
M A N N I N G

Tamir Dresher
FOREWORD BY Erik Meijer

SAMPLE CHAPTER

www.itbook.store/books/9781617293061

https://itbook.store/books/9781617293061

Rx.NET in Action
by Tamir Dresher

Sample Chapter 7

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293061

https://itbook.store/books/9781617293061

brief contents
PART 1 GETTING STARTED WITH REACTIVE EXTENSIONS 1

1 ■ Reactive programming 3
2 ■ Hello, Rx 27
3 ■ Functional thinking in C# 54

PART 2 CORE IDEAS .. 87
4 ■ Creating observable sequences 89
5 ■ Creating observables from .NET asynchronous types 115
6 ■ Controlling the observer-observable relationship 135
7 ■ Controlling the observable temperature 157
8 ■ Working with basic query operators 184
9 ■ Partitioning and combining observables 205

10 ■ Working with Rx concurrency and synchronization 231
11 ■ Error handling and recovery 259

www.itbook.store/books/9781617293061

https://itbook.store/books/9781617293061

www.itbook.store
Controlling the observable
temperature
The abstraction provided by observables hides from the observers the knowledge of
how the underlying source makes the emissions. Depending on the way the observ-
able is implemented, the same emissions (the object instance) might be shared
between the various observers, or alternatively, each observer might get different
instances. The observable might be implemented so that each observer receives the
entire sequence, or instead receives part of the sequence, depending on when it
subscribed.

 Say an observable emits sound waves. As an observer, you don’t know whether
the sound is coming from a live concert, or played from an album that was started
the moment the observer subscribed. During a concert, all the listeners (the
observers) share the same tunes. But when played from an album, the tunes are
played to each listener independently, and the full sequence of songs can be con-
sumed no matter when the observer subscribed.

This chapter covers
 Creating publishers with subjects

 Working with hot and cold observables

 Moving from hot to cold and vice versa

 Controlling the hot observable lifetime
157

/books/9781617293061

https://itbook.store/books/9781617293061

158 CHAPTER 7 Controlling the observable temperature

www.itbook
 The term observable temperature refers to the state of the observable at the moment
of its subscription. This state describes the time an observable begins and stops its
emissions and whether the emissions are shared between observers. A hot observable is
in an active state, like a singer performing live or an observable that emits the mouse’s
current position. In contrast, a cold observable is in a passive state, like an album waiting
to be played or an observable that pushes the elements in a loop when an observer
subscribes.

 To control and change the observable temperature—for example, when you want
to make sure all observers observe the same items, or when you want to “record” noti-
fications to replay them later—you need to use one of the Rx building blocks—the
Subject, a type that’s both an observable and an observer. Subject acts as a hub
that allows multicasting notifications. You can also use Subject to create a PubSub
inside your application. At the end of the chapter, you’ll know how to identify and
control the shareability of your observable so that the results of your queries will
always be predictable.

7.1 Multicasting with subjects
A type that implements the IObservable<T> interface and IObserver<M> interface
is called a subject. This type acts as both an observer and an observable, as shown in fig-
ure 7.1. It allows you to create an object that becomes a hub, which is able to intercept
notifications it receives as an observer and push them to its observers. This, for exam-
ple, can be used inside a shopping-cart class to notify various observers (such as the
relevant UI component) about items added or removed from the cart. The cart
exposes Subject as an observable, and the cart Add and Remove methods call the
subject’s OnNext method to notify about the change.

Figure 7.1 A subject is a type that’s both an observable and an observer. It allows
multicasting the notifications emitted by the sources to the observers.

Subject

Observer

Observer

Observer

Observable

Observable

:
:

:
:

Observable
.store/books/9781617293061

https://itbook.store/books/9781617293061

159Multicasting with subjects

www.itbook.st
The following listing provides the definition of the ISubject interface that resides in
the System.Reactive.Subjects namespace.

interface ISubject<in TSource, out TResult> : IObserver<TSource>,
 IObservable<TResult>
{
}

The Subject type represents a PubSub (publisher-subscriber) pattern: the subject
consumes notifications on one side (or is triggered by a notification) and emits notifi-
cations on the other side. This lets you create types that add special logic (transforma-
tions, caching, buffering, and so on) within the notifications received before they’re
published, or allows multicasting from one source to multiple destinations.

 When TSource and TResult generic parameters are of the same type, you can
use the simpler version of the ISubject interface.

interface ISubject<T> : ISubject<T, T>
{
}

Rx provides these subject implementations:

 Subject<T>—Broadcasts every observed notification to all observers.
 AsyncSubject<T>—Represents an asynchronous operation that emits its

value upon completion.
 ReplaySubject<T>—Broadcasts notifications for current and future observers.
 BehaviorSubject<T>—Broadcasts notifications and saves the latest value for

future observers. When created, it’s initialized with a value that emits until
changed.

In all the standard implementations of subjects inside the Rx library, the observers
receive the notifications sequentially, in the order that they subscribed.

Listing 7.1 The ISubject interface

Listing 7.2 ISubject interface with Source and Result types that are the same

Why is it called a subject?
In chapter 1, I mentioned that Rx drew its inspiration from the original GoF observer
design pattern. In this pattern, the subject is observed by the observers and can be
externally triggered to raise the notifications. The Rx Subject plays the same role
as the subject in the observer pattern, therefore its name.
ore/books/9781617293061

https://itbook.store/books/9781617293061

160 CHAPTER 7 Controlling the observable temperature

www.itbook
7.1.1 Simple broadcasting with Subject<T>

The simplest subject implementation is Subject<T>, which serves as a simple broad-
caster, as shown in figure 7.2. This type adds no behavior around the received notifica-
tion. Each observed notification is broadcast to the observers without any additional
processing. This is why it makes Subject<T> a good fit for a backing field to an observ-
able that’s exposed by your class. All you need to do is tell it to push notifications from
various methods in the class (such as the shopping cart that needs to notify parts of the
application that it has changed).

Figure 7.2 Subject<T> is a broadcaster. Each notification it observes is
broadcast to its observers.

Because Subject<T> is an observer, it exposes the OnNext, OnCompleted, and
OnError methods, so when they’re called, the same methods are called on all the
observers. You can manually signal a subject to emit notifications by calling its
exposed methods.

 This example uses a subject to publish two notifications to two observers and then
completes:

using System.Reactive.Subjects;

Subject<int> sbj = new Subject<int>();

sbj.SubscribeConsole("First");
sbj.SubscribeConsole("Second");

sbj.OnNext(1);
sbj.OnNext(2);
sbj.OnCompleted();

Subject

Observer

Observer

Observer

A single notification
observed by the subject

The same notification
broadcasted to all
the observers

:
:

Creates a subject
of integers

Subscribes two observers

Emits two notifications Notifies subscribed observers about
the end of the observable sequence
.store/books/9781617293061

https://itbook.store/books/9781617293061

161Multicasting with subjects

Cre
sub
typ

www.itbook.st
Running this example displays the following output:

First - OnNext(1)
Second - OnNext(1)
First - OnNext(2)
Second - OnNext(2)
First - OnCompleted()
Second - OnCompleted()

Each time you call the OnNext or OnCompleted methods on the subject, the observ-
ers receive the notification in the order in which they subscribe.

MULTIPLE SOURCE, BUT ONE COMPLETION

One misunderstanding I see when working with Subject<T> is that although there
can be many source observables, only one completion will occur and be passed to the
observers. Subjects conform to the observable-observer protocol mandate that after
completion, no more notifications are emitted.

 Consider this example: a subject subscribes to two observables representing two
chat rooms, each emitting messages as they’re received from participants. Each
observable emits five notifications but at different rates—every 1 second and every 2
seconds. The desired behavior is that the observer subscribing to the subject will
receive the messages from both chat rooms and, if one chat room completes (all the
participants leave), the messages from the other chat room will continue to be
observed. But, confusingly, the real behavior is that the observer will receive the values
emitted only until either observable completes; the rest of the notifications from the
other observable won’t pass through, as shown in figure 7.3.

Subject<string> sbj = new Subject<string>();

Observable.Interval(TimeSpan.FromSeconds(1))
 .Select(x => "First: " + x)
 .Take(5)
 .Subscribe(sbj);
Observable.Interval(TimeSpan.FromSeconds(2))
 .Select(x => "Second: " + x)
 .Take(5)
 .Subscribe(sbj);

sbj.SubscribeConsole();

Listing 7.3 Subscribing the subject to multiple observables

First

Second

Subject

Figure 7.3 The subject can
subscribe to multiple sources,
but when any of the sources
completes (the second in this
figure), so does the subject.

ates a
ject of
e string

Creates an observable that simulates the
first chat room the subject is subscribed
to. Chat room emits five notifications
before completion, one every 1 second.

Simulates a second chat room which
emits five notifications before
completion, one every 2 seconds.

Subscribes an observer
to the subject
ore/books/9781617293061

https://itbook.store/books/9781617293061

162 CHAPTER 7 Controlling the observable temperature

Don’t
Use M
instea

www.itbook
After running this example, you’ll get this output:

- OnNext(First: 0)
- OnNext(Second: 0)
- OnNext(First: 1)
- OnNext(First: 2)
- OnNext(Second: 1)
- OnNext(First: 3)
- OnNext(First: 4)
- OnCompleted()

The output shows that after the five values are emitted by the first observable, a com-
pletion notification from the first observable is observed by the subject and then pub-
lished to its observer. Afterward, no more notifications are received.

CLASSIC MISUSE OF A SUBJECT

Typically, developers naively try to merge observables together by using a subject, but
the built-in Merge operator should be used instead. The following listing shows a clas-
sic example of a subject misuse: the subject subscribes to multiple sources to merge
them. And the surprisingly confusing result is that the resulting sequence isn’t
merged at all. The scenario here merges an enumerable that was fetched from a data-
base and transformed to an observable (everything is a stream, remember?1) together
with an observable of real-time notifications. The observable created from the enu-
merable completes first and, therefore, the rest of the notification won’t be observed,
making the result confusing.

Subject<string> sbj = new Subject<string>();
sbj.SubscribeConsole();

 //at some point later...

IEnumerable<string> messagesFromDb = ...
IObservable<string> realTimeMessages = ...

messagesFromDb.ToObservable().Subscribe(sbj);
realTimeMessages.Subscribe(sbj);

In the example, you create a subject at the beginning of the application and subscribe
an observer to it. (In a real application, the observer can be the screen that shows the
messages.) Later, somewhere in the code (for example, after the initialization pro-
cess), you subscribe the subject to two observables: the first is an enumerable of the

1 Chapter 1 introduced the concept that everything is a stream.

Listing 7.4 The wrong way to merge observables

Creates a subject and
subscribes an observer

Fetches a collection of
messages from the database

Creates an observable of messages
that emits messages in real time

 do it.
erge
d. Converts the collection to an observable

that synchronously emits all the
messages to the subject subscribed
to it and publishes its completeness

Subscribes the subject (because the previous
observable already completed, none of this
observable’s notifications will be observed)
.store/books/9781617293061

https://itbook.store/books/9781617293061

163Multicasting with subjects

www.itbook.st
items that the database loads (and transforms to the observable), and the second is
the observable of the messages received in real time. This creates a simple implemen-
tation of a merge; however, the correct way to implement the merge is by using the
Merge operator.

 The first observable is created from a finite collection of messages because a finite
number of messages are stored in the database. The moment the subject subscribes to
it, all the messages are synchronously emitted, and then the OnCompleted method is
called on Subject.

 Calling the OnCompleted method at this point means the subject discards any
message emitted afterward. This makes the subscription to the second observable use-
less, as it has no effect.

TIP As a general rule, use subjects (of any kind) with caution, and make sure
you’re not reinventing the wheel; instead, use the built-in Rx operators.

One problem with Subject<T> you may encounter is that if the source observable
emits a value before an observer subscribes, this value will be lost. This is specifically
problematic if the source always emits only a single notification. Luckily, AsyncSub-
ject provides a remedy for those cases.

7.1.2 Representing asynchronous computation with AsyncSubject

You can add inner behavior to the way subjects handle source notifications. Async-
Subject<T> adds logic to your code that fits nicely with asynchronous emissions.
This is useful when the source observable might complete before the observer has a
chance to subscribe to it, as shown in figure 7.4. This behavior is often seen when deal-
ing with concurrent applications, where order of execution can’t be predicted.

Figure 7.4 AsyncSubject emits only the last value to current and future observers.

After source observable completionBefore source observable completion

Observer

Observer

Observer

Last notification Last notificationFirst notification

Async subject

value: ?

Async subject

value:
:
:

ore/books/9781617293061

https://itbook.store/books/9781617293061

164 CHAPTER 7 Controlling the observable temperature

T
th

no
tifies

d

www.itbook
Internally, AsyncSubject stores the most recent value so that when the source
observable completes, it emits this value to current and future observers. For example,
you can use AsyncSubject inside Rx to convert Task and Task<T> into observables.
Listing 7.5 shows the conceptual implementation of this conversion. The Rx imple-
mentation for the ToObservable operator is different and includes performance
optimizations and edge-case handling.

 The code shows how to create an AsyncSubject and redirect each possible com-
pletion status for the task to the observable notifications. Even though the task is com-
pleted, the subject emits the notification to the observer.

var tcs = new TaskCompletionSource<bool>();
var task = tcs.Task;

AsyncSubject<bool> sbj = new AsyncSubject<bool>();
task.ContinueWith(t =>
{
 switch (t.Status)
 {
 case TaskStatus.RanToCompletion:
 sbj.OnNext(t.Result);
 sbj.OnCompleted();
 break;
 case TaskStatus.Faulted:
 sbj.OnError(t.Exception.InnerException);
 break;
 case TaskStatus.Canceled:
 sbj.OnError(new TaskCanceledException(t));
 break;
 }
} ,TaskContinuationOptions.ExecuteSynchronously);
tcs.SetResult(true);
sbj.SubscribeConsole();

The program output shows that even though the Task completed before the observer
subscribed, the observer is notified of the result:

- OnNext(True)
- OnCompleted()

Keep in mind that AsyncSubject emits only one value, and only after the source
observable completes. Sometimes, however, you’ll want to emit notifications as they
come and preserve the ability to cache the latest value for future observers, as Async-
Subject does. For that, you need to use BehaviorSubject.

Listing 7.5 Converting Task<T> to an observable by using AsyncSubject

Creates a Task from a
TaskCompletionSource that
you can control in the code

If the Task completes
successfully, emits its result
and then completes

akes the exception
at was thrown and
tifies the observers

If the Task is canceled, no
the observers with a
TaskCanceledException

Sets the continuation to
work on the same threa
as the completed Task

Sets the Task to completion
before the observer subscribes
.store/books/9781617293061

https://itbook.store/books/9781617293061

165Multicasting with subjects

t.If

co
re

www.itbook.st
7.1.3 Preserving the latest state with BehaviorSubject

The type BehaviorSubject<T> is useful when you need to represent a value that
changes over time, such as an object state. Say you need to store an object’s possible
states (PreLoad, Loaded, Rendering, and so forth).

 Every observer that subscribes to BehaviorSubject receives the last value and all
subsequent notifications, as shown in figure 7.5. Therefore, when creating an instance
of BehaviorSubject, you pass an initial value (a default). You can also read the last
(or initial) value through the Value property that BehaviorSubject exposes, mak-
ing it ideal as a backing field for a state property that allows change notifications.

Figure 7.5 BehaviorSubject represents a value that changes over time.
Observers receive the last (or initial) value and all subsequent notifications.

This example uses BehaviorSubject to maintain the state of the network connectiv-
ity while still making changes in the connectivity observable:

BehaviorSubject<NetworkConnectivity> connection =
 new BehaviorSubject<NetworkConnectivity>(
 NetworkConnectivity.Disconnected);
 connection.SubscribeConsole("first");
//After connection
connection.OnNext(NetworkConnectivity.Connected);
connection.SubscribeConsole("second");
Console.WriteLine("Connection is {0}", connection.Value);

Observer

Observer

Observer

Behavior
subject

value: default
:
:

Creates a BehaviorSubject that represents the
connectivity state and initializes as Disconnected If an observer subscribes

before a connection is made,
the subscriber receives the

Disconnected value.

Emits a notification
with the Connected
value which is cached
inside BehaviorSubjec another observer subscribes after a

nnection is made, the subscriber
ceives the cached Connected value.

Shows the last emitted or
initialized BehaviorSubject

value through the Value
ore/books/9781617293061

https://itbook.store/books/9781617293061

166 CHAPTER 7 Controlling the observable temperature

www.itbook
Running this example shows this output:

first - OnNext(Disconnected)
first - OnNext(Connected)
second - OnNext(Connected)
Connection is Connected

BehaviorSubject keeps a cache of one value only (the last one). For more than one
value, use ReplaySubject.

7.1.4 Caching the sequence with ReplaySubject

ReplaySubject<T> is a subject that holds a cache of the notifications it observes
inside an inner buffer, as shown in figure 7.6.

Figure 7.6 ReplaySubject broadcasts each notification to all subscribed
and future observers, subject to buffer trimming policies.

ReplaySubject lets you, for example, store notifications and replay them for various
observable pipelines that you’re testing, and compare the results to see which is the
best. To prevent unwanted memory leaks, you can control the caching policy that lim-
its the buffer size, time, or both.

 Listing 7.6 shows how to limit ReplaySubject by time and size. This example
uses Rx with a health sensor. Like Microsoft Band,2 the client application connects to
the sensor when started, but the user can add a heart-rate parameter to the UI later.
To display a nice graph, you want to keep the last 20 readings from the last 2 minutes.

2 A repository that adds Rx support to Microsoft Band can be found at GitHub (https://github.com/Reactive-
Extensions/RxToBand).

Observer

Observer

Observer

Replay
subject

values:

:
:

.store/books/9781617293061

https://github.com/Reactive-Extensions/RxToBand
https://github.com/Reactive-Extensions/RxToBand
https://itbook.store/books/9781617293061

167Multicasting with subjects

www.itbook.st

IObservable<int> heartRate = ...
ReplaySubject<int> sbj = new ReplaySubject<int>(bufferSize: 20,
 window: TimeSpan.FromMinutes(2));

heartRate.Subscribe(sbj);

// After the user selected to show the heart rate on the screen)
sbj.SubscribeConsole("HeartRate Graph");

For the heart rate, I simulated five readings (70–74) and, instead of displaying a
graph, I printed them onscreen:

HeartRate Graph - OnNext(70)
HeartRate Graph - OnNext(71)
HeartRate Graph - OnNext(72)
HeartRate Graph - OnNext(73)
HeartRate Graph - OnNext(74)
HeartRate Graph - OnCompleted()

Like everything that involves caching in software, you should be aware of the memory
footprint it leaves and the cache invalidation you use. There’s no way to manually
clean the cache that ReplaySubject contains (nor access it and read it), so pay spe-
cial attention when you use the unbounded version of ReplaySubject. You can free
the cache’s memory only by disposing of ReplaySubject.

 Next, we’ll talk about guidelines and best practices for subjects.

7.1.5 Hiding your subjects

You should be aware of a risk when working with subjects: it’s easy to lose control of
them. Suppose you have a class that holds an inner subject and then exposes it when a
property returns an observable, as this example shows:

class BankAccount
{
 Subject<int> _inner = new Subject<int>();

 public IObservable<int> MoneyTransactions { get { return _inner; } }
}

Although you expose the IObservable type only, the encapsulation can still be bro-
ken. That’s because it’s possible for a hostile or inexperienced developer to cast the
observable back to a subject, as in this example:

var acct = new BankAccount();
acct.MoneyTransactions.SubscribeConsole("Transferring");

Listing 7.6 Limiting the ReplaySubject cache by time and size

Gets an observable of the heart
rate from Microsoft Band

Creates ReplaySubject
with a buffer size of 20

and notifications
cached at 2 minutes

Subscribes the subject
when the application starts

If the user displays the heart rate onscreen,
subscribes an observer to receive the cached

readings and all the ones that follow

Returns the
subject instance

Makes a regular subscription
as the class author intended
ore/books/9781617293061

https://itbook.store/books/9781617293061

168 CHAPTER 7 Controlling the observable temperature

www.itbook
var hackedSubject = acct.MoneyTransactions as Subject<int>;

hackedSubject.OnNext(-9999);

After casting back to Subject (or ISubject), the code can now emit notifications
from the outside. This will cause confusion and unwanted bugs.

HOW TO PROTECT FROM OUTSIDE EMISSIONS

Your subject was compromised because you returned an inner object that has accessi-
ble methods. To fix that, you need to return a different object—one that won’t reveal
the ability to reach your observers even by accident.

 For that purpose, Rx provides the AsObservable operator. AsObservable cre-
ates a proxy that wraps your subject and exposes only the IObservable interface, so
the observer can still subscribe, but no code can cast the observer to a subject, and no
code can access the observers. This is demonstrated in figure 7.7.

Figure 7.7 Instead of exposing your subject, use the AsObservable
operator to create a proxy that hides the inner subject.

The following example proves that the observable returned by the AsObservable
operator (the proxy) can’t be cast to a subject:

Subject<int> sbj = new Subject<int>();
var proxy = sbj.AsObservable();
var subject = proxy as Subject<int>;
var observer = proxy as IObserver<int>;
Console.WriteLine("proxy as subject is {0}",subject == null
 ? "null"
 : "notnull");
Console.WriteLine("proxy as observer is {0}",observer == null
 ? "null"
 : "not null");

A hostile casting
of the observable

Your encapsulation is broken, and
all the account money is taken.

Subject

AsObservable Observer

Observer

Observer

:
:

.store/books/9781617293061

https://itbook.store/books/9781617293061

169Introducing temperature: cold and hot observables

www.itbook.st
This, of course, prints the following:

proxy as subject is null
proxy as observer is null

Subject plays a big role in Rx operators and is a powerful tool if used correctly. Unfor-
tunately, Subject can be used incorrectly. The next section provides a few guidelines
that can help you decide whether Subject is the right object for you to use.

7.1.6 Following best practices and guidelines

One of the areas that causes a lot of debate in the Rx world is whether subjects are
good or bad, and if using them is right or wrong. As Erik Meijer once said, “Once you
start seeing yourself using Subject, something is wrong. Because subjects are stateful
things.”3

 But let’s set the record straight: subjects aren’t bad and, when used correctly, can
be useful indeed. They’re used extensively inside the Rx code itself. It’s true, however,
that some developers use subjects when they don’t need them. So when should you
use a subject and when should you avoid them? The following list contains the points
you should consider:

 Use the built-in factory methods such as Observable.Create whenever possi-
ble, instead of using a subject. Use a subject only if no suitable built-in factory
method exists.

 Use a subject only if the source of the notifications is local (your code raises the
notifications and not an external source); for example, to create a notifying
property with BehaviorSubject.

 Use a subject for controlling an observable’s temperature (as you’ll learn next).
 Use a subject when creating an operator of your own that needs a notification’s

hub.
 Don’t expose subjects; use AsObservable to prevent that from happening.

The important thing to remember is that before you create an operator, you should
always check whether an operator that does what you intended to write by yourself
already exists in Rx.

 Dave Sexton wrote a wonderful blog post about the correct use of subjects that
drills down into these guidelines (http://mng.bz/Pv9). I recommend reading it after
you read the next section, where I’ll show one area that depends on subjects for its
existence—controlling the observable temperature.

7.2 Introducing temperature: cold and hot observables
It may sound funny, but observables have a notion of temperature. Observables can be
cold or hot, and each has different effects on your applications. A cold observable is
passive and emits only when the observer subscribes; for each observer, a complete

3 “RX: Reactive Extensions for .NET,” PDC 2009, http://mng.bz/3qu4, and Erik Meijer on Twitter, http://
mng.bz/Weiq.
ore/books/9781617293061

http://davesexton.com/blog/post/To-Use-Subject-Or-Not-To-Use-Subject.aspx
http://mng.bz/3qu4
http://mng.bz/Weiq
http://mng.bz/Weiq
https://itbook.store/books/9781617293061

170 CHAPTER 7 Controlling the observable temperature

www.itbook
sequence is generated. A hot observable is active and emits regardless of the observers.
All the observers of the hot observable will observe the same emissions, so we say that
the items are shared. Observables can also move from one temperature to the other
with the techniques you’ll learn in this section that will help make your observable
queries predictable. Figure 7.8 summarizes the differences between hot and cold
observables.

7.2.1 Explaining cold and hot observables

To understand the difference between hot and cold observables, I created the follow-
ing simple program. It creates an observable that emits two string values with a short
delay between them. Look at the following example and try to predict the output:

var coldObservable =
 Observable.Create<string>(async o =>
 {
 o.OnNext("Hello");
 await Task.Delay(TimeSpan.FromSeconds(1));
 o.OnNext("Rx");
 });

coldObservable.SubscribeConsole("o1");
await Task.Delay(TimeSpan.FromSeconds(0.5));
coldObservable.SubscribeConsole("o2");

Many developers new to Rx find it surprising that the output of this small program
shows the message of both observers intertwined:

o1 - OnNext(Hello)
o2 - OnNext(Hello)
o1 - OnNext(Rx)
o1 - OnCompleted()
o2 - OnNext(Rx)
o2 - OnCompleted()

Observer

Observer

Observer

Observer

Subscription

Subscription

Subscription

Observer
Cold observable Hot observable

Observer

Figure 7.8 A cold observable is passive and starts emitting only when an observer subscribes.
A hot observable is active, and its emissions are shared among all the observers.

Emit the words Hello
and Rx with a 1-second
delay between the words

Subscribes two observers
with a half-second delay
between the subscriptions
.store/books/9781617293061

https://itbook.store/books/9781617293061

171Heating and cooling an observable

www.itbook.st
You can see that the second observer receives the message Hello even though it sub-
scribes after the first observer receives it.

 For each observer that subscribes, the observable begins its work from the start and
generates the entire sequence of notifications for that observer. You can also say that
the observable isn’t running until an observer subscribes to it. Those characteristics
are typical for cold observables.

7.2.2 Cold observable

Here’s my more formal definition of a cold observable:

A cold observable is an observable that starts emitting notifications only when an observer
subscribes, and each observer receives the full sequence of notifications without sharing them
with other observers.4

Most of the observables you’ve created thus far in this book are cold observables.
When you use the operators Create, Defer, Range, Interval, and so on, you get an
observable that’s cold. From the observer’s standpoint, if the observable it subscribes
to is cold, then the observer can be certain that it hasn’t missed any notifications.

7.2.3 Hot observables

Here’s my formal definition of a hot observable:

A hot observable is an observable that emits notifications regardless of its observers (even if
there are none). The notifications emitted by hot observables are shared among their observers.

The classic example of a hot observable is the one you create from an event, such as a
mouse-move event. The mouse movement’s observable sequence is “live,” so even if
there’s no subscribed observer, the mouse movements still happen. And when there
are multiple observers, they all get notified of the same mouse movement.

 From the observer standpoint, if the observable it subscribes to is hot, then the
observer might have already missed some notifications.

 When learning about observable temperatures, it’s typical to wonder whether the
temperature is fixed or can somehow change. The next section answers just that.

7.3 Heating and cooling an observable
Now that you know what cold and hot mean in terms of observables, the next step is to
figure out the ways to switch from cold to hot, or from hot to cold. In this section,
you’ll learn how and why you would want to perform the transformation from one
temperature to the other.

7.3.1 Turning cold into hot

Suppose you want to create a few queries over an observable; for example, you want to
filter certain elements with a few filter functions, and observe the ones that survived

4 This doesn’t mean the data carried inside the notification can’t reference the same object (thus making them
shared); rather, the notifications that carry the data are independent from one another.
ore/books/9781617293061

https://itbook.store/books/9781617293061

172 CHAPTER 7 Controlling the observable temperature

www.itbook
from each filter in a specific way. As a good practice, you’d probably encapsulate each
observation (per each filter) in its own query, possibly in its own method. As mentioned
previously, cold observables don’t share their emissions between their subscribers, so
multiple subscriptions, as in the case of the multiple queries, to a cold observable will
result in different streams of elements for each one—shown as cannons in figure 7.9.
The elements aren’t shared and might be different in their values. This is exactly like
calling a method twice, which could result in two different return values.

 To overcome the possibility that multiple subscriptions will end up with different
elements observed by each observer, you need to turn the cold observable into a hot
observable, so that the observers will subscribe to the hot one instead, and you can
then guarantee they’ll observe the same notifications. You have to make sure that
turning an observable from cold to hot won’t cause you to lose any notifications.
You’ll have to take that into account inside your process, as you’ll see next.

 Conceptually, all it takes to make a cold observable hot is putting a proxy between
the cold observable and the observers, and letting it broadcast all the notifications to
the observers. Luckily, not so long ago, you learned about excellent types that can be
programmed as those proxies: subjects. The process of turning an observable from
cold to hot is shown in figure 7.10.

 To turn a cold observable into a hot observable:

1 Create the subject that will be placed in front of the cold observable. The sub-
ject can now accept subscriptions from observers interested in the notifications
of the cold observable.

2 Subscribe the observers that are interested in the notifications of the cold
observable to the subject.

3 Subscribe the subject, as an observer, to the cold observable. This causes the cold
observable to start emitting its sequence of notifications, which are broadcast by

Observer

Subscription

Observer
Cold observable

Observer

Subscription

Subscription

Filter

Transform

Filter

< 9

> 5

Figure 7.9 Even though each observer subscribes to the same observable, each observer
receives a different sequence and the operator processes different elements.
.store/books/9781617293061

https://itbook.store/books/9781617293061

173Heating and cooling an observable

www.itbook.st
the subject to all of the observers. This is also the way to guarantee that you don’t
lose any notifications from the source observable.

Whenever you create an observable and know there will be more than one observable
pipeline (and observers), you may want to make the observable hot. This may occur,
for example, when you want to model periodic data retrieval from a web service as an
observable and don’t want each observer to initiate different calls to the web service.
Instead, you want to make one call and share the retrieved data with all observers.

 Don’t be scared of this lengthy process. The code you need to write to turn the
cold observable into a hot one is simple. The steps in figure 7.10 correspond to the Rx
operators Publish, Subscribe, and Connect. First, I’ll show the code that uses
those operators and then I’ll explain each operator.

var coldObservable=Observable.Interval(TimeSpan.FromSeconds(1)).Take(5);
var connectableObservable = coldObservable.Publish();

Listing 7.7 Turning a cold observable hot

ObserverObserver

Observer

ObserverObserver

Observer

Cold observable

Cold observable
Connectable
observable

Subject

Cold observable
Connectable
observable

Subject

Cold observable

Publishing

Subscribing observers

Connecting the subject
Connectable
observable

Subject

Hot

1

2

3

Figure 7.10 The steps for turning a cold observable into a hot observable. The
order of the steps is important! After connecting the subject to the cold
observable, data starts flowing and it is sent only once.

Creates a cold observable that emits
five notifications, one per second

Publishes the observable to let multiple
observers share the notifications
ore/books/9781617293061

https://itbook.store/books/9781617293061

174 CHAPTER 7 Controlling the observable temperature

o

www.itbook
connectableObservable.SubscribeConsole("First");
connectableObservable.SubscribeConsole("Second");

connectableObservable.Connect();

Thread.Sleep(2000);
connectableObservable.SubscribeConsole("Third");

This small application creates a cold observable that emits five notifications, one every
second. The application then makes the observable hot by converting it to a
ConnectableObservable (more on that in a moment) and connects it to the source
observable (by calling the Connect operator) after two observers subscribe. Then,
after another 2 seconds, it subscribes another observer.

 The output shows that all notifications are indeed shared between all observers:

First - OnNext(0)
Second - OnNext(0)
First - OnNext(1)
Second - OnNext(1)
Third - OnNext(1)
First - OnNext(2)
Second - OnNext(2)
Third - OnNext(2)
First - OnNext(3)
Second - OnNext(3)
Third - OnNext(3)
First - OnNext(4)
Second - OnNext(4)
Third - OnNext(4)
First - OnCompleted()
Second - OnCompleted()
Third - OnCompleted()

You can see that the same notification values are shared between the observers. A few
new concepts have arisen here, so let’s explore the first one: ConnectableObservable.

7.3.2 Using ConnectableObservable

To turn the cold observable to hot, you need a proxy around it. But you don’t want the
proxy to create a subscription to the cold observable before you finish setting all the
observers you need (otherwise, you might miss some notifications). To help with that,
Rx introduces the connectable observable. ConnectableObservable implements
the IConnectableObservable interface and subscribes to the source observable
only when explicitly told to do so by calling the Connect method.

interface IConnectableObservable<T> : IObservable<T>
{
 IDisposable Connect();
}

Listing 7.8 The IConnectableObservable interface

Subscribes two observers; both will
share the same notifications.

Connects the inner subject
to the source observable

Subscribes a third observer that will share ensuing
notifications with the previous observers

Subscribes the observable wrapper t
its source and returns a disposable
object representing the subscription
.store/books/9781617293061

https://itbook.store/books/9781617293061

175Heating and cooling an observable

www.itbook.st
IConnectableObservable is an observable by itself and can (and will) have observ-
ers. As long as the connection is established, all the observers will receive the notifica-
tions from the source observable.

 To get an instance that implements the IConnectableObservable interface,
you need to call the Publish operator on your source observable. The Publish
operator has a few overloads; each overload creates a ConnectableObservable with
some tweaks, as you’ll see next.

7.3.3 Publishing and multicasting

The Publish operator creates a ConnectableObservable wrapper around the
source observable. This is a required step for allowing multicasting of the observable
notifications. The Publish operator has a few overloads, so let’s examine those one
by one.

SIMPLE PUBLISH

This is the simplest overload:

IConnectableObservable<TSource> Publish<TSource>(
 this IObservable<TSource> source)

It creates a ConnectableObservable that holds a Subject<T> internally. So, from
the moment you Connect it, all the observers share the same notifications. These are
the code steps to follow:

var coldObservable= ...
var connectableObservable = coldObservable.Publish();

connectableObservable.Subscribe(...);
:
connectableObservable.Subscribe(...);

connectableObservable.Connect();

In most cases, you’d like to subscribe all observers before calling Connect, so no
observer will miss a notification; but that’s not always the case. In case new observers
subscribe later, it’s important for you to note that they’ll receive only the next notifica-
tion that follows their subscription.

 But you can tweak this behavior so that an observer will immediately receive the
latest notification when it subscribes. This is done using the following overloads of
Publish, which accept an initial value and create the ConnectableObservable
with an inner BehaviorSubject<T>:

IConnectableObservable<TSource> Publish<TSource>(
 this IObservable<TSource> source,
 TSource initialValue)

Publishes a cold observable by creating
a ConnectableObservable that wraps it
and holds a single subscription to it

Subscribes all observers interested
in the shared notifications from
the source observable

Subscribes the ConnectableObservable
to the source observable
ore/books/9781617293061

https://itbook.store/books/9781617293061

176 CHAPTER 7 Controlling the observable temperature

.

www.itbook
Figure 7.11 Publishing an observable with an initial value. Observers
receive either the last value that was emitted from the source observable
or the initial value, if no notification was yet emitted.

The inner BehaviorSubject<T> this overload creates for the Connectable-
Observable is initialized with an initial value, so every observer that subscribes
before Connect was called will receive this value. Every observer that subscribes after
Connect was called will receive the last value that was emitted from the source observ-
able or the initial value, if no notification was yet emitted. This behavior is shown in
figure 7.11

REUSING THE PUBLISHED OBSERVABLE TO CREATE A NEW OBSERVABLE

Things get a little interesting (and complex) when you need to combine the cold
observable multiple times to create new observables. The following Publish overload
is useful in these cases:

IObservable<TResult> Publish<TSource, TResult>(
 this IObservable<TSource> source,
 Func<IObservable<TSource>, IObservable<TResult>> selector)

Notice that this overload returns an observable and not a ConnectableObservable.
With this overload, you can easily create observables that reuse the source observable.
Consider the next example in which you want to use the Zip operator on an observable
with itself. The Zip operator takes two (or more) observables and merges them by call-
ing a function on the corresponding notifications. The normal expectation that devel-
opers have when they use the Zip operator on an observable with itself is that the two
function arguments will be identical. This example shows why this expectation is false:

int I = 0;
var numbers = Observable.Range(1, 5).Select(_ => i++);

var zipped = numbers
 .Zip(numbers, (a, b) => a + b)
 .SubscribeConsole("zipped");

Source observable

Published observable

Observer1

subscribe

subscribe

initial

Observer2

The cold source
observable

Selector function that can use the multicasted source
sequence as many times as needed. Subscriptions made

inside are deferred until the real subscription takes place.

Emits a sequence of
numbers but causes a side
effect on a shared variable

Because the “numbers” observable is cold,
this results in the sequence of values in the
form I + (i + 1) and not i + i.
.store/books/9781617293061

https://itbook.store/books/9781617293061

177Heating and cooling an observable

www.itbook.st
In the example, you use an observable twice in order to create a new observable by
using the Zip operator. Because the numbers observable is cold, the sequence is gen-
erated twice, and the side effect caused by incrementing the variable i happens twice
per notification. Ultimately, what I did in this example is the same as if I had created
two different observables that happen to use the same variable i and advance it inde-
pendently (causing the side effect to be reflected in the other observable); thus the
function arguments in iteration k will be with the values a = k and b = k + 1. You can
see this effect in the output:

zipped - OnNext(1)
zipped - OnNext(5)
zipped - OnNext(9)
zipped - OnNext(13)
zipped - OnNext(17)
zipped - OnCompleted()

You can publish the source observable by yourself, but then it can be hard to decide
when exactly to call Connect, especially if you want to share the zipped observable. To
solve that, you want to defer Connect until the subscription happens. As the next
example shows, the Publish operator can do this:

var publishedZip = numbers.Publish(published =>
 published.Zip(published, (a, b) => a + b));
publishedZip.SubscribeConsole("publishedZipped");

Now, the numbers observable is published, so the notifications are shared among all
its observers. The same notification will be received both as a and b. The output is

publishedZipped - OnNext(0)
publishedZipped - OnNext(2)
publishedZipped - OnNext(4)
publishedZipped - OnNext(6)
publishedZipped - OnNext(8)
publishedZipped - OnCompleted()

PUBLISHLAST

ConnectableObservables, created by the Publish operator, publishes the notifi-
cations from the source observable until it completes. At that point, Connectable-
Observable completes as well.

 Any observer that was late to subscribe won’t see any values. This is especially bad
when you have an observable that produces a single value, and that’s the value you
need. This source observable might even be a hot observable.

 To help with that, Rx provides the PublishLast operator, which publishes only
the last value of the source observable:

IConnectableObservable<TSource> PublishLast<TSource>(
 IObservable<TSource> source)

= 0 + 1
= 2 + 3
= 4 + 5

Calls the Connect method on the
published numbers observable
ore/books/9781617293061

https://itbook.store/books/9781617293061

178 CHAPTER 7 Controlling the observable temperature

www.itbook
The PublishLast operator works similarly to the Publish operator, but instead of
sharing all notifications from the source observable, the ConnectableObservable it
creates will share only the last notification emitted before the source observable com-
pletes, both for existing observers and future ones. This is similar to working with an
asynchronous type, as you saw earlier in this chapter, and PublishLast will create an
AsyncSubject<T> that’s used internally by the ConnectableObservable. Here’s
an example that shows it in action:

var coldObservable = Observable.Timer(TimeSpan.FromSeconds(5))
 .Select(_ => "Rx");

var connectableObservable = coldObservable.PublishLast();
connectableObservable.SubscribeConsole("First");
connectableObservable.SubscribeConsole("Second");
connectableObservable.Connect();

Thread.Sleep(6000);
connectableObservable.SubscribeConsole("Third");

Running this example shows that the last notification emitted by the source observ-
able was shared among all observers:

First - OnNext(Rx)
First - OnCompleted()
Second - OnNext(Rx)
Second - OnCompleted()
Third - OnNext(Rx)
Third - OnCompleted()

7.3.4 Using Multicast

Both Publish and PublishLast are good for all of the common scenarios in which
you need to heat a cold observable. But if you need more control or need to enforce
policies on an internal subject used inside ConnectableObservable (for example,
setting its buffer size and other configurations), then you need to use the Multicast
operator. Multicast lets you pass the pending subject inside the Connectable-
Observable

IConnectableObservable<TResult> Multicast<TSource, TResult>(
 this IObservable<TSource> source,
 ISubject<TSource, TResult> subject)

Multicast is a powerful low-level operator that’s used to create other operators. All
the Publish versions use Multicast in their implementations. For example, this
implementation from the Rx source code for the Publish overload creates a
BehaviorSubject for ConnectableObservable:

virtual IConnectableObservable<TSource> Publish<TSource>(
 IObservable<TSource> source,
 TSource initialValue)

Simulates an asynchronous operation
that takes a long time to complete

Shares the last value
between all current
and future observers

Subscribes an observer after
the source observable completes
.store/books/9781617293061

https://itbook.store/books/9781617293061

179Heating and cooling an observable

Sub
con

www.itbook.st
{
 return source.Multicast(new BehaviorSubject<TSource>(initialValue));
}

As explained earlier, this Publish overload creates a ConnectableObservable. Every
observer that subscribes to it, after its Connect method is called, will receive the last
value emitted from the source observable or the initial value, if no notification was yet
emitted. The implementation shows that in order to provide this behavior, Behavior-
Subject is used as the underlying subject passed to the Multicast operator.

7.3.5 Managing the ConnectableObservable connection

After you connect ConnectableObservable to the source observable by calling the
Connect method, you get back the subscription object that enables you to discon-
nect it whenever you want. What happens if you reconnect again? What if there are
still observers? What if the observers are no longer there? To find the answers, keep
on reading.

RECONNECTING

You can reconnect ConnectableObservable at any time. Doing so will cause the
subscribed observers to see the notifications again. Reconnecting might be useful
when you want to keep the observers but need to change the original source of the
observable pipeline. For example, if the source observable is a chat server, and you
know that server needs to be replaced, you can reconnect, which will cause the new
server to be picked up again.

var connectableObservable =
 Observable.Defer(() => ChatServer.Current.ObserveMessages())
 .Publish();

connectableObservable.SubscribeConsole("Messages Screen");
connectableObservable.SubscribeConsole("Messages Statistics");
var subscription = connectableObservable.Connect();

//After the application was notified on server outage
Console.WriteLine("—Disposing the current connection and reconnecting--");
subscription.Dispose();
subscription = connectableObservable.Connect();

In this example, the source observable is created using the Defer operator, which
makes it a cold observable and, therefore, every observer shares the connection logic.

Listing 7.9 Reconnecting ConnectableObservable

Creates and publishes an observable
that connects to the current server and

emits the messages coming from it

scribes two observers to the
nectable observable

Connects the connectable
observable to the source
observable to connect to

the server
Disposes of the connection to the servers
without losing the current observers and

reconnects to a new server
ore/books/9781617293061

https://itbook.store/books/9781617293061

180 CHAPTER 7 Controlling the observable temperature

Sub
two

www.itbook
Because you publish it, the connection happens only once, and the notifications are
shared among the observers.

 The observer begins to receive notifications when you call Connect and stops
receiving them when you dispose of the subscription object. When you call Connect a
second time, an underlying connection to the new server is made (because Chat-
Server.Current points to the new server), and the observers receive the messages
coming from it. This is shown in the program output:

Messages Screen - OnNext(Server0 - Message1)
Messages Statistics - OnNext(Server0 - Message1)
Messages Screen - OnNext(Server0 - Message2)
Messages Statistics - OnNext(Server0 - Message2)
Messages Screen - OnNext(Server0 - Message3)
Messages Statistics - OnNext(Server0 - Message3)
--Disposing the current connection and reconnecting--
Messages Screen - OnNext(Server1 - Message1)
Messages Statistics - OnNext(Server1 - Message1)
Messages Screen - OnNext(Server1 - Message2)
Messages Statistics - OnNext(Server1 - Message2)
Messages Screen - OnNext(Server1 - Message3)
Messages Statistics - OnNext(Server1 - Message3)

PERFORMING AUTOMATIC DISCONNECTION

If you dispose of the subscription object while there are still observers, you might see
different results than expected. Moreover, when disposing of the subscription object,
the subscribed observers won’t see any notifications, and you have no way of telling
that the ConnectableObservable is no longer connected.

 If you keep the subscription when there are no observers, you’re wasting expansive
resources, and the source observable will keep pushing notifications for no reason.
The best option is to make an automatic disconnect when there are no more observ-
ers. In addition, you should dispose of the subscription to the source observable.

 To achieve this kind of automatic disconnect, you need to use the RefCount oper-
ator, which manages an inner counter for the number of subscribed observers and
then disposes of the subscription when the count is zero.

 The next example shows how to subscribe two observers to the observable and,
when you unsubscribe them, no more notifications are emitted.

var publishedObservable = Observable.Interval(TimeSpan.FromSeconds(1))
 .Do(x => Console.WriteLine("Generating {0}",x))
 .Publish()
 .RefCount();
var subscription1 = publishedObservable.SubscribeConsole("First");
var subscription2 = publishedObservable.SubscribeConsole("Second");

Listing 7.10 Automatic disconnection with RefCount

Creates an observable that
emits a value every second

Prints a message to the console every
time the observable emits a value

Publishes with a reference count so that when the last
observer unsubscribes, there will be no more notifications

scribes the
 observers
.store/books/9781617293061

https://itbook.store/books/9781617293061

181Heating and cooling an observable

www.itbook.st
Thread.Sleep(3000);
subscription1.Dispose();
Thread.Sleep(3000);
subscription2.Dispose();

As you can see from the following program output, after the second observer unsub-
scribes, no more notifications are emitted:

Generating 0
First - OnNext(0)
Second - OnNext(0)
Generating 1
First - OnNext(1)
Second - OnNext(1)
Generating 2
Second - OnNext(2)
Generating 3
Second - OnNext(3)
Generating 4
Second - OnNext(4)

Press any key to continue . . .

Using RefCount when publishing is a good practice that helps ensure that you’re not
keeping unneeded resources in use. Next you’ll look at the other side of the tempera-
ture scale and see how to “cool” a hot observable to replay its emissions.

7.3.6 Cooling a hot observable to allow replaying

We defined a cold observable as an observable that generates the complete sequence
of notifications for each observer that subscribes to it. Just as when you have a live
broadcast that you want to watch later, it makes sense that if you could somehow
record an observable and replay it later, each observer could subscribe when needed
and be guaranteed to receive the entire recorded sequence. Therefore, you can con-
clude that a recorded observable is a cold observable.

 It’s important to note that if you have a hot observable, you can make it cold only
from the moment you run the conversion. If by the time you make the conversion a
notification is already emitted, you can’t reproduce them.

 To make an observable cold, you need to use the same tools that made a cold
observable hot. The only difference is that, in addition to multicasting notifications as
they happen, you need to store the notifications and replay them when an observer
subscribes. This is what the Replay operator does (shown in figure 7.12), and it has
many overloads to support doing just that. All of the overloads create a Replay-
Subject<T> that you can use inside ConnectableObservable.

Waits 3 seconds before
unsubscribing the first observer

Waits 3 seconds before
unsubscribing the second observer
ore/books/9781617293061

https://itbook.store/books/9781617293061

182 CHAPTER 7 Controlling the observable temperature

Conne
the s
obse

www.itbook

Figure 7.12 Turning a hot observable to a cold observable is necessary when you want to
capture emissions and replay them.

The Replay operator has many overloads that let you constrain both the time and the
number of items to remember and replay. Here’s an example that lets you replay the
last two items for any observer that subscribes:

var publishedObservable = Observable.Interval(TimeSpan.FromSeconds(1))
 .Take(5)
 .Replay(2);
publishedObservable.Connect();
var subscription1 = publishedObservable.SubscribeConsole("First");
Thread.Sleep(3000);
Var subscription2 = publishedObservable.SubscribeConsole("Second");

Running this application shows this output:

First - OnNext(0)
First - OnNext(1)
First - OnNext(2)
Second - OnNext(1)  subscribing the second observable
Second - OnNext(2)
First - OnNext(3)
Second - OnNext(3)
First - OnNext(4)
Second - OnNext(4)
First - OnCompleted()
Second - OnCompleted()

Observer

Subscription

Observer
ReplayHot observable

Observer

Subscription

Subscription

Creates a connectable observable that
replays the last two items

cts to
ource

rvable

Waits 3 seconds before subscribing the second
observable (meaning you missed three values)

Receives the last two values
and all the subsequent ones
.store/books/9781617293061

https://itbook.store/books/9781617293061

183Summary

www.itbook.st
The preceding results show how
the Replay operator caches and
then re-emits notifications from
the source observable. Figure 7.13
shows the marble diagram.

 It’s important to understand the
implications of the operators you
use and how they might make an
observable hot or cold. By using the
operators you’ve seen in this chap-
ter, such as Publish and Replay,
you can control the temperature so that there will be no doubt about the results of the
queries you write, therefore making your code more readable and predictable.

7.4 Summary
In this chapter, you’ve learned the definition of the observable temperature and the
difference between cold and hot observables. You’ve also seen how to control the tem-
perature by using special groups of Rx types called subjects.

 Here are the important points of this chapter:

 A type that’s both an observable and an observer is called a subject.
 Subjects implement the interface ISubject<TSource, TResult>, or

ISubject<T> if the source and result are of the same type.
 Rx provides four built-in subjects: Subject<T>, AsyncSubject<T>, Replay-

Subject<T>, and BehaviorSubject<T>.
 A subject broadcasts the notifications it receives to all its observers.
 Observables have a notion of temperature; they can be cold or hot.
 A cold observable emits the full sequence of notifications when the observer

subscribes.
 A hot observable emits notifications regardless of its observers and may share

the notifications among the observers.
 To make a cold observable hot, you use the Publish and Multicast operators

to create a ConnectableObservable with an inner subject.
 Calling the Connect method on the ConnectableObservable subscribes it

to the source observable, and the notifications are shared with all observers.
 To automatically unsubscribe the ConnectableObservable when there are

no more observers, use the RefCount operator.
 The Replay operator renders a hot observable cold by replaying the notifica-

tions to the observers. You can limit the amount of memory used for replaying
by specifying the number of items and/or time to keep the items in memory.

In the next chapter, you’ll deepen your knowledge of the querying operators Rx has
to offer.

Observable

Observer1 0

Observer2

1

1

2

2

3

3

4

4

Replay(2)

0 1 2 3 4

subscribe

subscribe

Figure 7.13 Marble diagram showing the result of the
Replay operator with a buffer size of two items
ore/books/9781617293061

https://itbook.store/books/9781617293061

Tamir Dresher

M
odern applications must react to streams of data such
as user and system events, internal messages, and sen-
sor input. Reactive Extensions (Rx) is a .NET library

containing more than 600 operators that you can compose
together to build reactive client- and server-side applications
to handle events asynchronously in a way that maximizes
responsiveness, resiliency, and elasticity.

Rx.NET in Action teaches developers how to build event-driven
applications using the Rx library. Starting with an overview of
the design and architecture of Rx-based reactive applications,
you’ll get hands-on with in-depth code examples to discover
fi rsthand how to exploit the rich query capabilities that Rx
provides and the Rx concurrency model that allows you to
control both the asynchronicity of your code and the process-
ing of event handlers. You’ll also learn about consuming event
streams, using schedulers to manage time, and working with
Rx operators to fi lter, transform, and group events.

What’s Inside
● Introduction to Rx in C#
● Creating and consuming streams of data and events
● Building complex queries on event streams
● Error handling and testing Rx code

Readers should understand OOP concepts and be comfortable
coding in C#.

Tamir Dresher is a senior software architect at CodeValue and
a prominent member of Israel’s Microsoft programming
community.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/rx-dot-net-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Rx.NET IN ACTION

.NET DEVELOPMENT

M A N N I N G

“Keep a copy of this
book handy to put

Rx.NET into action!”
—From the Foreword by

Erik Meijer, Inventor of Rx

“An excellent, deep
journey towards true event-

driven programming.”
—Stephen Byrne, Dell

“Thorough and
comprehensive, with

 hundreds of code examples.”—Edgar Knapp
ISIS Papyrus Software

“An essential resource
to take your reactive

programming skills to the
 next level. A must-read.”

—Rohit Sharma, Morgan Stanley

SEE INSERT

www.itbook.store/books/9781617293061

https://itbook.store/books/9781617293061

	Dresher-RxNET-front-sample
	SampleChapterPages7
	Ch-07
	Dresher-RxNET-ebook-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

