need to make sure each
party is following the same communication pattern, or the system could deadlock or
behave in some other unexpected way. Each party follows a state machine where send-
ing or receiving a message puts the overall system into a new state, so it’s important
that each party follows a clearly defined protocol. In Idris, we have an expressive type
system, so if there’s a model for a protocol, it’s a good idea to express that in a type, so
that you can use the type to help implement the protocol accurately.

 In this chapter, you’ll see how to make state machines like the one illustrated in fig-
ure 13.1explicit in types. In this way, you can be sure that any function that correctly
describes a sequence of actions follows the protocol defined by a state machine. Not
only that, you can take a type-driven approach to defining sequences of actions using
holes and interactive development. We’ll begin with some fairly abstract examples to
illustrate how you can describe state machines in types, modeling the states and oper-
ations on a door and a vending machine.

13.1 State machines: tracking state in types
You’ve previously implemented programs with state by defining a type that describes
commands for reading and writing state. With dependent types, you can make the
types of these commands more precise and include any relevant details about the state
of the system in the type itself.

 For example, let’s consider how to represent the state of a door with a doorbell. A
door can be in one of two states, open (represented as DoorOpen) or closed (repre-
sented as DoorClosed), and we’ll allow three operations:

ConnectedClosed

Connect

Query

Close

Figure 13.1 A state transition diagram showing the high-level operation of
a database. It has two possible states, Closed and Connected. Its three
operations, Connect, Query, and Close, are only valid in specific states.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

354 CHAPTER 13 State machines: verifying protocols in types

 Opening the door, which moves the system from the DoorClosed state to the
DoorOpen state

 Closing the door, which moves the system from the DoorOpen state to the Door-
Closed state

 Ringing the doorbell, which we’ll only allow when the door is in the Door-
Closed state

Figure 13.2 is a state transition diagram that shows the states the system can be in and
how each operation modifies the overall state.

If you can define these state transitions in a type, then a well-typed description of a
sequence of operations must correctly follow the rules shown in the state transition
diagram. Furthermore, you’ll be able to use holes and interactive editing to find out
which operations are valid at a particular point in a sequence.

 In this section, you’ll see how to define state machines like the door in a depen-
dent type. First, we’ll implement a model of the door, and then we’ll model more-
complex states in a model of a simplified vending machine. In each case, we’ll focus
on the model of the state transitions, rather than a concrete implementation of the
machine.

13.1.1 Finite state machines: modeling a door as a type

The state machine in figure 13.2 describes a protocol for correct use of a door by saying
which operations are valid in which state, and how those operations affect the state.
Listing 13.1 shows one way to represent the possible operations. This also includes a
(>>=) constructor for sequencing and a Pure constructor for producing pure values.

data DoorCmd : Type where
Open : DoorCmd ()
Close : DoorCmd ()
RingBell : DoorCmd ()

Pure : ty -> DoorCmd ty
(>>=) : DoorCmd a -> (a -> DoorCmd b) -> DoorCmd b

REMINDER: (>>=) AND DO NOTATION Remember that do notation translates
into applications of (>>=).

Listing 13.1 Representing operations on a door as a command type (Door.idr)

DoorOpenDoorClosed

Open

RingBell

Close

Figure 13.2 A state transition
diagram showing the states and
operations on a door

Changes the state of the door
from DoorClosed to DoorOpen

Changes the state of the door
from DoorOpen to DoorClosed

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

355State machines: tracking state in types

With DoorCmd, you can write functions like the following, which describes a sequence
of operations for ringing a doorbell and opening and then closing the door, correctly
following the door-usage protocol:

doorProg : DoorCmd ()
doorProg = do RingBell

Open
Close

Unfortunately, you can also describe invalid sequences of operations that don’t follow
the protocol, such as the following, where you attempt to open a door twice, and then
ring the doorbell when the door is already open:

doorProgBad : DoorCmd ()
doorProgBad = do Open

Open
RingBell

You can avoid this, and limit functions with DoorCmd to valid sequences of operations
that do follow the protocol, by keeping track of the door’s state in the type of the
DoorCmd operations. The following listing shows how to do this, describing exactly the
state transitions represented in figure 13.2 in the types of the commands.

data DoorState = DoorClosed | DoorOpen

data DoorCmd : Type ->
DoorState ->
DoorState ->
Type where

Open : DoorCmd () DoorClosed DoorOpen
Close : DoorCmd () DoorOpen DoorClosed
RingBell : DoorCmd () DoorClosed DoorClosed

Pure : ty -> DoorCmd ty state state
(>>=) : DoorCmd a state1 state2 ->

(a -> DoorCmd b state2 state3) ->
DoorCmd b state1 state3

Each command’s type takes three arguments:

 The type of the value produced by the command
 The input state of the door; that is, the state the door must be in before you can

execute the operation
 The output state of the door; that is, the state the door will be in after you exe-

cute the operation

Listing 13.2 Modeling the door state machine in a type, describing state transitions in
the types of the commands (Door.idr)

Defines the two possible
states of a door

The type of the result of the operation
The state of the door before the operation
The state of the door after the operation

Produces a value without
affecting the state

Sequences two operations. The
output state of the first gives
the input state of the second.

Combined operation goes from the input
state of the first operation to the output
state of the second

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

356 CHAPTER 13 State machines: verifying protocols in types

An implementation of the following function would therefore describe a sequence of
actions that begins and ends with the door closed:

doorProg : DoorCmd () DoorClosed DoorClosed

ARGUMENT ORDER IN DOORCMD Notice that the type that a sequence of opera-
tions produces is the first argument to DoorCmd, and it’s followed by the
input and output states. This is a common convention when defining types
for describing state transitions, and it will become important in chapter 14
when we look at more-complex state machines that deal with errors and feed-
back from the environment.

In general, if you have a value of type DoorType ty beforeState afterState, it
describes a sequence of door actions that produces a value of type ty; it begins with
the door in the state beforeState; and it ends with the door in the state afterState.

13.1.2 Interactive development of sequences of door operations

To see how the types in DoorCmd can help you write sequences of operations correctly,
let’s reimplement doorProg. We’ll write this in the same way as before: ring the door-
bell, open the door, and close the door.

 If you write it incrementally, you’ll see how the type shows the changes in the state
of the door throughout the sequence of actions:

1 Define—Begin with the skeleton definition:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = ?doorProg_rhs

 2 Refine, type—Add an action to ring the doorbell:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

?doorProg_rhs

If you check the type of ?doorProg_rhs now, you’ll see that it should be a
sequence of actions that begins and ends with the door in the DoorClosed state:

doorProg_rhs : DoorCmd () DoorClosed DoorClosed

 3 Refine, type—Next, add an action to open the door:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
?doorProg_rhs

If you check the type of ?doorProg_rhs now, you’ll see that it should begin with
the door in the DoorOpen state instead:

doorProg_rhs : DoorCmd () DoorOpen DoorClosed

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

357State machines: tracking state in types

 4 Refine failure—If you add an extra Open now, with the door already in the
DoorOpen state, you’ll get a type error:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
Open
?doorProg_rhs

The error says that the type of Open is an operation that starts in the DoorClosed
state, but the expected type starts in the DoorOpen state:

Door.idr:20:15:
When checking right hand side of doorProg with expected type

DoorCmd () DoorClosed DoorClosed

When checking an application of constructor Main.>>=:
Type mismatch between

DoorCmd () DoorClosed DoorOpen (Type of Open)
and

DoorCmd a DoorOpen state2 (Expected type)

Specifically:
Type mismatch between

DoorClosed
and

DoorOpen

5 Refine—Instead, complete the definition by closing the door:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
Close

Defining preconditions and postconditions in types
The type of doorProg includes input and output states that give preconditions and
postconditions for the sequence (the door must be closed both before and after the
sequence). If the definition violates either, you’ll get a type error.

For example, you might forget to close the door:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open

In this case, you’ll get a type error:

Door.idr:18:15:
When checking right hand side of doorProg with expected type

DoorCmd () DoorClosed DoorClosed

When checking an application of constructor Main.>>=:
Type mismatch between

DoorCmd () DoorClosed DoorOpen (Type of Open)

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

358 CHAPTER 13 State machines: verifying protocols in types

By defining DoorCmd in this way, with the input and output states explicit in the type,
you’ve defined what it means for a sequence of door operations to be valid. And by writ-
ing doorProg incrementally, with a sequence of steps and a hole for the rest of the defi-
nition, you can see the state of the door at each stage by looking at the type of the hole.

 The door has exactly two states, DoorClosed and DoorOpen, and you can describe
exactly when you change states from one to the other in the types of the door opera-
tions. But not all systems have an exact number of states that you can determine in
advance. Next, we’ll look at how you can model systems with an infinite number of
possible states.

13.1.3 Infinite states: modeling a vending machine

In this section, we’ll model a vending machine using type-driven development, writing
types that explicitly describe the input and output states of each operation. As a sim-
plification, the machine accepts only one type of coin (a £1 coin) and dispenses one
product (a chocolate bar). Even so, there could be an arbitrarily large number of
coins or chocolate bars in the machine, so the number of possible states is not finite.

 Table 13.1 describes the basic operations of a vending machine, along with the
state of the machine before and after each operation.

As with the door example, each operation has a precondition and a postcondition:

 Precondition—The number of coins and amount of chocolate that must be in
the machine before the operation

Table 13.1 Vending machine operations, with input and output states represented as Nat

Coins (before) Chocolate (before) Operation Coins (after) Chocolate (after)

pounds chocs Insert coin S pounds chocs

S pounds S chocs Vend chocolate pounds chocs

pounds chocs Return coins Z chocs

(continued)
and

DoorCmd () DoorClosed DoorClosed (Expected type)

Specifically:
Type mismatch between

DoorOpen
and

DoorClosed

The error refers to the final step and says that Open moves from DoorClosed to
DoorOpen, but the expected type is to move from DoorClosed to DoorClosed.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

359State machines: tracking state in types

 Postcondition—The number of coins and amount of chocolate in the machine
after the operation.

You can represent the state of the machine as a pair of two Nats, the first representing
the number of coins in the machine and the second representing the number of
chocolates:

VendState : Type
VendState = (Nat, Nat)

The next listing shows a representation of the vending machine state as an Idris type,
with the state transitions from table 13.1 explicitly written in the types of the
MachineCmd operations.

VendState : Type
VendState = (Nat, Nat)

data MachineCmd : Type ->
VendState ->

VendState ->

Type where
InsertCoin : MachineCmd () (pounds, chocs) (S pounds, chocs)
Vend : MachineCmd () (S pounds, S chocs) (pounds, chocs)
GetCoins : MachineCmd () (pounds, chocs) (Z, chocs)

To complete the model, you’ll need to be able to sequence commands. You’ll also
need to be able to read user input: the commands you’re defining describe what the
machine does, but there’s also a user interface that consists of the following:

 A coin slot
 A vend button, for dispensing chocolate
 A change button, for returning any unused coins

You can model these operations in a data type for describing possible user inputs. List-
ing 13.4 shows the complete model of the vending machine, including additional
operations for displaying a message (Display), refilling the machine (Refill), and
reading user actions (GetInput).

data Input = COIN
| VEND
| CHANGE
| REFILL Nat

Listing 13.3 Modeling the vending machine in a type, describing state transitions in the
types of commands (Vending.idr)

Listing 13.4 The complete model of vending machine state (Vending.idr)

A type synonym for the machine state:
a pair of the number of £1 coins and
the number of chocolates

Machine state before the
operation (precondition)

Machine state after the
operation (postcondition)

Defines the possible
user inputs

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

360 CHAPTER 13 State machines: verifying protocols in types

data MachineCmd : Type -> VendState -> VendState -> Type where
InsertCoin : MachineCmd () (pounds, chocs) (S pounds, chocs)
Vend : MachineCmd () (S pounds, S chocs) (pounds, chocs)
GetCoins : MachineCmd () (pounds, chocs) (Z, chocs)
 Refill :(bars : Nat) ->

MachineCmd () (Z, chocs) (Z, bars + chocs)

Display : String -> MachineCmd () state state
GetInput : MachineCmd (Maybe Input) state state

Pure : ty -> MachineCmd ty state state
(>>=) : MachineCmd a state1 state2 ->

 (a -> MachineCmd b state2 state3) ->
MachineCmd b state1 state3

data MachineIO : VendState -> Type where
Do : MachineCmd a state1 state2 ->

(a -> Inf (MachineIO state2)) -> MachineIO state1

namespace MachineDo
(>>=) : MachineCmd a state1 state2 ->

(a -> Inf (MachineIO state2)) -> MachineIO state1
(>>=) = Do

13.1.4 A verified vending machine description

Listing 13.5 shows the outline of a function that describes verified sequences of opera-
tions for a vending machine using the state transitions defined by MachineCmd. As long
as it type-checks, you know that you’ve correctly sequenced the operations, and you’ll
never execute an operation without its precondition being satisfied.

mutual
vend : MachineIO (pounds, chocs)
vend = ?vend_rhs

refill : (num : Nat) -> MachineIO (pounds, chocs)
refill = ?refill_rhs

machineLoop : MachineIO (pounds, chocs)
machineLoop =

do Just x <- GetInput
| Nothing => do Display "Invalid input"

machineLoop
case x of

COIN => do InsertCoin
machineLoop

VEND => vend

Listing 13.5 A main loop that reads and processes user input to the vending machine
(Vending.idr)

Refilling the
machine is only

valid if there are
no coins in the

machine.

Displaying a
message

doesn’t affect
the state.

Reading user input
doesn’t affect the state.
Returns Maybe Input to

account for possible
invalid inputs.

An infinite sequence of machine
state transitions. The type gives the
starting state of the machine.

Supports do notation for infinite
sequences of machine state transitions

vend and refill need to
check their preconditions
are satisfied.

User input
could be invalid,

so check here.
A pattern-matching
binding alternative (see
chapter 5). This branch
is executed if GetInput
returns Nothing.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

361State machines: tracking state in types

CHANGE => do GetCoins
Display "Change returned"
machineLoop

REFILL num => refill num

There are holes for vend and refill. In each case, you need to check that the num-
ber of coins and chocolates satisfy their preconditions. If you try to Vend without
checking the precondition, Idris will report an error:

vend : MachineIO (pounds, chocs)
vend = do Vend

Display "Enjoy!"
machineLoop

Idris will report an error because you haven’t checked whether there’s a coin in the
machine and a chocolate bar available, so the precondition might not be satisfied:

Vending.idr:67:13:
When checking right hand side of vend with expected type

MachineIO (pounds, chocs)

When checking an application of function Main.MachineDo.>>=:
Type mismatch between

MachineCmd ()
(S pounds1, S chocs2)
(pounds1, chocs2) (Type of Vend)

and
MachineCmd () (pounds, chocs) (pounds1, chocs2) (Expected type)

Specifically:
Type mismatch between

S chocs1
and

chocs

The error says that the input state must be of the form (S pounds1, S chocs2), but
instead it’s of the form (pounds, chocs).

 You can solve this problem by pattern matching on the implicit arguments, pounds
and chocs, to ensure they’re in the right form, or display an error otherwise. The fol-
lowing listing shows definitions of vend and refill that do this.

vend : MachineIO (pounds, chocs)
vend {pounds = S p} {chocs = S c}

= do Vend
Display "Enjoy!"
machineLoop

vend {pounds = Z}
= do Display "Insert a coin"

machineLoop
vend {chocs = Z}

= do Display "Out of stock"

Listing 13.6 Adding definitions of vend and refill that check that their precondi-
tions are satisfied (Vending.idr)

Doesn’t type-check because there may not
be coins or chocolate in the machine

A coin and a chocolate are
available, so vend and continue.

No money in the machine; can’t vend

No chocolate in the machine; can’t vend

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

362 CHAPTER 13 State machines: verifying protocols in types

machineLoop

refill : (num : Nat) -> MachineIO (pounds, chocs)
refill {pounds = Z} num

= do Refill num
machineLoop

refill _ = do Display "Can't refill: Coins in machine"
machineLoop

With both the door and the vending machine, we’ve used types to model the states of a
physical system. In each case, the type gives an abstraction of the state a system is in
before and after each operation, and values in the type describe the valid sequences of
operations. We haven’t implemented a run function to execute the state transitions
for either DoorCmd or MachineCmd, but in the code accompanying this book, which is
available online, you’ll find code that implements a console simulation of the vending
machine.

 In the next section, you’ll see a more concrete example of tracking state in the
type, implementing a stack data structure. I’ll use this example to illustrate how you
can execute commands in practice.

Exercises

1 Change the RingBell operation so that it works in any state, rather than only when
the door is closed. You can test your answer by seeing that the following function
type-checks:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
RingBell
Close

 2 The following (incomplete) type defines a command for a guessing game, where
the input and output states are the number of remaining guesses allowed:

data GuessCmd : Type -> Nat -> Nat -> Type where
Try : Integer -> GuessCmd Ordering ?in_state ?out_state

Pure : ty -> GuessCmd ty state state
(>>=) : GuessCmd a state1 state2 ->

(a -> GuessCmd b state2 state3) ->
GuessCmd b state1 state3

The Try command returns an Ordering that says whether the guess was too high,
too low, or correct, and that changes the number of available guesses. Complete the
type of Try so that you can only make a guess when there’s at least one guess
allowed, and so that guessing reduces the number of guesses available.

If you have a correct answer, the following definition should type-check:

threeGuesses: GuessCmd () 3 0
threeGuesses = do Try 10

Refill only allows
restocking with chocolate
when there are no coins
in the machine.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

363Dependent types in state: implementing a stack

Try 20
Try 15
Pure ()

Also, the following definition shouldn’t type-check:

noGuesses : GuessCmd () 0 0
noGuesses = do Try 10

Pure ()

 3 The following type defines the possible states of matter:

data Matter = Solid | Liquid | Gas

Define a MatterCmd type in such a way that the following definitions type-check:

iceSteam : MatterCmd () Solid Gas
iceSteam = do Melt

Boil

steamIce : MatterCmd () Gas Solid
steamIce = do Condense

Freeze

Additionally, the following definition should not type-check:

overMelt : MatterCmd () Solid Gas
overMelt = do Melt

Melt

13.2 Dependent types in state: implementing a stack
You’ve seen how to model state transitions in a type for two abstract examples: a door
(representing whether it was open or closed in its type) and a vending machine (rep-
resenting its contents in its type). Storing this abstract information in the type of the
operations is particularly useful when you also have concrete data that relates to that
abstract data. For example, if you’re describing data of a specific size, and the type of
an operation tells you how it changes the size of the data, you can use a Vect as a con-
crete representation. You’ll know the required length of the input and output Vect
from the type of each operation.

 In this section, you’ll see how this works by implementing operations on a stack
data structure. A stack is a last-in, first-out data structure where you can add items to
and remove them from the top of the stack, and only the top item is ever accessible. A
stack supports three operations:

 Push—Adds a new item to the top of the stack
 Pop—Removes the top item from the stack, provided that the stack isn’t empty
 Top—Inspects the top item on the stack, provided that the stack isn’t empty

Like the operations on the vending machine, each of these operations has a precondi-
tion that describes the necessary input state and a postcondition describing the out-
put state. Table 13.2 describes these, giving the required stack size before each
operation and the resulting stack size after the operation.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

364 CHAPTER 13 State machines: verifying protocols in types

You’ll express the preconditions and postconditions in the types of each operation.
Once you’ve defined the operations on a stack, you’ll implement a function to run
sequences of stack operations using a concrete representation of a stack with its
height in its type. Because you’re using the stack’s height in the state transitions, a
good concrete representation of a stack is a Vect. You know, for example, that a stack
of Integer of height 10, contains exactly 10 integers, so you can represent this as a
value of type Vect 10 Integer.

 Finally, you’ll see an example of a stack in action, implementing a stack-based
interactive calculator.

13.2.1 Representing stack operations in a state machine

As with DoorCmd and MachineCmd in section 13.1, we’ll describe operations on a stack
in a dependent type and put the important properties of the input and output states
explicitly in the type. Here, the property of the state that interests us is the height of
the stack.

 Listing 13.7 shows how you can express the operations in table 13.2 in code,
describing how each operation affects the height of the stack. For this example, you’ll
only store Integer values on the stack, but you could extend StackCmd to allow
generic stacks by parameterizing over the element type in the stack.

import Data.Vect

data StackCmd : Type -> Nat -> Nat -> Type where
Push : Integer -> StackCmd () height (S height)
Pop : StackCmd Integer (S height) height
Top : StackCmd Integer (S height) (S height)

Pure : ty -> StackCmd ty height height
(>>=) : StackCmd a height1 height2 ->

(a -> StackCmd b height2 height3) ->
StackCmd b height1 height3

Table 13.2 Stack operations, with input and output stack sizes represented as Nat

Stack size (before) Operation Stack size (after)

height Push element S height

S height Pop element height

S height Inspect top element S height

Listing 13.7 Representing operations on a stack data structure with the input and out-
put heights of the stack in the type (Stack.idr)

You’ll use a Vect to represent the
stack, so import Data.Vect here.

Push increases the height
of the stack by 1.

Pop requires there to be at least one
element on the stack, and it decreases the
height of the stack by 1.

Top requires there to be at
least one element on the

stack, and it preserves the
height of the stack.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

365Dependent types in state: implementing a stack

You’re using a Vect to represent the stack, so every time you add an element to the
vector or remove an element, you’ll change the vector’s type. You’re therefore repre-
senting dependently typed mutable state by putting the relevant arguments to the
type (the length of the Vect) in the StateCmd type itself.

 Using StackCmd, you can write sequences of stack operations where the input and
output heights of the stack are explicit in the types. For example, the following func-
tion pushes two integers, pops two integers, and then returns their sum:

testAdd : StackCmd Integer 0 0
testAdd = do Push 10

Push 20
val1 <- Pop
val2 <- Pop
Pure (val1 + val2)

The types of the constructors in StackCmd ensure that there will always be an element
on the stack when you try to Pop. For example, if you only push one integer in
testAdd, Idris will report an error:

testAdd : StackCmd Integer 0 0
testAdd = do Push 10

val1 <- Pop
val2 <- Pop
Pure (val1 + val2)

When you try to define testAdd like this, Idris reports an error:

Stack.idr:27:22:
When checking right hand side of testAdd with expected type

StackCmd Integer 0 0

When checking an application of constructor Main.>>=:
Type mismatch between

StackCmd Integer (S height) height (Type of Pop)
and

StackCmd a 0 height2 (Expected type)

Specifically:
Type mismatch between

S height
and

0

This error, and particularly the mismatch between S height and 0, means that you
have a stack of height 0, but Pop needs a stack that contains at least one element.

 This approach is similar to the stateful functions defined in chapter 12, here using
Push and Pop to describe how you’re modifying and querying the state. As with the
earlier descriptions of sequences of stateful operations, you’ll need to write a separate
function to run those sequences.

There’s only one element on the
stack, so Pop doesn’t type-check.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

366 CHAPTER 13 State machines: verifying protocols in types

13.2.2 Implementing the stack using Vect

Listing 13.8 shows how to implement a function that executes stack operations. This is
similar to runState, which you saw in chapter 12, but here you take an input Vect of
the correct height as the contents of the stack.

runStack : (stk : Vect inHeight Integer) ->
StackCmd ty inHeight outHeight ->
(ty, Vect outHeight Integer)

runStack stk (Push val) = ((), val :: stk)
runStack (val :: stk) Pop = (val, stk)
runStack (val :: stk) Top = (val, val :: stk)

runStack stk (Pure x) = (x, stk)
runStack stk (cmd >>= next)

= let (cmdRes, newStk) = runStack stk cmd in
runStack newStk (next cmdRes)

If you try runStack with testAdd, passing it an initial empty stack, you’ll see that it
returns the sum of the two elements that you push, and that the final stack is empty:

*Stack> runStack [] testAdd
(30, []) : (Integer, Vect 0 Integer)

You can also define functions like the following, which adds the top two elements on
the stack, putting the result back onto the stack:

doAdd : StackCmd () (S (S height)) (S height)
doAdd = do val1 <- Pop

val2 <- Pop
Push (val1 + val2)

The input state S (S height) means that the stack must have at least two elements on
it, but, otherwise, it could be any height. If you try executing doAdd with an initial
stack containing two elements, you’ll see that it results in a stack containing a single
element that’s the sum of the two input elements:

*Stack> runStack [2,3] doAdd
((), [5]) : ((), Vect 1 Integer)

If the input state contains more than two elements, you’ll see that it results in a stack
with a height one smaller than the input height. For example, an input stack of [2, 3,
4] results in an output stack with the value [2 + 3, 4]:

*Stack> runStack [2,3,4] doAdd
((), [5, 4]) : ((), Vect 2 Integer)

Listing 13.8 Executing a sequence of actions on a stack, using a Vect to represent
the stack’s contents

The length of
the input
vector is the
input height
of the stack.

The length of the
output vector is
the output height
of the stack.

The length of the output
vector is the output
height of the stack.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

367Dependent types in state: implementing a stack

You can add the two elements on the resulting stack with another call to doAdd:

*Stack> runStack [2,3,4] (do doAdd; doAdd)
((), [9]) : ((), Vect 1 Integer)

But trying one more doAdd would result in a type error, because there’s only one ele-
ment left on the stack:

*Stack> runStack [2,3,4] (do doAdd; doAdd; doAdd)
(input):1:34:When checking an application of constructor Main.>>=:

Type mismatch between
StackCmd () (S (S height)) (S height) (Type of doAdd)

and
StackCmd ty 1 outHeight (Expected type)

Specifically:
Type mismatch between

S height
and

0

This error means that you needed S (S height) elements on the stack (that is, at least
two elements) but you only had S height (that is, at least one, but not necessarily any
more). By putting the height of the stack in the type, therefore, you’ve explicitly spec-
ified the preconditions and postconditions on each operation, so you get a type error
if you violate any of these.

13.2.3 Using a stack interactively: a stack-based calculator

If you add commands for reading from and writing to the console, you can write a
console application for manipulating the stack and implement a stack-based calcula-
tor. A user can either enter a number, which pushes the number onto the stack, or
add, which adds the top two stack items, pushes the result onto the stack, and displays
the result. A typical session might go as follows:

*StackIO> :exec
> 3
> 4
> 5

> add
9
> add
12
> add
Fewer than two items on the stack

Figure 13.3 shows how each of the valid inputs in this session affects the contents of
the stack. Every time the user enters an integer, the stack size grows by one, and every
time the user enters add, the stack size decreases by one, as long as there are two items
to add.

User pushes three values
onto the stack: 3, 4 and 5

Adds the top two stack items,
displays and pushes the result

Error, because there’s only one item (12) on the

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

368 CHAPTER 13 State machines: verifying protocols in types

To implement this interactive stack program, you’ll need to extend StackCmd to sup-
port reading from and writing to the console. The following listing shows StackCmd in
a new file, StackIO.idr, extended with two commands: GetStr and PutStr.

data StackCmd : Type -> Nat -> Nat -> Type where
Push : Integer -> StackCmd () height (S height)
Pop : StackCmd Integer (S height) height
Top : StackCmd Integer (S height) (S height)

GetStr : StackCmd String height height
PutStr : String -> StackCmd () height height

Pure : ty -> StackCmd ty height height
(>>=) : StackCmd a height1 height2 ->

(a -> StackCmd b height2 height3) ->
StackCmd b height1 height3

DEPENDENT STATES IN THE EFFECTS LIBRARY I mentioned the Effects library in
chapter 12, which allows you to combine effects like state and console I/O
without having to define a new type, like StackCmd here. The Effects library
supports descriptions of state transitions and dependent state as in Stack-
Cmd. I won’t describe the Effects library further in this book, but learning
about the principles of dependent state here will mean that you’ll be able to
learn how to use the more flexible Effects library more readily.

You’ll also need to update runStack to support the two new commands. Because Get-
Str and PutStr describe interactive actions, you’ll need to update the type of run-
Stack to return IO actions. Here’s the updated runStack.

runStack : (stk : Vect inHeight Integer) ->
StackCmd ty inHeight outHeight ->
IO (ty, Vect outHeight Integer)

runStack stk (Push val) = pure ((), val :: stk)

Listing 13.9 Extending StackCmd to support console I/O with the commands GetStr
and PutStr (StackIO.idr)

Listing 13.10 Updating runStack to support the interactive commands GetStr and
PutStr (StackIO.idr)

3User input:

3Resulting stack:

4

4

3

5

5

4

3

add

9

3

add

12

Figure 13.3 How each user
input affects the contents of
the stack

Neither GetStr nor PutStr use
the stack, so the height remains
the same.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

369Dependent types in state: implementing a stack

runStack (val :: stk) Pop = pure (val, stk)
runStack (val :: stk) Top = pure (val, val :: stk)
runStack stk GetStr = do x <- getLine

pure (x, stk)
runStack stk (PutStr x) = do putStr x

pure ((), stk)
runStack stk (Pure x) = pure (x, stk)
runStack stk (x >>= f) = do (x', newStk) <- runStack stk x

runStack newStk (f x')

As with the vending machine, you’ll describe infinite sequences of StackCmd opera-
tions in total functions by defining a separate StackIO type for describing infinite
streams of stack operations. The following listing shows how you can define StackIO
and how to run StackIO sequences, given an initial state for the stack.

data StackIO : Nat -> Type where
Do : StackCmd a height1 height2 ->

(a -> Inf (StackIO height2)) -> StackIO height1

namespace StackDo
(>>=) : StackCmd a height1 height2 ->

(a -> Inf (StackIO height2)) -> StackIO height1
(>>=) = Do

data Fuel = Dry | More (Lazy Fuel)

partial
forever : Fuel
forever = More forever

run : Fuel -> Vect height Integer -> StackIO height -> IO ()
run (More fuel) stk (Do c f)

= do (res, newStk) <- runStack stk c
run fuel newStk (f res)

run Dry stk p = pure ()

The interactive calculator follows a similar pattern to the implementation of the vend-
ing machine. The next listing shows an outline of the main loop, which reads an
input, parses it into a command type, and processes the command if the input is valid.

data StkInput = Number Integer
| Add

strToInput : String -> Maybe StkInput

mutual
tryAdd : StackIO height

stackCalc : StackIO height
stackCalc = do PutStr "> "

input <- GetStr

Listing 13.11 Defining infinite sequences of interactive stack operations (StackIO.idr)

Listing 13.12 Outline of an interactive stack-based calculator (StackIO.idr)

The Nat argument is
the initial height of
the stack for the
infinite sequence.

Supports do
notation for
StackIO

forever allows you to run a total program
indefinitely by giving an infinite supply of
Fuel. See chapter 11 for the full details.

The input Vect must have a
number of items given by

the initial stack height.

Describes possible user inputs:
entering a number or the add

Parses the input read from the console.
Returns Maybe because input could be invalid.

Adds two numbers at the top of the
stack, if present, and then loops

Main loop of the interactive calculator

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

370 CHAPTER 13 State machines: verifying protocols in types

case strToInput input of
Nothing => do PutStr "Invalid input\n"

stackCalc
Just (Number x) => do Push x

stackCalc
Just Add => tryAdd

main : IO ()
main = run forever [] stackCalc

You still need to define strToInput, which parses user input, and tryAdd, which adds
the two elements on the top of the stack, if possible. The following listing shows the
definition of strToInput.

strToInput : String -> Maybe RPNInput
strToInput "" = Nothing
strToInput "add" = Just Add
strToInput x = if all isDigit (unpack x)

then Just (Number (cast x))
else Nothing

Finally, the next listing shows the definition of tryAdd. Like vend and refill in the
vending machine implementation, you need to match on the initial state to make sure
that there are enough items on the stack to add.

tryAdd : StackIO height
tryAdd {height = (S (S h))}

= do doAdd
result <- Top
PutStr (show result ++ "\n")
stackCalc

tryAdd

= do PutStr "Fewer than two items on the stack\n"
stackCalc

You can check that stackCalc is total at the REPL:

*StackIO> :total stackCalc
Main.stackCalc is Total

By separating the looping component (StackIO) from the terminating component
(StackCmd), and by giving precise types to the operations, you can be sure that stack-
Calc has at least the following properties, as long as it’s total:

Listing 13.13 Reading user input for the stack-based calculator (StackIO.idr)

Listing 13.14 Adding the top two elements on the stack, if they’re present (StackIO.idr)

Empty input
is considered

invalid.

If the input is the string “add”,
parse as the Add command.

If the input consists entirely of
digits, parse as Number.

Adding is only valid if there are at
least two elements on the stack.

doAdd, defined earlier, has a precondition in its
type that there are two elements on the stack.

Inspects the top item on the stack so
that you can display it as the result

Continues
with the

main loop

If the earlier case doesn’t match, there
aren’t enough items on the stack to add.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

371Summary

 It will continue running indefinitely.
 It will never crash due to user input that isn’t handled.
 It will never crash due to a stack overflow.

Exercises

1 Add user commands to the stack-based calculator for subtract and multiply. You
can test these as follows:

*ex_13_2> :exec
> 5
> 3
> subtract
2
> 8
> multiply
16

 2 Add a negate user command to the stack-based calculator for negating the top item
on the stack. You can test this as follows:

> 10
> negate
-10

 3 Add a discard user command that removes the top item from the stack. You can
test this as follows:

> 3
> 4
> discard
Discarded 4
> add
Fewer than two items on the stack

 4 Add a duplicate user command that duplicates the top item on the stack. You can
test this as follows:

> 2
> duplicate
Duplicated 2
> add
4

13.3 Summary
 Data types can model state machines by using each data constructor to describe

a state transition.
 You can describe how a command changes the state of a system by giving the

input and output states of the system as part of the command’s type.
 Developing sequences of state transitions interactively, using holes, means you

can check the required input and output states of a sequence of commands.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

372 CHAPTER 13 State machines: verifying protocols in types

 Types can model infinite state spaces as well as finite states.
 Sequences of commands give verified sequences of state transitions because a

sequence of commands will only type-check if it describes a valid sequence of
state transitions.

 You can represent mutable dependently typed state by putting the arguments to
the dependent type in the state transitions. For example, you can use the length
of a vector to represent the height of a stack.

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

Edwin Brady

S
top fi ghting type errors! Type-driven development is an
approach to coding that embraces types as the foundation
of your code—essentially as built-in documentation your

compiler can use to check data relationships and other
assumptions. With this approach, you can defi ne specifi cations
early in development and write code that’s easy to maintain,
test, and extend. Idris is a Haskell-like language with fi rst-
class, dependent types that’s perfect for learning type-driven
programming techniques you can apply in any codebase.

Type-Driven Development with Idris teaches you how to im-
prove the performance and accuracy of your code by taking
advantage of a state-of-the-art type system. In this book, you’ll
learn type-driven development of real-world software, as well
as how to handle side-effects, interaction, state, and concur-
rency. By the end, you’ll be able to develop robust and verifi ed
software in Idris and apply type-driven development methods
to other languages.

What’s Inside
● Understanding dependent types
● Types as fi rst-class language constructs
● Types as a guide to program construction
● Expressing relationships between data

Written for programmers with knowledge of functional
programming concepts.

Edwin Brady leads the design and implementation of the Idris
language.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/type-driven-development-with-idris

$49.99 / Can $65.99 [INCLUDING eBOOK]

Type-Driven Development with Idris

SOFTWARE DEVELOPMENT

M A N N I N G

“This book will turn your
approach to software

upside-down,
in the best way.”

—Ian Dees, New Relic

“Highly recommended
for anyone developing
software with serious

 safety requirements.”
—Arnaud Bailly, GorillaSpace

“After reading this book,
TDD took on a new
 meaning for me.”—Giovanni Ruggiero, Eligotech

“A clear and complete view
of type-driven development

that reveals the power
 of dependent types.”

—Nicolas Biri
Luxembourg Institute of Science

and Technology

SEE INSERT

www.itbook.store/books/9781617293023

https://itbook.store/books/9781617293023

	Copyright
	BriefContents
	SampleCh13

