
M A N N I N G

Tamir Dresher
FOREWORD BY Erik Meijer

SAMPLE CHAPTER

www.itbook.store/books/9781617293061

https://itbook.store/books/9781617293061

Rx.NET in Action
by Tamir Dresher

Sample Chapter 2

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293061

https://itbook.store/books/9781617293061

brief contents
PART 1 GETTING STARTED WITH REACTIVE EXTENSIONS 1

1 ■ Reactive programming 3
2 ■ Hello, Rx 27
3 ■ Functional thinking in C# 54

PART 2 CORE IDEAS .. 87
4 ■ Creating observable sequences 89
5 ■ Creating observables from .NET asynchronous types 115
6 ■ Controlling the observer-observable relationship 135
7 ■ Controlling the observable temperature 157
8 ■ Working with basic query operators 184
9 ■ Partitioning and combining observables 205

10 ■ Working with Rx concurrency and synchronization 231
11 ■ Error handling and recovery 259

www.itbook.store/books/9781617293061

https://itbook.store/books/9781617293061

www.itbook.store
Hello, Rx
The goal of Rx is to coordinate and orchestrate event-based and asynchronous
computations that come from various sources, such as social networks, sensors, UI
events, and others. For instance, security cameras around a building, together with
movement sensors that trigger when someone might be near the building, send us
photos from the closest camera. Rx can also count tweets that contain the names of
election candidates to estimate a candidate’s popularity. This is done by calling an
external web service in an asynchronous way. For those scenarios and other similar
ones, the orchestrations tend to lead to complex programs, and Rx definitely eases
that effort, as you’ll see.

 In this chapter, you’ll look at an example to see how working with and without
Rx makes a difference in how the application is structured, how readable it is, and
how easy it is to extend and evolve. Imagine you receive a letter from Mr. Penny, the
well-known chief technology officer of the Stocks R Us company. Stocks R Us is a
stock-trading company that advises its clients where to invest their money and col-
lect interest from earnings. This is why it’s important to the company to react

This chapter covers
 Working without Rx

 Adding Rx to a project

 Creating your first Rx application
27

/books/9781617293061

https://itbook.store/books/9781617293061

28 CHAPTER 2 Hello, Rx

www.itbook
quickly to changes in the stock market. Recently, Stocks R Us found out that it can
save money by using a system that provides alerts about stocks that have experi-
enced—as Mr. Penny calls it—a drastic change. Mr. Penny’s definition of a drastic
change is a price change of more than 10%. When these changes happen, Stocks R Us
wants to know as fast as possible so it can react by selling or buying the stock.

 Mr. Penny comes to you because he knows he can count on you to deliver a high-
quality application quickly. Your job (and the target of this chapter) is to create an
application that notifies users about stocks that experience a drastic change. A drastic
change occurs when the value of the stock increases or decreases by a certain thresh-
old (10% in this case) between two readings. When this happens, you want to notify
users by sending a push notification to their mobile phones or displaying an alert on
the screen of an application, showing a red flashing bar, for example.

 In the first part of the chapter, you’ll explore the steps that usually occur when cre-
ating an application with the traditional .NET events approach. We’ll then analyze the
solution and discuss its weaknesses.

 The second part of this chapter introduces Rx into your application. You’ll first
add the libraries to the project and then work step by step to make the application for
Stocks R Us in the Rx style.

2.1 Working with traditional .NET events
Stock information comes from a stock-trading source, and many services provide this
information. Each has its own API and data formats, and several of those sources are
free, such as Yahoo Finance (http://finance.yahoo.com) and Google Finance
(www.google.com/finance). For your application, the most important properties are
the stock’s quote symbol and price. The stock’s quote symbol is a series of characters
that uniquely identifies traded shares or stock (for example, MSFT is the Microsoft
stock symbol).

 The flowchart in figure 2.1 describes the logical flow of the application.

Stock update
received

Calculate price change between
current and previous price

Notify user> 10% Yes

No

Wait for
next update

Figure 2.1 Flowchart of the Stock R Us
application logic. We notify the user of drastic
change—a change of more than 10% in price.
.store/books/9781617293061

http://finance.yahoo.com
www.google.com/finance
https://itbook.store/books/9781617293061

29Working with traditional .NET events

www.itbook.st
For each piece of stock information the application receives, it calculates the price dif-
ference of the stock as a change ratio between the new price and the previous price.
Say you receive an update that the price of MSFT has changed from $50 to $40, a
change of 20%. This is considered a drastic change and causes an alert to be shown in
the application.

 In real life, the ticks arrive at a variable rate. For now, to keep from confusing you,
you can assume that the ticks arrive at a constant rate; you’ll deal with time aspects later.

 To keep the source of the stock information abstract, it’s exposed through the class
StockTicker. The class exposes only an event about a StockTick that’s raised every
time new information about a stock is available.

class StockTicker
{
 public event EventHandler<StockTick> StockTick;
}

The StockTick class holds the information about the stock, such as its quote symbol
and price.

class StockTick
{
 public string QuoteSymbol { get; set; }
 public decimal Price { get; set; }

 //other properties
}

You’ll usually see traditional .NET events in these types of scenarios. When notifica-
tions need to be provided to an application, .NET is a standard way of delivering data
into an application. To work with the stock ticks, you’ll create a StockMonitor class
that will listen to stock changes by hooking up to the StockTick event via the +=
operator.

class StockMonitor
{
 public StockMonitor(StockTicker ticker)
 {
 ticker.StockTick += OnStockTick;
 }
...
 //rest of the code
}

Listing 2.1 StockTicker class

Listing 2.2 StockTick class

Listing 2.3 StockMonitor class

The OnStockTick method is
called each time the
event is raised.
ore/books/9781617293061

https://itbook.store/books/9781617293061

30 CHAPTER 2 Hello, Rx

www.itbook
The core of the example is in the OnStockTick method. This is where you’ll check
for each stock tick if you already have its previous tick so that you can compare the
new price with the old price. For this, you need a container to hold all the informa-
tion about previous ticks. Because each tick contains the QuoteSymbol, it makes
sense to use a dictionary to hold that information, with QuoteSymbol as the key. To
hold the information about the previous ticks, you define a new class with the name
StockInfo (listing 2.4), and then you can declare the dictionary member in your
StockMonitor class (listing 2.5).

class StockInfo
{

 public StockInfo(string symbol, decimal price)
 {
 Symbol = symbol;
 PrevPrice = price;
 }
 public string Symbol { get; set; }
 public decimal PrevPrice { get; set; }
}

Every time OnStockTick is called with a new tick, the application needs to check
whether an old price has already been saved to the dictionary. You use the TryGet-
Value method that returns true if the key you’re looking for exists in the dictionary,
and then you set the out parameter with the value stored under that key.

Dictionary<string,StockInfo> _stockInfos=new Dictionary<string, StockInfo>();

void OnStockTick(object sender, StockTick stockTick)
{
 StockInfo stockInfo ;
 var quoteSymbol = stockTick.QuoteSymbol;
 var stockInfoExists = _stockInfos.TryGetValue(quoteSymbol, out stockInfo);
...
}

If the stock info exists, you can check the stock’s current and previous prices, as shown
in the following listing, to see whether the change was bigger than the threshold
defining a drastic change.

const decimal maxChangeRatio = 0.1m;
...
var quoteSymbol = stockTick.QuoteSymbol;
var stockInfoExists = _stockInfos.TryGetValue(quoteSymbol, out stockInfo);

Listing 2.4 StockInfo class

Listing 2.5 OnStockTick event handler checking the existence of a stock

Listing 2.6 OnStockTick event handler handling drastic price change
.store/books/9781617293061

https://itbook.store/books/9781617293061

31Working with traditional .NET events

The pe
o

S
price

nex

www.itbook.st
if (stockInfoExists)
{
 var priceDiff = stockTick.Price-stockInfo.PrevPrice;
 var changeRatio = Math.Abs(priceDiff/stockInfo.PrevPrice);
 if (changeRatio > maxChangeRatio)
 {
 //Do something with the stock – notify users or display on screen
 Console.WriteLine("Stock:{0} has changed with {1} ratio,
 Old Price:{2} New Price:{3}",
 quoteSymbol,
 changeRatio,
 stockInfo.PrevPrice,
 stockTick.Price);
 }
 _stockInfos[quoteSymbol].PrevPrice = stockTick.Price;
}

If the stock info isn’t in the dictionary (because this is the first time you got a tick
about it), you need to add it to the dictionary with

_stockInfos[quoteSymbol]=new StockInfo(quoteSymbol,stockTick.Price);

When no more updates are required (for example, when the user decides to stop
receiving notifications or closes the page), you need to unregister from the event by
using the -= operator. But where should you do that? One option is to create a
method in the StockMonitor class that you can call when you want to stop. But luck-
ily, .NET provides a mechanism for handling this type of “cleanup” by implementing
the IDisposable interface that includes the single method Dispose for freeing
resources. This is how it looks in StockMonitor:

public void Dispose()
{
 _ticker.StockTick -= OnStockTick;
 _stockInfos.Clear();
}

The full code is shown in listing 2.7. I ran it on the following series:

Symbol: "MSFT" Price: 100
Symbol: "INTC" Price: 150
Symbol: "MSFT" Price: 170
Symbol: "MSFT" Price: 195

and I got these results:

Stock:MSFT has changed with 0.7 ratio, Old Price:100 New Price:170
Stock:MSFT has changed with 0.15 ratio, Old Price:170 New Price:195.5

class StockMonitor : IDisposable
{
 private readonly StockTicker _ticker;

Listing 2.7 StockMonitor full code

stockInfo variable holds the
information about the stock; because
stockInfoExists is true, you know for

sure that stockInfo isn’t null.

rcentage
f change

ave the
 for the
t event.
ore/books/9781617293061

https://itbook.store/books/9781617293061

32 CHAPTER 2 Hello, Rx

Cal
cha
to
mo

ew

rst

 the
re it.

www.itbook
 Dictionary<string, StockInfo> _stockInfos =
 new Dictionary<string, StockInfo>();
 public StockMonitor(StockTicker ticker)
 {
 _ticker = ticker;
 ticker.StockTick += OnStockTick;
 }

 void OnStockTick(object sender, StockTick stockTick)
 {
 const decimal maxChangeRatio = 0.1m;
 StockInfo stockInfo;
 var quoteSymbol = stockTick.QuoteSymbol;
 var stockInfoExists =
 _stockInfos.TryGetValue(quoteSymbol, out stockInfo);
 if (stockInfoExists)
 {
 var priceDiff = stockTick.Price - stockInfo.PrevPrice;
 var changeRatio = Math.Abs(priceDiff / stockInfo.PrevPrice);
 if (changeRatio > maxChangeRatio)
 {
 Debug.WriteLine("Stock:{0} has changed with {1} ratio
 OldPrice:{2} newPrice:{3}",
 quoteSymbol,
 changeRatio,
 stockInfo.PrevPrice,
 stockTick.Price);
 }
 _stockInfos[quoteSymbol].PrevPrice = stockTick.Price;
 }
 else
 {
 _stockInfos[quoteSymbol] =
 new StockInfo(quoteSymbol, stockTick.Price);
 }
 }

 public void Dispose()
 {
 _ticker.StockTick -= OnStockTick;
 _stockInfos.Clear();
 }
}

Mr. Penny is satisfied, Stock R Us staff is using the application, and the effects are
already shown in their reports. The application receives the stock updates, can calculate
the difference ratio between the old and the new price, and sends an alert to the user.

 Like everything in life, change is inevitable, and Stocks R Us decides to change its
stock information source. Luckily, you abstracted the source with your StockTicker
class so the StockTicker is the only class that needs to be changed.

Registration to the
stock update notification

Checking whether the stock
price information already
exists in the application

culating the price
nge in percentages

see whether it’s
re than 10%

Storing the n
stock price

If this is the fi
time you get
information on
stock, you sto

Disposing of the resources and
unregistering from the event. You
won’t get any more notifications
from this point forward.
.store/books/9781617293061

https://itbook.store/books/9781617293061

33Working with traditional .NET events

www.itbook.st
 After the source change, you start to receive complaints on crashes and other bugs
such as missing alerts or unnecessary alerts. And so you start to investigate the prob-
lem and find it has something to do with concurrency.

2.1.1 Dealing with concurrency

It may not seem obvious, but the code hides a problem: concurrency. Nothing in the
StockTicker interface promises anything about the thread in which the tick event
will be raised, and nothing guarantees that a tick won’t be raised while another one is
processed by your StockMonitor, as shown in figure 2.2.

The StockMonitor class you wrote uses a dictionary to keep the information about
the stocks, but the dictionary you’re using isn’t thread-safe.

The dictionary you’re using does support multiple readers at the same time, but if the
dictionary is read while it’s being modified, an exception is thrown. This situation is
illustrated in table 2.1. Thread1 (on the left) reaches the marked code, where it tries
to get the StockInfo for a stock with the symbol symbol1. At the same time,
Thread2 (on the right) reaches the line of code that adds a new StockInfo (with a
symbol2 symbol) to the dictionary. Both the reading and the mutating of the diction-
ary is happening at the same time and leads to an exception.

Thread safety
Thread safety of a code portion means that the code works correctly when called from
more than one thread, no matter the order in which those threads execute the code
and without any need for synchronization of the calling code.

A class is called thread-safe if any one of its methods is thread-safe, even if different
methods are called from different threads simultaneously. This usually means the
inner data structures are protected from modifications at the same time.

Time

MSFT

GOOG

MSFT

Thread 1

Thread 2

Thread 3
Figure 2.2 Multiple threads executing the event-
handler code at the same time. Each box represents
the execution time of a stock. While the first thread is
running the code for MSFT, the second thread starts
executing for the GOOG stock. Then the third thread
starts for the same stock symbol as the first thread.
ore/books/9781617293061

http://www.dotnetfoundation.org/projects
http://www.dotnetfoundation.org/projects
https://itbook.store/books/9781617293061

ter a
 code
read
er
nter
 will

.

www.itbook
34 CHAPTER 2 Hello, Rx

You can overcome this problem by using the .NET ConcurrentDictionary. This
lock-free collection internally synchronizes the readers and writers so no exception
will be thrown.

 Unfortunately, ConcurrentDictionary isn’t enough, because the ticks aren’t syn-
chronized by StockTicker. If you handle two (or more) ticks of the same stock at the
same time, what’s the value of the PrevPrice property? There’s a nondeterministic
answer to that question: the last one wins. But the last one isn’t necessarily the last tick
that was raised, because the order in which the threads are running is determined by
the OS and isn’t deterministic.1 This makes your code unreliable, because the end user
could be notified on an incorrect conclusion that your code makes. The OnStockTick
event handler holds a critical section, and the way to protect it is by using a lock.

object _stockTickLocker = new object();
void OnStockTick(object sender, StockTick stockTick)
{
 const decimal maxChangeRatio = 0.1m;
 StockInfo stockInfo;
 var quoteSymbol = stockTick.QuoteSymbol;
 lock (_stockTickLocker)
 {
 var stockInfoExists =
 _stockInfos.TryGetValue(quoteSymbol, out stockInfo);
 if (stockInfoExists)
 {
 var priceDiff = stockTick.Price - stockInfo.PrevPrice;
 var changeRatio =
 Math.Abs(priceDiff/stockInfo.PrevPrice);

Table 2.1 Reading and modifying the dictionary at the same time from two threads

Thread 1 Thread 2

:
:
var stockInfoExists =
_stockInfos.TryGetValue(symbol1,
out stockInfo);
if (stockInfoExists)
{
:
:
}
else
{
 _stockInfos[symbol1] = new
StockInfo(symbol1, price);
}

:
:
var stockInfoExists =
_stockInfos.TryGetValue(symbol2,out
stockInfo);
if (stockInfoExists)
{
:
:
}
else
{
 _stockInfos[symbol2] = new
StockInfo(symbol2, price);
}

1 Deterministic means that no randomness is involved in the development of future states of the system.

Listing 2.8 Locked version of OnStockTick

An object that acts as a
mutual-exclusion lock that
you’ll use in the lock statement

Ensures that one
thread doesn’t en
critical section of
while another th
is there. If anoth
thread tries to e
a locked code, it
block until the
object is released
.store/books/9781617293061

https://itbook.store/books/9781617293061

35Working with traditional .NET events

www.itbook.st
 if (changeRatio > maxChangeRatio)
 {
 Debug.WriteLine("Stock:{0} has changed with {1} ratio
 OldPrice:{2} newPrice:{3}",
 quoteSymbol,
 changeRatio,
 stockInfo.PrevPrice,
 stockTick.Price);
 }
 _stockInfos[quoteSymbol].PrevPrice = stockTick.Price;
 }
 else
 {
 _stockInfos[quoteSymbol] =
 new StockInfo(quoteSymbol, stockTick.Price);
 }
 }
}

Using locks is a perfect solution for many cases.
But when you start to add locks in various places
in an application, you can end up with a perfor-
mance hit, because locks can increase execution
time as well as the time that threads wait for the
critical section to become available. The harder
problem is that locks can cause your application
to get into a deadlock, as shown in figure 2.3.
Each thread is holding a resource that another
thread needs, while at the same time they each
are waiting for a resource that the other holds.

 Working with multithreaded applications is
difficult, and no magic solution exists. The only
reasonable thing to do is to make the code that
will run multithreaded easier to understand, and
make going into the trap of working with concur-
rent code more difficult.

 Rx provides operators to run concurrent code, as you’ll see later in this chapter.
For now, let’s step back, look at what you’ve created, and analyze it to see whether you
can do better.

2.1.2 Retrospective on the solution and looking at the future

Thus far, our code gives a solution to the requirements Mr. Penny described at the
beginning of the chapter. Functionally, the code does everything it needs to do. But
what’s your feeling about it? Is it readable? Does it seem to be maintainable? Is it easy
to extend? I’d like to point your attention to a few things.

R1

R2

Thread 2Thread 1

Holding Waiting

HoldingWaiting

Figure 2.3 A deadlock: Thread 1 is
holding the resource R1 and waiting
for the resource R2 to be available.
At the same time, Thread 2 is
holding resource R2 and waiting
for resource R1. Both threads will
remain locked forever if no external
intervention occurs.
ore/books/9781617293061

https://itbook.store/books/9781617293061

36 CHAPTER 2 Hello, Rx

s

www.itbook
CODE SCATTERING

Let’s start with the scattering of the code. It’s a well-known fact that scattered code
makes a program harder to maintain, review, and test. In our example, the main logic
of the program is in the OnStockTick event handler that’s “far” from the registration
of the event:

class StockMonitor
{
 public StockMonitor(StockTicker ticker)
 {
 ...
 ticker.StockTick += OnStockTick;
 }

 void OnStockTick(object sender, StockTick stockTick)
 {
 ...
 }

 public void Dispose()
 {
 ...
 }
}

It’s common to see classes that handle more than one event (or even many more),
with each one in its own event handler, and you can start to lose sight of what’s related
to what:

class SomeClass
{
 public SomeClass(StockTicker ticker)
 {
 ...
 eventSource.event1 += OnEvent1;
 ...
 eventSource.event2 += OnEvent2;
 ...
 eventSource.event3 += OnEvent3;
 ...

 }

 void OnEvent1(object sender, EventArgs args)
 {
 ...
 }

 //Other methods

 void OnEvent2(object sender, EventArgs args)
 {

Register
the event.

Handle the event.

Unregister and clean up.

Register events and
initialize the object.

An event handler for each event;
several might need to do
something related to another
event. Methods that deal with clas
logic, with or without a connection
to the events, might be present.
.store/books/9781617293061

https://itbook.store/books/9781617293061

37Working with traditional .NET events

www.itbook.st
 ...
 }

 //Other methods

 void OnEvent2(object sender, EventArgs args)
 {
 ...
 }

 //Other methods

 public void Dispose()
 {
 ...
 }
}

Many times developers choose to change the event-handler registration to a lambda
expression such as

anObject.SomeEvent += (sender, eventArgs)=>{...};

Although you moved the event-handler logic to the registration, you added a bug to
your resource cleaning. How do you unregister? The -= operator expects you to
unregister the same delegate that you registered. A lambda expression can be unregis-
tered only as follows:

eventHandler = (sender, eventArgs)=>{...};
anObject.SomeEvent += eventHandler;
:
anObject.SomeEvent -= eventHandler;

This looks unclean, so now you need to save the eventHandler as a member if you
need to unregister from it, which leads me to the next point.

RESOURCE HANDLING

The unregistration from the event and the rest of the resources cleanup that you
added to support your code (such as the dictionary) took place in the Dispose
method. This is a well-used pattern, but more frequently than not, developers forget
to free the resources that their code uses. Even though C# and .NET as a whole are
managed and use garbage collection, many times you’ll still need to properly free
resources to avoid memory leaks and other types of bugs. Events are often left regis-
tered, which is one of the main causes of memory leaks. The reason (at least for some)
is that the way we unregister doesn’t feel natural for many developers, and deciding
the correct place and time to unregister isn’t always straightforward—especially
because many developers prefer to use the lambda style of registering events, as I
stated previously. Beside the event itself, you added code and state management (such
as our dictionary) to support your logic. Many more types of applications handle the
same scenarios, such as filtering, grouping, buffering, and, of course, the cleaning of
what they bring. This brings us to the next point.

An event handler for each event;
several might need to do
something related to another
event. Methods that deal with class
logic, with or without a connection
to the events, might be present.

Unregister and clean up the class, with
or without a relation to the events.
ore/books/9781617293061

https://itbook.store/books/9781617293061

38 CHAPTER 2 Hello, Rx

www.itbook
REPEATABILITY AND COMPOSABILITY

To me, our logic also feels repeatable. I swear I wrote this code (or similar code) in a
past application, saving a previous state by a key and updating it each time an update
comes in, and I bet you feel the same. Moreover, I also feel that this code isn’t compos-
able, and the more conditions you have, the more inner if statements you’ll see and
the less readable your code will be. It’s common to see this kind of code in an applica-
tion, and with its arrowhead-like structure, it’s becoming harder to understand and
follow what it does:

if (some condition)
{
 if (another condition)
 {
 if (another inner condition)
 {
 //some code
 }
 }
}
else
{
 if (one more condition)
 {
 //some code
 }
 else
 {
 //some code
 }
}

Composition
Composition is the ability to compose a complex structure from simpler constructs.

This definition is similar to that in mathematics, where you can compose a complex
expression from a set of other functions: f(x) = x2 + sin(x)

Composition also allows us to use a function as the argument of another function:

g(x) = x + 1
f(g(x)) = (x + 1)2 + sin(x + 1)

In computer science, we use composition to express complex code with simpler func-
tions. This allows us to make higher abstractions and concentrate on the purpose of
the code and less on the details, making it easier to grasp.
.store/books/9781617293061

https://itbook.store/books/9781617293061

39Creating your first Rx application

www.itbook.st
If you were given new requirements to your code, such as calculating the change ratio
by looking at more than two consecutive events, your code would have to change
dramatically. The change would be even more dramatic if the new requirement was
time based, such as looking at the change ratio in a time interval.

SYNCHRONIZATION

Synchronization is another thing that developers tend to forget, resulting in the same
problems that we had: unreliable code due to improperly calculated values, and
crashes that might occur when working with non-thread-safe classes. Synchronization
is all about making sure that if multiple threads reach the same code at the same time
(virtually, not necessarily in parallel, because a context switch might be involved),
then only one thread will get access. Locks are one way to implement synchronization,
but other ways exist and do require knowledge and care.

 It’s easy to write code that isn’t thread-safe, but it’s even easier to write code with
locks that lead to deadlocks or starvation. The main issue with those types of bugs is
that they’re hard to find. Your code could run for ages (literally), until you run into a
crash or other error.

 With so many points from such a small program, it’s no wonder people say that
programming is hard. It’s time to see the greatness of Rx and how it makes the issues
we’ve discussed easier to overcome. Let’s see the Rx way and start adding Rx to your
application.

2.2 Creating your first Rx application
In this section, the Rx example uses the same StockTicker that you saw in the previ-
ous section, but this time you won’t work with the traditional standard .NET event.
Instead you’ll use IObservable<T>, which you’ll create, and then write your event-
processing flow around it. You’ll go slowly and add layer after layer to the solution
until you have a fully running application that’s easier to read and extend.

 Every journey starts with the first step. You’ll begin this journey by creating a new
project (a console application will do) and adding the Rx libraries.

2.2.1 Selecting Rx packages

The first step in working with Reactive Extensions is adding the library to your project.
No matter whether you write a Windows Presentation Foundation (WPF) application,
ASP.NET website, Windows Communication Foundation (WCF) service, or a simple
console application, Rx can be used inside your code to benefit you. But you do need
to select the correct libraries to reference from your project.
ore/books/9781617293061

https://itbook.store/books/9781617293061

40 CHAPTER 2 Hello, Rx

www.itbook
The Rx library is deployed as a set of a portable class libraries (PCLs)2 and platform-
specific providers that you install depending on your project platform. This is shown
in figure 2.4.

 To add the necessary references to your project, you need to select the appropriate
packages from NuGet, a .NET package manager from which you can easily search and
install packages (which usually contain libraries). Table 2.2 describes the Rx packages
you can choose from at the time of this writing and figure 2.5 shows the NuGet pack-
age manager.

Figure 2.5 Reactive Extensions NuGet packages. Many packages add things on top of Rx
to identify the Rx.NET-specific libraries. Look for a package ID with the prefix System.Reactive
and make sure the publisher is Microsoft.

2 The Portable Class Library project enables you to build assemblies that work on more than one .NET Frame-
work platform. For details, see http://mng.bz/upA5.

System.Reactive.Providers
IObservable<T> query providers

Platform-specific
Schedulers, services

S
ys

te
m

.R
ea

ct
iv

e.
P

la
tfo

rm
S

er
vi

ce
s

P
la

tfo
rm

 e
nl

ig
ht

en
m

en
ts

 a
nd

 e
xt

ra
 s

ch
ed

ul
er

s

System.Reactive.Linq
LINQ query providers

System.Reactive.Core
Scheduler infrastructure, common types, and base classes

System.Reactive.Interfaces
Additional interface; e.g., IScheduler

Figure 2.4 Rx assemblies are a
set of portable class libraries
(middle and bottom) and platform-
specific libraries (top left). The
PlatformServices assembly
holds the platform enlightments that
are the glue between the two.
.store/books/9781617293061

http://mng.bz/upA5
https://itbook.store/books/9781617293061

41Creating your first Rx application

www.itbook.st
NOTE Rx 3.0, published in June 2016, added Rx support to the .NET Core and
Universal Windows Platform (UWP). Rx.NET also joined the .NET Foundation
(www.dotnetfoundation.org/projects). To conform with the naming conven-
tion used by .NET Core, the Rx packages were renamed to match their library
names, and the previous Rx packages are now hidden in the NuGet gallery.

Table 2.2 Rx packages

Package name Description

System.Reactive.Interfaces
(Rx-Interfaces prior to Rx 3.0)

Installs the System.Reactive.Interfaces
assembly that holds only interfaces that other Rx
packages depend on.

System.Reactive.Core
(Rx-Core prior to Rx 3.0)

Installs the System.Reactive.Core assembly
that includes portable implementations of schedul-
ers, disposables, and others.

System.Reactive.Linq
(Rx-Linq prior to Rx 3.0)

Installs the System.Reactive.Linq assembly.
This is where the query operators are implemented.

System.Reactive.PlatformServices
(Rx-PlatformServices prior to Rx 3.0)

Installs the
System.Reactive.PlatformServices
assembly. This is the glue between the portable and
nonportable Rx packages.

System.Reactive
(Rx-Main prior to Rx 3.0)

This is the main package of Rx and what you’ll
install in most cases. It includes
System.Reactive.Interfaces,
System.Reactive.Core,
System.Reactive.Linq, and
System.Reactive.PlatformServices (the
specific enlightenments provider that will be used
depends on the project platform).

System.Reactive.Providers
(Rx-Providers prior to Rx 3.0)

Installs System.Reactive.Providers together
with the System.Reactive.Core package. This
package adds the IQbservable LINQ API opera-
tors that allow creating the expression tree on the
event tree so that the query provider can translate to
a target query language. This is the Rx
IQueryable counterpart.

System.Reactive.Windows.Threading
(Rx-Xaml prior to Rx 3.0)

Installs the System.Reactive.Windows
.Threading assembly together with the
System.Reactive.Core package. Use this
package when you need to add UI synchronization
classes for any platform that supports the XAML
dispatcher (WPF, Silverlight, Windows Phone, and
Windows Store apps).

System.Reactive.Runtime.Remoting
(Rx-Remoting prior to Rx 3.0)

Installs System.Reactive.Runtime.Remoting
together with the System.Reactive.Core
package. Use this package to add extensions to
.NET Remoting and expose it as an observable
sequence.
ore/books/9781617293061

www.dotnetfoundation.org/projects
https://itbook.store/books/9781617293061

42 CHAPTER 2 Hello, Rx

www.itbook
Most of the time, you’ll add the System.Reactive package to your project because it
contains the types that are most used. When you’re writing to a specific platform or
technology, you’ll add the complementary package.3

2.2.2 Installing from NuGet

After you decide which package you need, you can install it from the Package Man-
ager dialog box or the Package Manager console. To use the Package Manager con-
sole, choose Tools > NuGet Package Manager > Package Manager Console. In the
console, select the destination project from the Default Project drop-down list, shown
in figure 2.6.

 In the console, write the installation command of the package you need:

Install-Package [Package Name]

Figure 2.6 Installing the Rx libraries through the Package Manager console. Make sure you select the
correct project for installation from the Default Project drop-down list. You can also define the project by
typing -ProjectName [project name].

System.Reactive.Windows.Forms /
System.Reactive.WindowsRuntime
(Rx-WPF/Rx-Silverlight/Rx-WindowsStore/
Rx-WinForms prior to Rx 3.0)

Subset of packages that’s specific to the platform.
Add UI synchronization classes and Rx utilities for
the platform types (such as IAsyncAction and
IAsyncOperationWithProgress in WinRT).

Microsoft.Reactive.Testing
(Rx-Testing prior to Rx 3.0)

The Rx testing library that enables writing reactive
unit tests. Appendix C includes explanations and
examples of reactive unit tests.

System.Reactive.Observable.Aliases
(Rx-Aliases prior to Rx 3.0)

Provides aliases for some of the query operators
such as Map, FlatMap, and Filter.

3 Although the examples in the book are in C#, you can use Rx with other .NET languages. Also, if you’re using
F#, look at http://fsprojects.github.io/FSharp.Control.Reactive, which provides F# wrappers for Rx.

Table 2.2 Rx packages (continued)

Package name Description
.store/books/9781617293061

http://fsprojects.github.io/FSharp.Control.Reactive
https://itbook.store/books/9781617293061

43Creating your first Rx application

www.itbook.st
Figure 2.7 NuGet Package Manager from VS 2015. Search for the package you want by typing its name
b and then select the package and click Install c.

Another option for installing the packages is through the Package Manager dialog
box, shown in figure 2.7. This UI enables you to search for packages and see their
information in a more user-friendly way. Right-click your project and choose Manage
NuGet Packages. Type in the package name, select the package you want to install
from the drop-down list, and then click Install.

 After the NuGet package is installed, you can write the Rx version of Stock-
Monitor. You can find the entire code at the book’s source code in the GitHub repos-
itory: http://mng.bz/18Pr.

Instructions for running the examples with .NET Core
Microsoft recently announced that the format I describe here is deprecated (but will
be supported in the transition time). Microsoft recommends using the normal csproj
file with the new MSBuild additions (PackageReference for example). To use .NET
Core, you first need to install the latest version from www.microsoft .com/net/core.
Then, create a new project in your favorite tool, such as Visual Studio 2015 or Visual
Studio Code (https://code.visualstudio.com/docs/runtimes/dotnet).

Add a reference to the System.Reactive NuGet package by updating the depen-
dencies section inside the project.json file, as shown here:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable",
 "emitEntryPoint": true
ore/books/9781617293061

http://mng.bz/18Pr
https://code.visualstudio.com/docs/runtimes/dotnet
www.microsoft.com/net/core
https://itbook.store/books/9781617293061

44 CHAPTER 2 Hello, Rx

t

www.itbook
2.3 Writing the event-processing flow
After you install the Rx package that adds the needed references to the Rx libraries, you
can start building your application around it. To start creating the event-processing
flow, you need the source of the events. In Rx, the source of events (the publisher, if you
prefer) is the object that implements the IObservable<T> interface.

 To recap, the IObservable<T> interface defines the single method Subscribe
that allows observers to subscribe to notifications. Observers implement the
IObserver interface that defines the methods that will be called by the observable
when there are notifications.

 Rx provides all kinds of tools to convert various types of sources to IObserv-
able<T>, and the most fundamental tool that’s included is the one that converts a
standard .NET event into an observable.

 In our example of creating an application that provides notifications of drastic
stock changes, you’ll continue to work with the StockTick event. You’ll see how to
make it into an observable that you can use to do magic.

2.3.1 Subscribing to the event

StockTicker exposes the event StockTick that’s raised each time an update occurs
on a stock. But to work with Rx, you need to convert this event into an observable.
Luckily, Rx provides the FromEventPattern method that enables you to do just that:

IObservable<EventPattern<StockTick>> ticks =
 Observable.FromEventPattern<EventHandler<StockTick>, StockTick>(
 h => ticker.StockTick += h,
 h => ticker.StockTick -= h)

(continued)
 },
 "dependencies": { "System.Reactive": "3.0.0" },
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 },
 },
 "imports": "dnxcore50"
 }
 }
}

Finally, run the dotnet restore command at the command prompt. You now have
a configured Rx project.

In most cases, you’d use
var instead of the full

variable type name.

Attaching
he Rx event

handler
Detaching the
Rx event
handler
.store/books/9781617293061

https://itbook.store/books/9781617293061

45Writing the event-processing flow

www.itbook.st
Figure 2.8 FromEventPattern method signature

The FromEventPattern method has a couple of overloads. The one you’re using
here takes two generic parameters and two method parameters. Figure 2.8 shows the
method signature explanation.

 The addHandler and removeHandler parameters register and unregister the Rx
handler to the event; the Rx handler will be called by the event and then will call the
OnNext method of the observers.

UNWRAPPING THE EVENTARGS

The ticks variable now holds an observable of type IObservable<EventPattern
<StockTick>>. Each time the event is raised, the Rx handler is called and wraps the
event-args and the event source into an object of EventPattern type that will be
delivered to the observers through the OnNext method. Because you care only for the
StockTick (the EventArgs in the EventPattern type) of each notification, you
can add the Select operator that will transform the notification and unwrap the
EventArgs so that only the StockTick will be pushed down the stream:

var ticks = Observable.FromEventPattern<EventHandler<StockTick>, StockTick>(
 h => ticker.StockTick += h,
 h => ticker.StockTick -= h)
 .Select(tickEvent => tickEvent.EventArgs)

2.3.2 Grouping stocks by symbol

Now that you have an observable that carries the ticks (updates on the stocks), you
can start writing your query around it. The first thing to do is to group the ticks by
their symbols so you can handle each group (stock) separately. With Rx, this is an easy
task, as shown in figure 2.9.

A delegate (a lambda expression
in our example) that makes the
registration of the Rx event handler
from the event

A delegate (a lambda expression
in our example) that makes the
unregistration of the Rx
event handler from the event

The type of the EventArgs
that the event is carrying
—StockTick in our case

The type of the delegate
that can register to the
event, in our case
EventHandler<StockTick>

FromEventPattern<TDelegate, TEventArgs>(Action<TDelegate> addHandler,
 Action<TDelegate> removeHandler)

Select gets a delegate (such as a lambda
expression) that takes the input

notification and returns the value you’re
interested in—EventArgs in this case.
ore/books/9781617293061

https://itbook.store/books/9781617293061

46 CHAPTER 2 Hello, Rx

www.itbook
Figure 2.9 A simple grouping of the stock ticks by the quote symbol

This expression creates an observable that provides the groups. Each group repre-
sents a company and is an observable that will push only the ticks of that group. Each
tick from the ticks source observable is routed to the correct observable group by its
symbol. This is shown in figure 2.10.

Figure 2.10 The ticks observable is grouped into two company groups, each one for a different
symbol. As the notifications are pushed on the ticks observable, they’re routed to their group
observable. If it’s the first time the symbol appears, a new observable is created for the group.

This grouping is written with a query expression. Query expressions are written in a
declarative query syntax but are a sugar syntax that the compiler turns into a real chain
of method calls. This is the same expression written in a method syntax:

ticks.GroupBy(tick => tick.QuoteSymbol);

2.3.3 Finding the difference between ticks

The next step on your way to finding any drastic changes is to compare two consecu-
tive ticks to see whether the difference between them is higher than a particular ratio.
For this, you need a way to batch the ticks inside a group so you can get two ticks
together. The batching should be done in such a way that two consecutive batches will
include a shared tick; the last tick in a batch will be the first one in the next batch. Fig-
ure 2.11 shows an example of this batching.

The group will be referred to as company.
company is an observable of all the ticks
that belong to the company.

The group of the tick is
defined by its symbol.

We are grouping
the tick objects.

from tick in ticks
group tick by tick.QuoteSymbol into company

MSFT
27.01

INTC
21.75

MSFT
27.96

MSFT
31.21

INTC
22.54

INTC
20.98

MSFT
30.73

27.01

Ticks:

MSFT:

INTC:

27.96 31.21 30.73

21.75 22.54 20.98
.store/books/9781617293061

https://itbook.store/books/9781617293061

47Writing the event-processing flow

www.itbook.st
Figure 2.11 Ticks are batched together. Each batch has two items;
two consecutive batches have a shared item.

To create batches on an observable sequence, you use the Buffer operator. Buffer
gets as parameters the number of items you want in a batch—two, in this case—and
the number of items to skip before opening a new batch. You need to skip one item
before opening a new batch, thus making one item shared between two batches. You
need to apply the Buffer method to each group by writing the following:

company.Buffer(2, 1)

The Buffer method outputs an array that holds the two consecutive ticks, as shown in
figure 2.12. This enables you to calculate the difference between the two ticks to see
whether it’s in the allowed threshold.

Figure 2.12 After applying the Buffer(…) method on each group, you a get new type of notification
that holds an array of the two consecutive ticks.

By using the Let keyword, Rx allows you to keep the calculation in a variable that will
be carried on the observable:

from tick in ticks
group tick by tick.QuoteSymbol into company
from tickPair in company.Buffer(2, 1)
let changeRatio = Math.Abs((tickPair[1].Price - tickPair[0].Price) /

tickPair[0].Price)

This code fragment includes all your steps until now. Applying the buffering on the
company observable creates a new observable that pushes the buffers of two ticks. You

Ticks:

Batch 2

A B C D E

Batch 4

Batch 3Batch 1

MSFT
27.01

INTC
21.75

MSFT
27.96

MSFT
31.21

INTC
22.54

INTC
20.98

MSFT
30.73

Ticks:

MSFT:

INTC:

(27.01, 27.96) (27.96, 31.21) (31.21, 30.73)

(21.75, 22.54) (22.54, 20.98)
ore/books/9781617293061

https://itbook.store/books/9781617293061

48 CHAPTER 2 Hello, Rx

www.itbook
observe its notifications by using the from … in … statement. Each notification is
represented by the tickPair variable.

 You then introduce the changeRatio variable that holds the ratio of change
between the two ticks; this variable will be carried on the observable to the rest of your
query, as shown in figure 2.13.

Figure 2.13 From each pair of consecutive ticks per company group, you calculate the ratio
of difference.

Now that you know the change ratio, all that’s left is filtering out all the notifications
that aren’t interesting (not a drastic change) and keeping only those that are above
your wanted ratio by applying the Where(…) operator:

var drasticChanges =
 from tick in ticks
 group tick by tick.QuoteSymbol
 into company
 from tickPair in company.Buffer(2, 1)
 let changeRatio = Math.Abs((tickPair[1].Price - tickPair[0].Price)/

tickPair[0].Price)
 where changeRatio > maxChangeRatio
 select new DrasticChange()
 {
 Symbol = company.Key,
 ChangeRatio = changeRatio,
 OldPrice = tickPair[0].Price,
 NewPrice = tickPair[1].Price
 };

The drasticChanges variable is an observable that pushes notifications only for
ticks that represent a change in a stock price that’s higher than maxChangeRatio. In
figure 2.14, the maximum change ratio is 10%.

INTC:

MSFT:

MSFT
change

ratio:

INTC
change

ratio:

0.034 0.104 0.015

0.036 0.069

(27.01, 27.96) (27.96, 31.21) (31.21, 30.73)

(21.75, 22.54) (22.54, 20.98)

Write the condition that the
notification needs to fulfill
inside the where operator.

Create an object from every
notification that’s a drastic
change. This type includes the
properties that you will use to
render a screen alert.
.store/books/9781617293061

https://itbook.store/books/9781617293061

49Writing the event-processing flow

The
to t
tha
unr

www.itbook.st
Figure 2.14 After filtering the notifications with the Where operator, you find that only one notification
is a drastic change.

To consume the drastic change notifications, you need to subscribe to the drastic-
Change observable. Then you can notify the user by printing it to the screen.

_subscription =
 drasticChanges.Subscribe(change =>
 {
 Console.WriteLine($"Stock:{change.Symbol} has changed with
 {change.ChangeRatio} ratio,
 Old Price:{change.OldPrice}
 New Price:{change.NewPrice}");
 },
 ex => { /* code that handles errors */},
 () => {/* code that handles the observable completeness */});

2.3.4 Cleaning resources

If the user doesn’t want to receive any more notifications about drastic changes, you
need to dispose of the subscription to the drasticChanges observable. When you
subscribed to the observable, the subscription was returned to you, and you stored it
in the _subscription class member.

 As before, the StockMonitor Dispose method (which is provided because you
implemented the IDisposable interface) makes a perfect fit. The only thing you

MSFT
27.01

INTC
21.75

MSFT
27.96

MSFT
31.21

INTC
22.54

INTC
20.98

MSFT
30.73

Ticks:

Drastic
changes:

MSFT:

INTC:

0.034 0.104

MSFT
New price: 31.21
Old price: 27.96

Change ratio: 0.104

0.015

0.036 0.069

 subscription
he observable
t allows you to
egister

Every notification of a drastic change is
delivered to the lambda expression written
in the Subscribe method. The notification is
represented by the change parameter.

If something goes wrong and an exception
is thrown, or when the sequence is done,

this is where you handle those cases.
ore/books/9781617293061

https://itbook.store/books/9781617293061

50 CHAPTER 2 Hello, Rx

www.itbook
need to do in your Dispose method is to call to Dispose method of the subscription
object:

public void Dispose()
{
 _subscription.Dispose();
}

Notice that you don’t need to write anything about delegates involved in the process-
ing of your query, and you don’t need to clean up any data structures related to the
storage of the previous ticks data. All of those are kept in the Rx internal operators
implementation, and when you dispose of the subscription, a chain of disposals hap-
pen, causing all the internal data structures to be disposed of as well.

2.3.5 Dealing with concurrency

In the traditional events version, you needed to add code to handle the critical section
in your application. This critical section enabled two threads to reach the event han-
dler simultaneously and read and modify your collection of past ticks at the same
time, leading to an exception and miscalculation of the change ratio. You added a
lock to synchronize the access to the critical section, which is one way to provide syn-
chronization between threads.

 With Rx, adding synchronization to the execution flow is much more declarative.
Add the Synchronize operator to where you want to start synchronizing, and Rx will
take care of the rest. In this case, you can add synchronization from the beginning, so
you add the Synchronize operator when creating the observable itself:

var ticks = Observable.FromEventPattern<EventHandler<StockTick>, StockTick>(
 h => ticker.StockTick += h,
 h => ticker.StockTick -= h)
 .Select(tickEvent => tickEvent.EventArgs)
 .Synchronize()

It doesn’t get any simpler than that, but as before, you need to remember that every
time you add synchronization of any kind, you risk adding a probable deadlock. Rx
doesn’t fix that, so developer caution is still needed. Rx only gives you tools to make
the introduction of synchronization easier and more visible. When things are easy,
explicit, and readable, chances increase that you’ll make it right, but making sure you
do it correctly is still your job as a developer.

2.3.6 Wrapping up

Listing 2.9 shows the entire code of the Rx version. The main difference from the tra-
ditional events example is that the code tells the story about what you’re trying to
achieve rather than how you’re trying to achieve it. This is the declarative program-
ming model that Rx is based on.

From here on, the execution will be
synchronized. Notification will be pushed
only after the previous one completes.
.store/books/9781617293061

https://itbook.store/books/9781617293061

S

sho

h
cas

obse

www.itbook.st
51Writing the event-processing flow

class RxStockMonitor : IDisposable
{
 private IDisposable _subscription;

 public RxStockMonitor(StockTicker ticker)
 {
 const decimal maxChangeRatio = 0.1m;

 var ticks =
 Observable.FromEventPattern<EventHandler<StockTick>, StockTick>(
 h => ticker.StockTick += h,
 h => ticker.StockTick -= h)
 .Select(tickEvent => tickEvent.EventArgs)
 .Synchronize();

 var drasticChanges =
 from tick in ticks
 group tick by tick.QuoteSymbol
 into company
 from tickPair in company.Buffer(2, 1)
 let changeRatio = Math.Abs((tickPair[1].Price -

 ➥ tickPair[0].Price)/tickPair[0].Price)
 where changeRatio > maxChangeRatio
 select new
 {
 Symbol = company.Key,
 ChangeRatio = changeRatio,
 OldPrice = tickPair[0].Price,
 NewPrice = tickPair[1].Price
 };

 _subscription =
 drasticChanges.Subscribe(change =>
 {
 Console.WriteLine("Stock:{change.Symbol} has changed
 with {change.ChangeRatio} ratio,
 Old Price: {change.OldPrice}
 New Price: {change.NewPrice}");
 },
 ex => { /* code that handles errors */},
 () =>{/* code that handles the observable completeness */});
 }

 public void Dispose()
 {
 _subscription.Dispose();
 }
}

It’s now a good time to compare the Rx and events versions.

Listing 2.9 Locked version of OnStockTick

Creates a synchronized
observable that pushes

the stock ticks from
the StockTick event.

Groups ticks and
checks whether the
difference between two
consecutive ticks is
above a threshold.

ubscribes to the
observable of

drastic change,
wing an alert on
the screen. Also
andles the error
es and when the
rvable sequence

is complete.
ore/books/9781617293061

https://itbook.store/books/9781617293061

52 CHAPTER 2 Hello, Rx

www.itbook
KEEPING THE CODE CLOSE

In the Rx example, all the code that relates to the logic of finding the drastic changes
is close together, in the same place—from the event conversion to the observable to the
subscription that displays the notifications onscreen. It’s all sitting in the same method,
which makes navigating around the solution easier. This is a small example, and even
though all the code sits together, it doesn’t create a huge method. In contrast, the tra-
ditional events version scattered the code and its data structures in the class.

PROVIDING BETTER AND LESS RESOURCE HANDLING

The Rx version is almost free of any resource handling, and those resources that you
do want to free were freed explicitly by calling Dispose. You’re unaware of the real
resources that the Rx pipeline creates because they were well encapsulated in the
operators’ implementation. The fewer resources you need to manage, the better your
code will be in managing resources. This is the opposite of the traditional events ver-
sion, in which you needed to add every resource that was involved and had to manage
its lifetime, making the code error prone.

USING COMPOSABLE OPERATORS

One of the hardest computer science problems is naming things—methods, classes,
and so on. But when you give a good name to something, it makes the process of using
it later easy and fluid. This is exactly what you get with the Rx operators. The Rx oper-
ators are a recurring named code pattern that reduces the repeatability in your code
that otherwise you’d have to write by yourself—meaning now you can write less code
and reuse existing code. With each step of building your query on the observable, you
added a new operator on the previously built expression; this is composability at its
best. Composability makes it easy to extend the query in the future and make adjust-
ments while you’re building it. This is contrary to the traditional events version, in
which no clear separation exists between the code fragments that handled each step
when building the whole process to find the drastic change.

PERFORMING SYNCHRONIZATION

Rx has a few operators dedicated specifically to concurrency management. In this
example, you used only the Synchronize operator that, as generally stated before
about Rx operators, saved you from making the incorrect use of a lock by yourself. By
default, Rx doesn’t perform any synchronization between threads—the same as regu-
lar events. But when the time calls for action, Rx makes it simple for the developer to
add the synchronization and spares the use of the low-level synchronization primi-
tives, which makes the code more attractive.

2.4 Summary
This chapter presented a simple yet powerful example of something you’ve probably
done in the past (or might find yourself doing in the future) and solved it in two ways:
the traditional events style and the Rx style of event-processing flow.

 Writing an event-driven application in .NET is very intuitive but holds caveats
regarding resource cleanup and code readability.
.store/books/9781617293061

https://itbook.store/books/9781617293061

53Summary

www.itbook.st
 To use the Rx library, you need to install the Rx packages. Most often you’ll
install the System.Reactive package.

 You can use Rx in any type of application WPF desktop client, an ASP.NET web-
site, or a simple console application and others.

 Traditional .NET events can be converted into observables.
 Rx allows you to write query expression on top of the observable.
 Rx provides many query operators such as filtering with the Where operator,

transformation with Select operator, and others.

This doesn’t end here, of course. This is only the beginning of your journey. To use Rx
correctly in your application and to use all the rich operators, you need to learn about
them and techniques for putting them together, which is what this book is all about.
In the next chapter, you’ll learn about the functional way of thinking that, together
with the core concepts inside .NET, allowed Rx to evolve.
ore/books/9781617293061

https://itbook.store/books/9781617293061

Tamir Dresher

M
odern applications must react to streams of data such
as user and system events, internal messages, and sen-
sor input. Reactive Extensions (Rx) is a .NET library

containing more than 600 operators that you can compose
together to build reactive client- and server-side applications
to handle events asynchronously in a way that maximizes
responsiveness, resiliency, and elasticity.

Rx.NET in Action teaches developers how to build event-driven
applications using the Rx library. Starting with an overview of
the design and architecture of Rx-based reactive applications,
you’ll get hands-on with in-depth code examples to discover
fi rsthand how to exploit the rich query capabilities that Rx
provides and the Rx concurrency model that allows you to
control both the asynchronicity of your code and the process-
ing of event handlers. You’ll also learn about consuming event
streams, using schedulers to manage time, and working with
Rx operators to fi lter, transform, and group events.

What’s Inside
● Introduction to Rx in C#
● Creating and consuming streams of data and events
● Building complex queries on event streams
● Error handling and testing Rx code

Readers should understand OOP concepts and be comfortable
coding in C#.

Tamir Dresher is a senior software architect at CodeValue and
a prominent member of Israel’s Microsoft programming
community.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/rx-dot-net-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Rx.NET IN ACTION

.NET DEVELOPMENT

M A N N I N G

“Keep a copy of this
book handy to put

Rx.NET into action!”
—From the Foreword by

Erik Meijer, Inventor of Rx

“An excellent, deep
journey towards true event-

driven programming.”
—Stephen Byrne, Dell

“Thorough and
comprehensive, with

 hundreds of code examples.”—Edgar Knapp
ISIS Papyrus Software

“An essential resource
to take your reactive

programming skills to the
 next level. A must-read.”

—Rohit Sharma, Morgan Stanley

SEE INSERT

www.itbook.store/books/9781617293061

https://itbook.store/books/9781617293061

	Dresher-RxNET-front-sample
	SampleChapterPages2
	Ch-02
	Dresher-RxNET-ebook-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

