

 SAMPLE CHAPTER
 www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

The Tao of Microservices

by Richard Rodger

Chapter 2

Copyright 2018 Manning Publications

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

brief contents

PART 1 BUILDING MICROSERVICES ..1

1 ■ Brave new world 3

2 ■ Services 34

3 ■ Messages 65

4 ■ Data 99

5 ■ Deployment 130

PART 2 RUNNING MICROSERVICES ..171

6 ■ Measurement 173

7 ■ Migration 203

8 ■ People 228

9 ■ Case study: Nodezoo.com 246

v

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

Services

This chapter covers
 Refining the concept of microservices

 Exploring principle variants of the microservice
architecture

 Comparing monoliths versus microservices

 Using a concrete study to explore microservices

 Thinking of microservices as software components

To understand the implications and trade-offs of moving to a new architecture, you
need to understand how it differs from the old way of doing things, and how the
new way will solve old problems. What are the essential differences between mono
lithic and microservice architectures? What are the new ways of thinking? And how
do microservices solve the problems of enterprise software development?

 A microservice is a unit of software development. The microservice architecture
provides a mental model that simplifies the world at a useful level. The proposition
of this book is that microservices are the closest thing yet to ideal software compo
nents. They’re perfectly sized artifacts for fine-grained deployment into production.
They’re easily measured to ensure correct operation. The microservice attitude is
the belief that these three aspects of the architecture deliver a fast, practical, efficient

34

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

35 Defining microservices

way to create business value with software. Let’s dig into the details to see how this works
in practice.

2.1 Defining microservices
The term microservice is inherently fuzzy, as a social effect of the increasing popularity
of the architecture. When we use the term, we should be specific in our meaning.
Much of the writing on microservices shares the same attitude toward software devel
opment but uses differing definitions of the key term. Enthusiasm for weak defini
tions, in turn, limits our thinking and provides an easy target for criticism from vested
interests. Let’s examine a sample of the proposed definitions:

 Microservices are self-contained software components that are no more than 100 lines of
code. This definition captures the desire to keep microservices small and main
tainable by one developer, rather than a team. It’s an appeal to the idea that
extreme simplicity has extreme benefits: 100 lines of code can be quickly and
confidently reviewed for errors.1 The small body of code is also inherently dis
posable in that it can easily be rewritten if necessary. These are desirable quali
ties for microservices, but not exhaustive. For example, the questions of
deployment and interservice communication aren’t addressed. The fundamen
tal weakness in this definition is the use of an arbitrary numerical constraint
that falls apart if we change programming languages. As we consider other defi
nitions, let’s retain the desire for code small enough to verify easily and to
throw away if need be.

 Microservices are independently deployable processes communicating asynchronously
using lightweight mechanisms focused on specific business capabilities running in an
automated but platform- and language-independent environment, or words to that
effect. On the opposite end of the spectrum are catchall general definitions.
These definitions contain a laundry list of desired attributes. Are the attributes
ordered by importance? Are they exhaustive? Are they well defined? General
definitions give you a feeling that you’re in the right galaxy, but they don’t pro
vide directions to get to a microservice system. They invite endless semantic
debate over the definitions of the attributes. What, for example, is a truly light
weight communication mechanism?2 What we can take from these definitions is
a working set of ideas that can be used in practice but that don’t by themselves
provide much clarity.

1		 C. A. R. Hoare, the inventor of the quicksort algorithm, in his 1980 Turing Award Lecture, famously said,
“There are two ways of constructing a software design: One way is to make it so simple that there are obviously
no deficiencies and the other way is to make it so complicated that there are no obvious deficiencies.”

2		 It’s impossible to win a war of definitions. As soon as you provide a conclusive counter-example, your oppo
nent denies that the counter-example is actually an example of the subject under discussion. The British phi
losopher Antony Flew provides the canonical example of this tactic, which can be paraphrased as follows:
Robert: “All Scotsmen wear kilts!”; Hamish: “My uncle Duncan wears trousers.”; Robert: “Yes, but no true Scots
man does.”

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

36		 CHAPTER 2 Services

 Microservices are mini web servers offering a small REST-based HTTP API that accepts
and returns JSON documents. This is certainly a common implementation. And
these are microservices. But how big are they? And how does it address all the
other concerns, such as independent deployability? This definition is both too
prescriptive on some questions and not prescriptive enough on others. It’s defi
nition by archetype. Few would disagree that these are microservices. And yet it
excludes most of the interesting microservice architectural patterns, particu
larly those that take advantage of asynchronous messages. This definition is not
only weak but dangerous. Empirical evidence from the field suggests it often
leads to tightly coupled services that need to be deployed together.3 The take
away from this failed definition is that limiting ourselves to thinking only in
terms of web-service APIs prevents us from appreciating the radical possibilities
that a wider concept can bring. A definition should provide power to our think
ing, not constrain it.

 A microservice is an independent software component that takes no more than one itera
tion to build and deploy. In this definition, the focus is on the human side of the
architecture. The phrase independent software component is suggestive and wide
ranging, so this definition also attempts to be inclusive of implementation strat
egies. Microservices are software components, using the common understand
ing of the term.4 This definition expresses the desire for microservices to
indeed be “micro” by limiting the resources available to write them: one itera
tion is all you get. It also gives a nod to continuous delivery—you have to be
able to deploy within an iteration. The definition is careful to avoid mention of
operating system processes, networking, distributed computing, and message
protocols; none of these are essential properties.5

We must accept that we aren’t school children, but professional software developers,
and we live in the messy world of grownups. There’s no tidy definition of microser
vices, and any definition we choose restricts our thinking. Rather than seek a defini
tion that’s dependent on numerical parameters, or attempts to be exhaustive, or is too
narrow, we should aim to develop a conceptual framework that’s generative. The con
cepts within the framework generate an accurate understanding of the inherent trade-
offs of the microservice architecture. We then apply these concepts to the context at
hand to deliver working software.6

3		 In my previous life as a consultant, I directed my poor teams to build many large systems this way, and we tied
ourselves in the most wonderful Gordian knots.

4		 Software components are self-contained, extensible, well-defined, reusable building blocks.
5		 Erlang processes are most certainly microservices or, perhaps more correctly, nanoservices! You’re strongly

advised to read Joe Armstrong’s Ph.D. thesis for the full details: “Making Reliable Distributed Systems in the
Presence of Software Errors,” Royal Institute of Technology, 2003, http://erlang.org/download/
armstrong_thesis_2003.pdf.

6		 Microservices are a subject worthy of an entire book, not a trite summary definition. But then, I would say that.

www.itbook.store/books/9781617293146

http://erlang.org/download/armstrong_thesis_2003.pdf
http://erlang.org/download/armstrong_thesis_2003.pdf
http://erlang.org/download/armstrong_thesis_2003.pdf
https://itbook.store/books/9781617293146

37 Case study: The digital edition of a newspaper

2.2 Case study: The digital edition of a newspaper
Most chapters in this book use a case study to provide practical examples of the con
cepts under discussion. The studies are software systems that need to deliver a range
of functionalities; in each chapter, we’ll explore how the microservice architecture
can deliver those functionalities. For each system, we’ll focus on a subset of the func
tionality that’s relevant to the topic of the chapter. Chapter 9 is a full case study,
including code, that gives you a practical example of a microservice system using the
architectural techniques developed in this book.

Our study in this chapter is the digital edition of a newspaper.7 Let’s break down
this system, starting from the business goals. These generate requirements that we’ll
specify informally. Over the course of the chapter, we’ll look at some partial imple
mentations of these informal requirements, using microservices.

2.2.1 The business goals

The newspaper offers both free and paywalled content. To view the paywalled content,
users need to subscribe. Revenue is driven by both subscriptions and advertising. The
advertising is content- and user-targeted to increase relevance. To increase advertising
revenue, user time on the site should be maximized.

 The newspaper staff using the site should be able to publish content on a contin
uous basis using a content management system. They should be able to review ana
lytics pertaining to the content they’ve written so that they can get feedback on their
effectiveness.

 The newspaper is delivered via website, tablet, and mobile app versions to maxi
mize readership access. Article content, including paywalled content, should be
search engine optimized to gain the widest potential readership.

2.2.2 The informal requirements

Using these goals, you can outline a list of informal requirements. These require
ments will drive your implementation decisions:

 The content consists of articles, each of which has its own separate page.
 There are also special article-listing pages, such as the front page, and special-

interest sections.
 The website, tablet, and app versions should all use a common REST API, pro

vided by the server side of the system.
 The website should deliver static versions of primary content for search engines

to index, but it can load secondary content dynamically.
 The system needs to have a concept of users that includes both readers and

authors, with appropriate rights for different levels of access.

As a mental model, think The New York Times. It isn’t averse to a microservice or two. 7

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

38		 CHAPTER 2 Services

 Content on pages needs to be targeted to the current user by matching content
to the user’s profile using business rules or optimization algorithms.

 The site is under continuous development, because online newspapers are in
fierce competition, so new features need to be added quickly. These include
special short-term mini apps, such as special interactive content for elections.

2.2.3 A functional breakdown

From a purely functional perspective, and without reference to any architecture
choice, these requirements already allow you to think about how to implement the
newspaper system. Here are some of the things the system should do:

 Handle article data and have the expected read, write, and query operations
 Construct content pages and provide a cache for scaling
 Handle user accounts: login, logout, profiles, and so on
 Deliver targeted content and map user identities to appropriate articles

These functions suggest some software components you should build. Let’s pretend
they’re object-oriented classes for now:

 ArticleHandler—Provides article data operations
 PageBuilder—Generates pages
 PageCache—Caches pages
 UserManager—Manages users
 ContentMapper—Decides how to target content

You can even draw the possible dependencies between these components, as shown in
figure 2.1.

 Are these the right components? Are these the right dependencies? It’s too soon to
tell. Are these microservices? Perhaps. The microservice architecture must provide an
analytical process for deciding what microservices to build. Somehow, you have to get
from the informal requirements to the specific set of services in production. To start
developing this process, let’s take a closer look at the properties of microservice archi
tectures and the options for constructing them.

User

PageBuilder

UserManager

PageCache

ArticleHandler

ContentMapper

Figure 2.1 A possible
component architecture for
the newspaper system

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

39 Microservice architectures

2.3 Microservice architectures
If we accept that microservices should communicate with each other using messages,
and we want them to be independent, that implies that microservices must have a
well-defined communication interface. Discrete messages are the most natural mecha
nism for defining this interface.8

 Understanding that interservice communication can be specified in terms of mes
sages leads to a more powerful way to understand the dynamic nature of microser
vices. At one level, you need to understand which services talk to which other services.
In practice, this understanding is less useful than you may think. As the number of ser
vices grows, the number of connections does too, and it becomes difficult to visualize
the full set of interactions. One way to mitigate this complexity is to take a message-
focused approach to describing the system. Consider that services and messages are
two aspects of the same structure. It’s often more useful to think about a microservice
system in terms of the messages that pass through the system, rather than the services
that respond to them. Taking this perspective, you can analyze the patterns of message
interactions, find common patterns, and generate microservice architecture designs.

2.3.1 The mini web servers architecture

In the mini web servers architecture, microservices are nothing more than web servers
that offer small REST interfaces. Messages are HTTP requests and responses. Message
content is JSON or XML documents, or simple queries. This is a synchronous architec
ture. HTTP requests require a response. We’ll take this as a starting point and then
consider how to make these mini web servers more like software components.

 Each microservice needs to know the location of other services that it wants to call.
This is an important characteristic, and weakness, of mini web servers. When there are
just a few services, you can configure each service with the network locations of the
other services, but this quickly becomes unmanageable as the number of services
grows. The standard solution is a service-discovery mechanism.

 To provide service discovery, you need to run a service in your system that keeps a
list of all microservices and their locations on the network. Each microservice must
query the discovery service to find the services it wants to talk to. Sadly, this solution has
lots of hidden complexity. First, keeping the discovery service consistent with the real
state of the world is non-trivial—writing a good discovery implementation is difficult.9

Second, microservices need to maintain the knowledge of other services that they’ve
obtained from the discovery service, and deal with staleness and correctness issues in
this knowledge. Third, discovery invites tight coupling between services. Why? Consider

8		 This doesn’t exclude other communication mechanisms such as streaming data, but these are generally spe
cial cases or used as a transport layer for embedded messages.

9		 Some relatively robust service discovery implementations are available: ZooKeeper (https://zoo
keeper.apache.org), Consul (https://consul.io), etcd (https://github.com/coreos/etcd), and others. None
of them deliver fully on the fault-tolerance and data-consistency claims they make, although all are suitable
for production. Check out Kyle Kingsbury’s “Jepsen” series of articles at https://aphyr.com/tags/jepsen for
detailed analysis.

www.itbook.store/books/9781617293146

https://zookeeper.apache.org
https://zookeeper.apache.org
https://consul.io
https://github.com/coreos/etcd
https://aphyr.com/tags/jepsen
https://itbook.store/books/9781617293146

40		 CHAPTER 2 Services

that inside monolithic code, you need a reference to an object to call a method. Now
you’re just doing it over the network—you need a network location and a URL endpoint.
If you do use service discovery, you introduce the need to provide infrastructure code
and modules for your services to interact with the discovery mechanism.

 In its simplest configuration, this architecture is point-to-point. Microservices com
municate directly with each other. You can extend this architecture with more-flexible
message patterns by using intelligent load balancing. To scale a given microservice,
place an HTTP load balancer10 in front of a set of microservice instances. You’ll need
to do this for each microservice you want to scale. This increases your deployment
complexity, because you’ll need to manage the load balancer configurations as well as
your microservices.

 If you make your load balancer intelligent, you can start to get some of the deeper
benefits of microservices. Nothing says all the microservices behind a given load bal
ancer need to be the same version of the same microservice. You can partially deploy
and test new versions of a microservice in production by introducing it into the bal
ance set. This is an easy way to run multiple versions of the same microservice at the
same time.

 You can place different microservices behind the same load balancer and then use
the load balancer to pattern-match on the properties of inbound messages to assign
them to the correct type of microservice.11 Consider the power this gives you—you
can extend the functionality of your system by adding a new microservice and updat
ing the load balancer rules. No need to change, update, redeploy, or otherwise touch
other running services. The ability to make these kinds of small, low-impact, low-risk
production changes is a large part of the attraction of the microservice architecture. It
makes continuous delivery of code to production much more feasible.

Client-side load balancers
The load balancer doesn’t have to be a separate process in front of the listening
microservices. You can use a client-side library, embedded in the client microservice,
to perform the intelligent load balancing. The advantage is that you don’t have to
worry about deploying and configuring lots of load balancers in your network. And the
client-side load balancer can use service discovery to determine where to send bal
anced messages.

2.4 Diagrams for microservices
Let’s draw some of these configurations so that they’re easier to visualize. Traditional
networking diagrams are less useful for microservices, because there are many more
components; and, in any case, we’re far more concerned with the details of the message

10		Suitable load balancers are NGINX (http://nginx.org), HAProxy (www.haproxy.org), and Eureka
(https://github.com/Netflix/eureka).

11		One way to do this is to use extension modules for servers such as NGINX. It’s also perfectly workable to roll
your own, using a platform such as Node.js (https://nodejs.org).

www.itbook.store/books/9781617293146

http://nginx.org
http://www.haproxy.org
https://github.com/Netflix/eureka
https://nodejs.org
http:microservice.11
https://itbook.store/books/9781617293146

41 The microservice dependency tree

article-
page

article
Load

balancer

Web
browser

Figure 2.2 Building
the article page

flows than their mere existence. Figure 2.2 shows a simple point-to-point system: part of
the newspaper website. Later, we’ll build a full structure, but let’s focus first on the
microservice interactions that build an article page.

 The article service stores article data. The article-page service constructs the HTML
for an article. Articles each have their own unique page URL. An intelligent load bal
ancer routes article URL requests from web browser clients to the article-page service.

 Let’s take for granted that these are the services to build. You can see that they’re
different from the more traditional object-oriented components originally suggested
(PageBuilder, ArticleHandler). In due course, you’ll derive these services from the mes
sages that define the system. Right now, let’s see how diagrammatic conventions can
help demonstrate the design of the system.

In figure 2.2, the solid lines represent synchronous messages. That means the cli
ent service expects an immediate response from the listening service; it can’t proceed
in its work without this response. The arrows are directed toward the listening service
from the client service. The arrows are solid, meaning the listening service consumes
the message. No one else sees that message.

 Microservices are represented by hexagons. Entities external to the system (such as
the web browser) are represented as rectangles, and entities internal to the system
(the load balancer) are represented as circles. In the case of microservices, a hexagon
doesn’t represent a single microservice but means one or more running instances of
the same kind of microservice. This is important to remember. In production, you
almost never run just a single instance of a microservice.

2.5 The microservice dependency tree
Microservices are dependent on each other by design, because each performs only a
small part of the work for any given HTTP request or other task in the system. In the
point-to-point synchronous architecture, which we might call entry-level microservices,
the dependency tree can become difficult to manage as it grows.

In particular, the primary danger is service coupling, where one or more microser
vices become codependent and new versions must be deployed at the same time. This
can happen easily if you use object-serialization libraries that insist on fully matching
all the properties they find in JSON or XML messages. Add a field to an entity in one
microservice, and you have to add it to all microservices that use that entity. You end
up with a distributed monolith—the worst of both worlds.

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

42 CHAPTER 2 Services

The trap of the distributed monolith
A distributed monolith is a nasty trap awaiting first-time microservice builders who
naïvely use traditional object-oriented patterns in a microservice context. In main
stream object-oriented languages, you must provide exact method and object type
signatures. You get a compilation error if your types don’t match. (Whether this is a
true benefit to software productivity is a debate for another day.)

In a microservice architecture, type mismatches aren’t compilation errors, they’re
runtime errors—runtime errors that bring down your system. Using strict types means
you’re building a distributed monolith, where method calls run over the network.

It’s much easier to build a traditional monolith! To obtain the benefits of the micro
services architecture, you need to leave behind some of the best practices of the
monolithic world.

Let’s return to the case study. Viewing a
newspaper article involves more activities
than retrieving the article data and for
matting it. Some of these activities are
shown in figure 2.3. You probably have an
active logged-in user; you need to display
the user’s status in a box at the top of the
page, where the user can log out or
choose to manage their account. That
suggests a microservice with responsibility
for users. You’ll have an advertising ser
vice, because that’s part of the business
model for the newspaper.

 The article-page service pulls in content
from the adverts, user, and article services. It
makes no sense to make these network
requests in series, waiting for each one, in
turn, to complete successfully. Instead, you
need to send out all the requests at the
same time and combine the responses
once they come in. Writing code to do this

article-
page

article

adverts user

External

Database

Figure 2.3 Building the full article page isn’t rocket science but does make your
code base messier. You need to develop some abstractions around message sending and
receiving so that you can make the transportation of messages between services uniform.

 In the figure, you can see how the database is fronted by the article service. Never
expose your underlying implementation choices to other services! This is almost a
golden rule. One of the big benefits you’re supposed to get as a trade-off for the extra
complexity of managing microservices in production is the ability to change almost
anything in your system independently of everything else. You should be able to

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

43 The microservice dependency tree

change the database without even reboot

ing the article-page service.

 You could count the number of times

an article is read from the article-page ser

vice, but this isn’t a good responsibility

for article-page to have. There may be

other things you want to do when an arti

cle is read (such as training a recommen

dation engine), performed by other

services. One way to decouple these func

tions from article-page is to use an asynchro

nous message, indicated by the dotted

line in figure 2.4. The article-page service

emits a message that announces the

event that an article has been read, but

article-page doesn’t care how many people

receive it or need a response.

In this case, the analytics and recommend

services don’t consume messages sent to

them. These messages are instead observed,

as indicated by the open arrowheads. To

article-
page

article

adverts user

analytics recommend

External

Database

Figure 2.4 Letting other services know that an achieve this, you might use a message
article has been read

queue to duplicate the messages.12 It’s
important to think at the right architectural level. What matters is that the messages are
asynchronous and observed, not how you implement that style of message interaction.

“Don’t repeat yourself” isn’t a golden rule
Microservices allow you to violate the DRY (don’t repeat yourself) principle safely. Tra
ditional software design recommends that you generalize repetitive code so that you
don’t end up maintaining many copies of slightly different code. Microservice design
is exactly the opposite: each microservice is allowed to go its own way. It’s an anti-
pattern to seek out common business logic (infrastructure, as always, is a special
case) and try to write general modules for multiple microservices to use. Why?
Because general code is complex, must deal with edge cases, and is a primary cause
of incremental technical debt.

General business rules and domain models always become “hairy” over time,
because the general case isn’t sufficient to handle the complexities of the real world.
Better to keep everything separate, in simpler case-specific rules and small models
on a per-microservice basis. This keeps your microservices independent and allows
developers to work in parallel on simpler code bases.

12 The publish/subscribe feature of Redis is just one of many ways to do this: https://redis.io/commands/pubsub.

www.itbook.store/books/9781617293146

https://redis.io/commands/pubsub
http:messages.12
https://itbook.store/books/9781617293146

44		 CHAPTER 2 Services

As your system grows over time, the dependency tree of services also grows, both in
breadth and depth. Fortunately, experience in the field suggests13 that breadth grows
more quickly than depth. As the tree eventually grows deeper, you’ll run into latency
issues. Here’s the heart of the problem: response times over a network follow a
skewed distribution where most responses return quickly, but some take much
longer than average. This why we use percentiles14 to set performance targets,
because the average isn’t informative. When multiple elements communicate in
series, the response times for the worst cases grow much faster than average, and
what was slow performance in a small number of cases becomes, in effect, downtime,
as timeouts are hit.

 How do you deal with this issue? One way is to merge services15 so that there’s less
need for network traffic. This is a valid performance optimization, especially in
mature systems. It’s made much less painful by making sure your infrastructure code
is in good shape and abstracting away the networking and service-discovery work from
your main microservice business logic.

2.5.1 The asynchronous message architecture

As a complete alternative to the point-to-point approach, why not transport all of your
messages via a message queue? In this architecture, you have one or more message
queues that handle all your messages. Your client services publish messages onto the
queue, and your listening services retrieve them.

 Using a message queue gives you a lot more flexibility, at the price of increased sys
tem complexity. A message queue is another point of failure and requires the same
care and attention as your database in production. Moreover, in order to scale, mes
sage queues need to be distributed, just like databases.

 You’ll need to decide how to route your messages. With a queue, at least your ser
vices don’t need to know each others’ network locations. They still need to know how
to find the queue. You have to use message topics to route messages, and your services
need to know about those, too. Let’s develop your understanding of this approach by
looking at a common strategy: scatter/gather.

 Most kinds of content are useful even when they aren’t complete or entirely
correct. In the newspaper example, showing a stale version of an article page from a
cache is far preferable, from a business perspective, to showing a page error if the
article service is misbehaving. The leaders of most organizations prefer to keep their

13		It’s a valuable investment in your understanding of the microservice architecture to view the many conference
talk videos that are available online, where issues like this are discussed from a practical, production view
point.

14		A percentile tells you what percentage of responses came in under the given time. For example, a 500 ms
response time at the 90th percentile means 90% of responses took less than or equal to 500 ms.

15		Merging services is a perfectly acceptable performance optimization—but it’s a performance optimization,
nonetheless. You lose many of the benefits of the microservice architecture. The guideline that a microservice
should take at most an iteration to rewrite is also just that: a guideline. You get paid to exercise your profes
sional judgment on these matters.

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

45 The microservice dependency tree

businesses open even when they can’t offer full service.16 This is just plain business
common sense. Businesses want to be available to their customers, even if their
products aren’t consistent. Moreover, customers tend to have this preference too—a
ham-and-cheese sandwich from hotel room service when your flight got in at 2:00 a.m.
is better than no food at all!

 Let’s consider an asynchronous approach to building the article page. This page
consists of multiple elements: user status, advertising, article text, article metadata,
mini author profile, related content links, and so on. The page is still useful even if
most of these elements fail to appear. That suggests scattering a message to the micros
ervices responsible for generating this content and then gathering the responses, asyn
chronously, under a timeout. Everybody gets, say, 200 ms to respond. If they don’t
make it back in time, their content element isn’t displayed, but at least the user gets
something. This technique also has the advantage that your site feels much faster,
because page delivery isn’t slowed down by slow services.

In figure 2.5, the article-page service emits an asynchronous message. The article,
adverts, and user services observe but don’t consume this message. They do some work
and generate responses. The responses are also asynchronous. The article-page service
consumes these responses, indicated by the solid arrowhead, which is offset from the
article-page hexagon to indicate that article-page is the originator of this message flow. This
pattern is common, so the diagram abbreviates the scatter and gather messages into one
dotted line. Again, remember that these
aren’t individual instances of the services,
but rather multiple instances.17

 A message queue makes the scatter/

gather pattern easy to implement and is

much more suited to asynchronous patterns

in general. In practical terms, you create an

announcement topic for the article page to

post content requests and a fulfillment topic

for the content-providing services to post

responses. You also need to identify and tag

the messages so they’ll be ignored by ser

vices that aren’t interested in them. But be

warned: the failure modes of message

queues are many, varied, and colorful. We’ll

examine message patterns and their failure

modes in more detail in chapter 3.

article

article-
page

adverts user

Figure 2.5 The scatter/gather pattern

16		Do banks refuse to process payments when they can’t perform ACID transactions? Did you ever exceed your
overdraft limit? Banks solve that problem with a business rule (penalty fees), not with computer science that
would damage their business.

17		Netflix, a major proponent of microservices, normally deploys in units of an Amazon Web Services Auto Scal
ing group. It doesn’t think in terms of individual machines or containers.

www.itbook.store/books/9781617293146

http:instances.17
http:service.16
https://itbook.store/books/9781617293146

46		 CHAPTER 2 Services

 What do people use in production when choosing between synchronous and asyn
chronous strategies? Almost universally, production systems are hybrids. Asynchro
nous message queues allow you to be more fault tolerant and let you distribute work
more easily. Adding new services is easy, and you don’t have to worry too much about
service discovery. On the other hand, synchronous point-to-point is an absolute must
when you need low latency. Also, in the early days of a project, it’s much quicker to get
started using point-to-point.

2.6 Monolithic projects vs. microservice projects
The monolithic software architecture creates negative consequences, which many
have assumed are fundamental challenges that apply to all software development. On
closer examination, with critical questioning, this assumption can be turned on its
head. Many of the challenges, and many of the supposed solutions to these chal
lenges, arise directly from the engineering effects of monolithic architecture and
become moot when you take a different engineering approach.

 There are three consequences of the monolith. First, all members of the software
development team must carefully coordinate their activities so as not to block each
other. There’s one code base. If a single developer breaks the build, then all develop
ers are blocked. The code naturally tends toward deep, multidimensional depen
dency. This is a consequence of perceived best practices. Refactoring common code
into shared libraries creates deep dependency trees. The amount of rework needed
when changing the code structure is exponentially proportional to the depth of that
structure in the dependency tree. Teams often make the rational choice to wrap com
plexity in ever more layers, in an attempt to hide and contain it. Monoliths make the
cost of parallel work much higher and thus slow development.

 The second consequence of monoliths is that they gather technical debt rapidly.
There’s no natural limiting force. A well-structured, properly decoupled, clean, object-
oriented initial design is too weak to resist the immediate needs of an entire team work
ing against the clock to deliver today’s features. There are too many ways that one piece
of code can invade other pieces of code—too many ways to create dependencies.

 A primary example is data-structure corrosion. Given an initial requirements defi
nition, the senior developers and architects design appropriate data structures to
describe the problem domain. These are shared data structures and must accommo
date all known requirements and anticipate future requirements, so they tend toward
the complex. Deeply nested cross-referencing is a tell-tale sign of attempted future
proofing. Unfortunately, the world often outwits our meager intelligence, and the
data structures can’t accommodate real business needs as they emerge. The team is
forced to introduce kludges, implicit conventions, and ad hoc extension points.18

18		Declarative structures are usually the best option for representing the world, because they can be manipulated
in repeatable, consistent, deliberately limited ways. If you introduce ways to embed executable code to handle
special cases as a “get out of jail free card,” things can get complicated fast, and you end up in technical debt
ors’ prison anyway.

www.itbook.store/books/9781617293146

http:points.18
https://itbook.store/books/9781617293146

47 Monolithic projects vs. microservice projects

Later, new developers and junior developers, lacking understanding of the forces on
the data structure, may introduce subtle and devious bugs, costing the team vastly dis
proportionate time in fixes and performance-tuning workarounds.19 Eventually, the
team must engage in extensive refactoring efforts to regain some measure of develop
ment velocity. Globally shared data structures and models are just as bad as global vari
ables and have no natural defenses against technical debt.

 Finally, the third consequence of monoliths is that they are all-or-nothing deploy
ments. You have an old version of a monolith running in production, and you have a
new version on staging. To upgrade production without impacting the business, you
have a very stressful weekend ahead of you.

 Perhaps you’re more sophisticated and use blue-green deployments to mitigate
risk.20 You still have to expend energy building the blue-green infrastructure, and it’s
still not much help if you have database schema migrations, because those aren’t eas
ily reversible.

The basic problem is that any change to production requires a full redeployment
of the entire code base. This creates high-risk exposure to failures at all levels of the
system. No amount of unit testing, acceptance testing, integration testing, manual
testing, and trialing can give you a true measure of the probability of failed deploy
ment, because the failure conditions are often direct consequences of production
conditions that you can’t simulate. Production data (which you may not even have
access to, due to client confidentiality rules) only needs one unforeseen aspect to
cause critical failures. It’s difficult to verify performance using test data—production
can be orders of magnitude larger. Users can behave in unanticipated ways, especially
with new features, that break the system because the team wasn’t able to imagine
those use cases. The deployment risk associated with monoliths causes slow, infre
quent releases of new features, holding back fast delivery.

 These engineering challenges, for that’s precisely what they are, can’t be solved
with any given project management approach. They’re in a different problem
domain. And yet, almost universally and exclusively, businesses try to solve them with
software development methodologies and project management techniques. Rather
than stepping back and searching for the real reason projects are delivered late and
over budget, software development stakeholders blame themselves for poor execu
tion. No amount of good execution will let you build skyscrapers with bullshit.21 The
solution lies elsewhere.

19		An example from a former client is instructive: The client added a database column for XML content so that
they could store small amounts of unstructured data. The schema for that XML included several elements
that could be repeated, to store lists. These lists were unbounded. In the problem domain, a small number of
users generated very long lists, leading to massive XML content, leading to strange and wonderful garbage
collection issues that were long separated from the root cause.

20		The blue-green deployment strategy means you have two versions of the system in production at all times: the blue
version and the green version. Only one of them is live. To deploy, you upgrade the offline version and swap.

21		Wattle-and-daub construction has been used since Neolithic times and is an excellent construction technique
that can get you to three or four small stories, given a sufficiently large herd of cattle to generate excrement.
It won’t help you build the Empire State Building.

www.itbook.store/books/9781617293146

http:bullshit.21
http:workarounds.19
https://itbook.store/books/9781617293146

48		 CHAPTER 2 Services

 The microservices architecture, as an engineering approach, allows us, as software
developers, to revisit all of our cherished best practices and ask whether they really
make delivery faster and more predictable. Or are they merely poor mitigations of the
fundamental problems of monolithic development? Frederick P. Brooks, in his semi
nal 1975 book The Mythical Man-Month, explains in graphic detail the challenges of
monolith development.22 He then suggests a set of techniques and practices, not to
solve the problem, but to contain and mitigate it. This is the core message of the
phrase “no silver bullet”: no project management techniques can overcome the engi
neering deficits of the monolithic architecture.

2.6.1 How microservices change project management

The engineering features of the microservice architecture have a direct impact on the
amount of project management effort needed to ensure successful delivery. There’s
less need for detailed task management and for much of the useless ceremony of
explicit methodologies.23 Project management of microservice projects can use a light
touch. Let’s work through the implications.

2.6.2 Uniformity makes estimation easier

Microservices are small, and a good practice is to limit them to at most one iteration’s
worth of work from one developer. Microservice estimation is thus a much easier task
than general software-effort estimation, because you force yourself to chunk features
into iteration-sized bites. This is an important observation. Traditional monolithic sys
tems are composed of heterogeneous components of various sizes and complexity.
Accurate estimation is extremely difficult, because each component is a special case
and has a multifaceted set of interactions with other components via method calls,
shared objects and data structures, and shared database schemas. The result is a proj
ect task list that bends to the demands of the system architecture.24

 With microservices, the one-iteration complexity limit forces uniformity on com
ponents that increases estimation accuracy. In practice, even more accuracy can be
achieved by classifying microservices into, say, three complexity levels, also classifying
developers into three experience levels, and matching microservices to developers.
For example, a level-1 microservice can be completed by a level-1 developer in one
iteration, whereas a level-3 microservice needs a level-3 developer to be completed in
one iteration. This approach gives far more accuracy than generic agile story point
estimates that ignore variations in developer ability. A microservice project can be

22		Brooks was the manager for the IBM System/360 mainframe project and the first to make the written obser
vation that adding more developers to an already-late project just makes it even later.

23		To spare embarrassment, no methodologies will be named. But you know who you are. If there were a project
management approach to software development that could consistently deliver, over many kinds of teams,
we’d already be narrowing down toward the solution. But we see no signs of significant progress.

24		Somewhat ironically, Fibonacci estimation (where agile story point estimates must be Fibonacci numbers: 1,
2, 3, 5, 8, 13, …) is proof enough that a local maximum has been reached in the estimation accuracy of mono
lithic systems.

www.itbook.store/books/9781617293146

http:architecture.24
http:methodologies.23
http:development.22
https://itbook.store/books/9781617293146

 25

49 Monolithic projects vs. microservice projects

accurately planned using a sensible, meaningful mapping from microservices to itera
tions. We’ll explore this idea in more detail in part 2 of this book.

Why is software estimation difficult?
Why is it so difficult to estimate the complexity of components of a larger system?
The tight coupling that invariably occurs in monolithic architectures means develop
ment in the later stages of a project is exponentially slower, making the initial esti
mates of late-stage components highly skewed toward the overoptimistic. The
exponential slowness arises from the mathematical fact (known as Metcalfe’s law)
that the number of possible connections between nodes in a network increases pro
portionally to the square of the number of nodes.

And there’s another factor: human psychology suffers from many cognitive biases—
we’re not good at working with probabilities, for instance. Many of these come into
play to sabotage accurate project estimation. Just one example: anchoring is the bias
for staying close to the first number you hear. The complexity and thus completion
time for software components follow a power law: most take a short amount of time,
but some take much longer.25

The largest and most difficult components are underestimated, because the bulk of
the estimation work concerns small components. The old joke that the last 10% of
the schedule takes 90% of the time expresses much truth.

2.6.3 Disposable code makes for friendlier teams

Microservice code is disposable. It’s literally throw-away. Any given microservice is one
iteration’s worth of work, for one developer. If the microservice was badly written, is
underperformant in the chosen language, or isn’t needed anymore because require
ments have changed, then it can be decommissioned without much soul searching.
This realization has a healthy effect on team dynamics: nobody becomes emotionally
attached to their code, nor do they feel possessive of it.

 Suppose Alice thinks microservice A, written by Bob several iterations back in Java,
will be twice as performant if written in C++. She should go for it! It’s an extra itera
tion invested either way, and if the attempt is a failure, the team is no worse off,
because they still have Bob’s Java code.

 The knowledge that each microservice must live or die on its own merits is a natural
limiting function for complexity. Complexity makes you weak. Better to write a new,
special-case microservice than extend an existing one. If you reserve, say, 20% of itera
tions for rewrites and unforeseen special cases, you can have more confidence that this
is real contingency, rather than a political tactic in the effort-negotiation game.26

25		Power laws describe many phenomena where small causes can have outsize effects: earthquake durations,
executive salaries, and letter frequencies in text, for example.

26		Software project estimation often deteriorates into a political game. Software developers give optimistic estimates
to get gold stars. Business stakeholders, burned before by failed projects, forcefully demand all features on an
arbitrary schedule. The final schedule is determined by horse-trading rather than engineering. Both sides have
legitimate needs but end up in a lose-lose situation because it isn’t politically safe to communicate these needs.

www.itbook.store/books/9781617293146

http:longer.25
https://itbook.store/books/9781617293146

50 CHAPTER 2 Services

2.6.4 Homogeneous components allow for heterogeneous configuration

You can group microservices into different classes with differing business constraints.
Some are mission critical and high load—for example, the checkout microservice on
an e-commerce website. Others are core features, but not mission critical. Still others
are nice-to-haves, where failure has no immediate impact. Questions: Is it necessary
for all of these different kinds of microservices to have the same quality level? Do they
all need the same level of unit-test coverage? Does it make sense to expend the same
quality control effort uniformly on all microservices? No. There’s no justifiable busi
ness case for those views.

 You should expend effort where it counts. You should have different levels of unit-
test coverage for different classes of microservice. Similarly, there are different perfor
mance, data-safety, security, and scaling requirements. Monolithic code bases have to
meet the highest levels across the board, as a matter of engineering fact. Microservices
allow a finer-grained focus on applying limited developer resources where they count.27

 Microservices make successful failures successful. The typical software system must
often pass user-acceptance testing. In practice, this means the entity with the check
book won’t sign until a set of features has been ticked off. Step back for a minute, and
ask yourself whether this is a good way to ensure that the delivered software will meet
the business goals for which it was originally commissioned. How can anyone be sure
that a given feature delivers actual value until it’s measured in production? Perhaps cer
tain features will never be used or are overly complex. Perhaps you’re missing critical
features nobody thought of. And yet user-acceptance testing treats all features as having
the same value. In practice, what happens is that the team delivers a mostly complete
system with a mostly random subset of the originally desired features. After much grum
bling, this is accepted, because the business needs the system to go into production.

 A microservice approach doesn’t change the reality that developer resources are
limited and ultimately there may not be enough time to build everything. It does let you
take a breadth-first approach. Most projects take a depth-first approach: user stories are
assigned to iterations, and the team burns down the requirements. At the end of the
original schedule, this leaves you with, say, 80% of the features completed and 20%
untouched. In a breadth-first approach, you deliver incomplete versions of all features.
At the end of the project, you have 100% of features mostly complete, but a substantial
number of edge cases aren’t finished. Which of these is the better position to be in for
go-live? With the breadth-first approach, you cover all the cases the business people
thought of, at some level. You haven’t wasted effort fully completing features that will
turn out to have no value. And you’ve given the business the opportunity during the
project to redirect effort without giving up on entire features—a much easier discus
sion to have with stakeholders. Microservices make allocation of finite development
resources more efficient and friendly.

27 Chapter 6 discusses a way to quantify these fine-grained measurements.

www.itbook.store/books/9781617293146

http:count.27
https://itbook.store/books/9781617293146

51 The unit of software

2.6.5 There are different types of code

Microservices allow you to separate business-logic code from infrastructure code.
Business-logic code is driven directly from business requirements. It’s determined by
the best guesses of the business stakeholders, given incomplete and inadequate busi
ness information. It’s naturally subject to rapid change, hidden depths, and obsoles
cence. Corralling this business-logic code into microservice units is a practical
engineering approach to managing rapid change.

 There’s another type of code in the system: infrastructure code. This is where sys
tem integration, algorithms, data-structure manipulation, parsing, and utility code
happen. This code is less subject to the vagaries of the business world. There’s often a
relatively complete technical specification, an API to work against, or specifically lim
ited requirements. This code can safely be kept separate from the business-logic code,
so it neither slows down business code nor is negatively impacted by incidental busi
ness logic.

 The problem with most monolithic architectures is that these two types of code—
business-logic and infrastructure—end up mixed together, with predictably negative
effects on team velocity and levels of technical debt. Business logic belongs in micros
ervices; infrastructure belongs in software libraries. The ability to allocate coding
effort correctly in this way makes estimating the level of effort required for each more
accurate, and increases the predictability of the project schedule.

2.7 The unit of software
The preceding discussion makes the case that microservices are incredibly useful as
structural units of software. Can they be considered fundamental units, much like
objects, functions, or processes? Yes, because they give us a powerful conceptual
model for thinking about system design.

 The essence of the problem we’re trying to solve is one of multidimensional scal
ing: scaling software systems in production, scaling the complexity of the software that
makes up those systems, and scaling the teams of developers that build them. The
power of the microservices concept comes from the fact that it offers a unified solu
tion to many different scaling problems.

 Scaling problems are difficult because they’re exponential in nature. There are
no 12-foot-tall humans, because doubling height means you increase body volume 8-fold,
and the materials of our bodies, and our body architecture, can’t handle the increased
weight.28 Scaling problems have this characteristic. Increasing one input parameter lin
early causes disproportionate accelerated change in other aspects of the system.

 If you double the size of a software team, you won’t double the output speed. Beyond
more than a few people, you’ll move even slower as you add more people.29 Double the
complexity of a software system, and you won’t double the number of bugs; you’ll

28 You also need to double width and depth, to maintain proportions; hence, 23.
29		Amazon has a scientific rule for the size of a software team: it must be possible to feed the entire team with

no more than two pizzas.

www.itbook.store/books/9781617293146

http:people.29
http:weight.28
https://itbook.store/books/9781617293146

52		 CHAPTER 2 Services

increase them by the square of the size of the code base. Double the number of clients
you need to serve, and suddenly you need to manage a distributed system.

Scaling can be addressed in two principle dimensions:30 the vertical and the hori
zontal. Vertical scaling means making what you have bigger, stronger, or faster. This
works until the physical, mathematical, or functional aspects of the system reach their
structural limits. Thus, you can’t keep buying more-powerful machines. Vertical scaling
tends to have exponential decay in effectiveness and exponential growth in cost,
which gives it hard limits in practice. That said, don’t be afraid to scale vertically when
you can afford it—hardware is much cheaper than developers.

 Horizontal scaling escapes hard limits. Instead of making each piece more power
ful, just keep adding more pieces. This has no fundamental limits, as long as your sys
tem is designed to be linearly scalable. Most aren’t, because they have inherent
communication limits that require too many pieces to talk to too many other pieces.

 Biological systems comprising billions of individual cells have overcome horizon
tal-scaling limits by making communication as local as possible. Cells only communi
cate with their close neighbors, and they do so asynchronously using pattern matching
on undirected hormonal signals. We should learn a lesson from this architecture!

 High-capacity scaling arises when the system is composed of large numbers of
independent homogeneous units. Sound familiar? The principle qualities of micros
ervices lend themselves powerfully to effective scaling—not just in terms of load, but
also in terms of complexity.

2.8 Requirements to messages to services
Let’s return to earth. How do you apply these ideas in practice? Let’s take the newspa
per system and perform some further analysis. You need to know what services to
build—how do you get there?

 Trying to guess the appropriate services isn’t particularly effective, although your
intuitions for what makes a good service will build over time. It’s more useful to start
with messages. Specifically, break down each requirement into a set of messages that
describe the activities that constitute the requirement. Then organize the messages
into services, taking care to maintain the small size of services. More-complex services
may implement more messages, and these you should assign to stronger members of
the team. It isn’t necessary to fully implement all messages immediately, but you
should still aim for breadth rather than depth, providing at least basic implementa
tions within the first few iterations.

 Let’s do this for the newspaper site. Table 2.1 lists the requirements, with
corresponding messages. This is the first cut, and you may change this set of messages
over the course of the project. This is different from a traditional approach, where
you’d think about what entities form the system. Instead, think in terms of activities—
answer the question, “What happens?” You’ll notice that this analysis refines the

30		You can add dimensions and get scale cubes and scale hypercubes. This lets you refine your analysis, but two
dimensions will do just fine for decision making.

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

53 Requirements to messages to services

earlier experiments with the article service, exploring variations of the possible
message interactions. This is deliberate so that you can see the flexibility this
approach provides. You’ll modify the architecture again before you’re finished.

Table 2.1 Mapping requirements to messages

Requirement Messages

Article pages build-article, get-article, article-view

Article list pages build-article-list, list-article

REST API get-article, add-article, remove-article, list-article

Static and dynamic content article-need, article-collect

User management login, logout, register, get-profile

Content targeting visitor-need, visitor-collect

Special-purpose mini apps App-specific

Some activities will share messages. This is to be expected. In large systems, you’d
namespace the messages; but for our purposes here, this isn’t necessary. You should
also make the intent of your messages clear by describing the activities they’re meant
to represent:

 build-article—Constructs the article HTML page
 get-article—Gets article entity data
 article-view—Announces the viewing of an article
 build-article-list—Constructs a page that lists articles
 list-article—Queries the article store
 add-article—Adds an article to the store
 remove-article—Removes an article from the store
 article-need—Expresses a need for article page content
 article-collect—Collects some element of article page content
 login—Logs a user in
 logout—Logs a user out
 register—Registers a new user
 get-profile—Gets a user profile
 visitor-need—Expresses a need for targeted content for a site visitor
 visitor-collect—Collects some targeted content

These messages can then be organized into services. For each service, you need to
define the inbound and outbound messages; see tables 2.2–2.9. You’ll also need to
decide whether a message is synchronous or asynchronous (asynchronous is indicated
by “(A)” in the tables). Synchronous messages expect an immediate response—
assume this is the default. And you’ll need to decide whether a message is consumed

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

54 CHAPTER 2 Services

or just observed by a service. Consumed messages can’t be seen by other services—
assume this is the default.

Table 2.2 article-page

In build-article, build-article-list, article-collect (A), visitor-collect (A)

Out get-article, article-need (A), visitor-need (A)

Notes We make no assumptions about how the HTML is constructed. Perhaps
the providing services sent HTML, or perhaps just metadata.

Table 2.3 article-list-page

In build-article-list, visitor-collect (A)

Out list-article, visitor-need (A)

Table 2.4 article

In get-article, add-article, remove-article, list-article

Out add-cache-item (A), get-cache-item

Notes This service interacts with the cache to store articles.

Table 2.5 cache

In get-cache-item, add-cache-item (A)

Out None

Notes Cache messages aren’t derived from the requirements list. Instead, we use our experience
as software architects to derive the need for caching in the system to ensure adequate per
formance. Messages such as these arise naturally from system analysis work.

Table 2.6 api-gateway

In None

Out build-article, build-article-list, get-article, list-article, add-article, remove-article, login,
logout, register, get-profile

Notes Inbound messages to this service are traditional HTTP REST calls, not microservice
messages. This service translates them into internal microservice messages.

Table 2.7 user

In login, logout, register, get-profile, article-need

Out article-collect

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

55 Microservice architecture diagrams

Table 2.8 adverts

In article-need

Out article-collect

Table 2.9 target-content

In visitor-need

Out visitor-collect

Notes This is a simple initial implementation that returns a Register Now! call to action for
unknown users, and empty content for known, logged-in users. The intention is to extend
this capability by adding more services.

The list of services from an initial analysis can be assessed in terms of complexity and
adjusted so that the initial version of each service can be built within one iteration.
Some services’ features are added incrementally so that later versions also take an iter
ation to build. Be careful not to do this too frequently, because such services can grow
in complexity and become essential, rather than disposable. When possible, it’s better
to add functionality by adding services.

 Lists of requirements, messages, and services are one way to view the system. Let’s
look at the newspaper system architecture visually with a microservice diagram.

2.9 Microservice architecture diagrams
We diagrammed smaller parts of the system earlier in the chapter. Now, let’s create a
complete system architecture diagram: see figure 2.6.

NOTE In most network diagramming, connections between elements are rep
resented as plain lines, often without direction. The lines indicate network
traffic, but not much else. Network elements are assumed to be individual
instances. In a microservice system, it’s better to make the default one or more,
because that’s the common case. I use this diagramming convention through
out this book to give immediate insight into the microservice case studies.

The full newspaper system includes and refines the article subsystem you saw earlier.
The synchronous versus asynchronous message flows can be clearly seen and mapped
back to the message and service specification. Use this diagram as a reference exam
ple for the visual conventions that follow.

 In this diagram of the newspaper system, I use the following conventions for
groups of network elements:

 Hexagons represent microservices.
 Circles represent internal systems.
 Rectangles represent external systems.

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

56 CHAPTER 2 Services

api-
gateway

article-
page

target-
content

article

article-
list-page

adverts

user

External

build-article
build-article-list

*-article

get-article

list-article

article-need/collect

cache

add-cache-item

get-cache-item

Cache

Database

visitor-need/collect

visitor-need/collect

login/logout/register/...

Figure 2.6 The full newspaper system

Internal systems are databases, caching engines, directory servers, and so on. They’re
the non-microservice infrastructure of the network. An internal system may consist of
microservices, and the circle shape can be used to represent entire subsystems com
posed of microservices.

 All communication is assumed to be in the form of messages. This applies to non-
microservice elements as well, so that they can be connected via the same message-line
conventions. Special cases, such as streaming data flow, must be annotated with callouts.

Such figures can contain further information, as shown in figure 2.7:

 Solid boundary line—One or more instances and versions of a given element
 Dashed boundary line—A family of related elements
 Name—Required; identifies the element or family

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

57 Microservice architecture diagrams

 Cardinality—The number of live instances (optional), above the name
 Version tag—The version number of these instances (optional) below the name

red Browser

Microservice red, one
or more instances,
any version

{1}
green
1.0.0

Database

Microservice green,
exactly one instance,
at version 1.0.0

Internal
to network

External
to network

Figure 2.7 Service and network element deployment characteristics

The solid boundary line indicates a cardinality of one or more, which is the default.
Cardinality means the number of running instances.31 The full list of cardinalities is as
follows:

 ?—Zero or one instances

 *—Zero or more instances

 +—One or more instances

 {n}—Exactly n instances
 {n:m}—Between n and m instances
 {n:}—At least n instances
 {:m}—At most m instances

Numeric cardinalities must always be inside braces to avoid suggesting that they’re
version numbers.

A dashed boundary line means the element is composed of a group of related ser
vices. In this case, cardinality applies to each member of the family, and finer-grained
resolution requires you to break out individual members.

 The version tag appears below the name and is optional. It follows the semver stan
dard,32 except that you may omit any of the internal numbers, which are then
assumed to be 0. You can even omit all of them and use only a suffix tag. Use the ver
sion number when it’s important to communicate that different versions of the same
service participate in the network.

2.9.1 Diagramming message flows

Understanding the message flows in a system is vital. In particular, all messages have an
originating client service and a listening service that receives the message. All message

31 I use the cardinalities to disambiguate the deployment strategies discussed in chapter 5.
32		Version identifiers follow the pattern MAJOR.MINOR.PATCH. You can omit MINOR and PATCH numbers.

See “Semantic Versioning 2.0.0” (http://semver.org).

www.itbook.store/books/9781617293146

http://semver.org
http:instances.31
https://itbook.store/books/9781617293146

58		 CHAPTER 2 Services

lines that connect elements must, therefore, be directed, with an arrowhead at the
receiving end. You can convey this information using the following conventions:

 Solid line—Synchronous message that expects a response
 Dashed line—Asynchronous message that doesn’t expect a response
 Closed arrow—Message is consumed by the receiver
 Open arrow—Message is observed by the receiver

Because message lines can be solid or dashed, and arrowheads can be closed or open,
there are four possibilities (which will be discussed in greater detail in the next chapter):

 Solid-closed—synchronous actor—Only one of the receiving instances consumes
the message and responds.

 Solid-open—synchronous subscribers—All of the receiving instances observe the
message, and the originator accepts the first response.

 Dashed-closed—asynchronous actor—Only one of the receiving instances con
sumes the message.

 Dashed-open—asynchronous subscriber—All of the receiving instances observe the
message.

Figure 2.8 shows you how to represent
the four interactions.

Message lines can be bidirectional to
reduce visual clutter. To indicate the orig
inating service, offset the arrowhead so it
doesn’t contact the boundary line of the
figure.

Messages may be intended for multi
ple recipients, and the same message can
be indicated by separate arrows originat
ing from the same service. To declutter,
you can also split the arrow into multiple
sub-arrows. The split point is indicated by
a small dot.

In the synchronous case, when you
have multiple recipients, each message is

A B

A B

Synchronous, consumed

Synchronous, observed

A

A

Asynchronous, consumed

Asynchronous, observed

B

B

Figure 2.8 Message interactions

delivered to only one receiver according
to some algorithm (which can be indicated by an annotation). The default algorithm
is round-robin. In the asynchronous case, the message is delivered to all recipients. In
both cases, whether the message is consumed or observed is a separate matter indi
cated by the arrowhead.

 Message lines can be annotated with either the full message pattern (as you’ll use
later) or an abbreviated name for the pattern (as used in this study). Message lines
can also be annotated with preceding sequence numbers. These have the format

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

59 Microservices are software components

x.i.j.k... where x is a letter and i,j, and k are positive integers. Separate sequences
are indicated by the letter, and no temporal ordering is implied. The positive integers
indicate the temporal order of messages within a sequence. Only the first number is
required, and separator dots indicate the ordering of subsequences.

 Any part of the diagram can be annotated with callouts to disambiguate microser
vice interactions. To avoid confusion with external element rectangles, callouts consist
of a line connecting the annotated figure with explanatory text adjacent to a single
horizontal or vertical boundary line.

 Microservice diagrams aren’t intended to be formal specifications—they’re for
team communication. It’s therefore acceptable to omit elements for the sake of brev
ity, even if this creates ambiguity. In particular, the diagrams aren’t intended to show
the transport mechanism chosen for messages, because transport independence is
assumed. Use annotations if you wish to indicate specific transport mechanisms.

2.10 Microservices are software components
In this book, I claim that microservices make excellent—almost perfect—software com
ponents. It’s worth examining this claim in more detail. Software components have rel
atively well-defined characteristics, and there’s broad general agreement on the most
important of them. Let’s see how microservices stack up against this understanding.

2.10.1 Encapsulated

Software components are self contained. They encapsulate a set of semantically con
sistent activities and data. The outside world isn’t privy to this internal representation
and can’t pollute it. Likewise, the component doesn’t expose its internal implementa
tion. The purpose of this characteristic is to make components interchangeable.

 Microservices deliver on encapsulation in a very strong way—far stronger than lan
guage constructs such as modules and classes. Because each microservice must assume
a physical separation from other microservices, it can only communicate with them via
messages, and it has no backdoor access to the internals of other microservices. Creat
ing such backdoor access requires more effort for developers, so encapsulation is
strongly preserved throughout the lifetime of the system.

2.10.2 Reusable

Reusability is a holy grail of software development. A good component can be reused
in many different systems over a long period of time. In practice, this is difficult to
achieve, because each system has different needs. The component evolves over time
and so has different versions. Reusability also implies extensibility: it should be easy to
reuse the component in a new context without always needing to modify it. The pur
pose of this characteristic is to make components useful beyond a single project.

 Microservices are inherently reusable, because they’re network services that can be
called by anyone. There’s no need to worry about code integration or library linking.
Microservices address the versioning and extensibility requirement not by enhancing

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

60		 CHAPTER 2 Services

the capabilities of the individual microservice,33 but by allowing the system to add new
special-case microservices and then using message routing to trigger the right service.
We’ll talk about this in detail in chapter 3.

2.10.3 Well-defined interfaces

The interface offered by a component is the full definition of its contract with the out
side world. This interface should have sufficient detail (but no more!) to allow the
component to be interchangeable with other implementations and with other sys
tems. The purpose of this characteristic is to enable free choice of components.

 Microservices use messages, and only messages, to communicate with the outside
world. These messages can be explicitly listed and their contents constrained as needed.34

Microservices have well-defined (but not necessarily strict) interfaces by design.

2.10.4 Composable

The real power of components to accelerate software development comes not from
reusability, which is merely a linear accelerator, but from combining components to
do far more interesting things than each component can do separately. Components
can be composed together into more capable components that themselves can be
composed into larger systems.35 The purpose of this characteristic is to make software
development predictable by declaring the behavior of the system rather than con
structing it.

 Microservices are easily composable because the network flow of messages can be
manipulated as desired. For example, one microservice can wrap another by inter
cepting all of the latter’s messages, modifying them in some way, and passing them on
to the wrapped service.

2.10.5 Microservices in practice as components

An example of the utility of microservices as components is the wrapping cache message
interaction. This demonstrates service composition in particular, which is a powerful
technique for extending live systems. In this example, an entity service, such as the
article service from the newspaper system, supports activity messages for the underly
ing article data entity. Most of these are data-access messages. There’s one weakness
with the design that we arrived at: the article service needs to know about the cache ser
vice! This is extra logic. The article service would be smaller, and a better microservice,
if it knew nothing about caches. Be on the lookout for these types of dependencies.

33		Traditionally, component systems rely on API hooks for extensibility. This is an inherently nonscalable
approach because it isn’t homogeneous—every component and API hook is different.

34		Resist the temptation to use message schemas and to enforce contracts between services. Doing so may seem
like a good idea at the time, until you find yourself painted into a corner by your perfect schema. Microser
vices are for messy business logic, where strict schemas die every day.

35		The most successful component architecture is UNIX pipes. By constraining the integration interface to be
streams of bytes, individual command-line utilities can be composed into complex data-processing pipelines.
The compositional power of this architecture is a major reason for the success of the operating system.

www.itbook.store/books/9781617293146

http:systems.35
http:needed.34
https://itbook.store/books/9781617293146

61 Microservices are software components

I created one here for the purposes of deconstructing it, but it’s easy to end up with
unnecessary dependencies.

 An alternative configuration is to introduce an article-cache service that intercepts all
the messages for the article service. It forwards most of them, but get-article, add-article,
and remove-article messages also cause article-cache to inject and remove articles from the
cache. From the perspective of the rest of the system, article messages are handled
the same way; nothing has changed. Yet we get caching of articles! We’ve composed the
article-cache and article services together.

 To get this to work in practice, you need to orchestrate message interactions.
Typically, you’ll want to make this type of change to a system running in production,
without service interruption. One way to do this is to use an intelligent load balancer
in front of the article service. To add article-cache, as shown in figure 2.9, update the
configuration of the load balancer. You’ll need a load balancer that can handle live
configuration changes.36

 Another way is to use a message queue.37 You could introduce article-cache as
another subscriber and then remove the article service from direct contact with the

A	 B

article-
page

article-
page

article
1.0

article-
cache

cache

cache

A.2.2 get-articleA.2.1 get-cache-item

A.1 get-article

A.2 get-cache-item

A.1 get-article

article
2.0

Figure 2.9 Extending the article service without modification

36		Load balancers specifically built for microservices are the best choice here. Try Eureka
(https://github.com/Netflix/eureka), Synapse (https://github.com/airbnb/synapse), and Baker Street
(http://bakerstreet.io).

37		Message queues are asynchronous by design, but that doesn’t mean message flows over them are inherently
asynchronous. Synchronous messages are those that require a response so that the client can continue work
ing. They can be delivered via a message queue using request and response topics for each message type, or
by embedding a return path network address as metadata in the request message.

www.itbook.store/books/9781617293146

https://github.com/Netflix/eureka
https://github.com/airbnb/synapse
http://bakerstreet.io
http:queue.37
http:changes.36
https://itbook.store/books/9781617293146

62 CHAPTER 2 Services

message queue (as per the steps shown in figure 2.10). The article-cache and article ser
vices would then communicate point to point. Or you could use a separate message
queue topic if you wanted to avoid the service discovery overhead.

 A very important principle to note here is this: to enhance and modify the func
tionality of the system with respect to article caching, you don’t extend existing ser
vices.38 You don’t make existing services more complex. The principle actions are to
add and remove services, one at a time, to and from the live system, without service

A B

article-
page

article
1.0

cache

article-
page

Round-robin message
consumption

Request/response
queue

cache

article-
page

article
1.0

C

article
2.0

cache

article-
page

article-
cache

Figure 2.10 Introduction of new functionality into the live system

38 In fact, you reduce the complexity of the article service.

www.itbook.store/books/9781617293146

http:vices.38
https://itbook.store/books/9781617293146

Summary	 	 63

interruption. At each step, you can verify the system by measuring its behavior and
making sure nothing is broken. Then, at each step, if you did break something, you
can easily roll back to a known good state. This is how microservices make deploy
ments risk free.

2.11 The internal structure of a microservice
The primary purpose of a microservice is to implement business logic. You should be
able to concentrate on this purpose. You shouldn’t have to concern yourself with ser
vice discovery, logging, fault tolerance, and other standard behaviors; those are per
fect candidates for framework or infrastructure code.

 Microservices need a communications layer for messages. This should completely
abstract the sending and receiving of messages, and the knowledge of where those
messages need to go. As soon as one microservice knows about another, you have cou
pling, and you’re on a slippery slope to a fragile system. Message delivery should be
transport independent: messages can travel over any medium, whether it’s HTTP, a
message bus, raw TCP, web sockets, or anything else. This abstraction is the most
important piece of infrastructure code.

 In addition, microservices need a way to record behavior and errors. This means they
need logging and a way to report their status. These are essentially the same, and a micro
service shouldn’t concern itself with the details of log files or event reporting. In particu
lar, microservices need to be able to fail fast, and fail loudly, so that the system and the
team can take action quickly. A logging and reporting abstraction is also essential.39

 Microservices also need an executive function. They should let service registries
know about their existence so they can be managed. They should be able to accept
external commands from administration and control functions in the system.
Although communications and logging layers can often be provided by standalone
libraries that you link into your services, the executive function depends on more-
complex interactions with your custom administration and control functions. These
layers must also play nicely with your deployment strategy and tooling. We’ll examine
this in more detail in chapter 5.

2.12 Summary
 The homogeneous nature of microservices makes them highly suitable as a fun

damental unit of software construction. They’re practical units of functionality,
planning, measuring, specification, and deployment. This characteristic arises
from the fact that they’re uniform in size and complexity and are restricted to
using messages to communicate with the outside world.

 A strict definition of the term microservice is too limiting. Rather, you generate
ideas and expand the space of potential solutions by taking a more holistic view
point from a position of deeper understanding.

39 Using containers to deploy your microservices is a great way to get this type of tooling for free.

www.itbook.store/books/9781617293146

http:essential.39
https://itbook.store/books/9781617293146

64		 CHAPTER 2 Services

 Microservice architectures fall into two broad categories: synchronous (typically
REST web services) and asynchronous (typically via a message queue). Neither
is a full solution, and production systems are often hybrids.

 Monolithic architectures create three negative outcomes. They need more
team coordination, causing management overhead; they suffer from higher lev
els of technical debt, causing development speed to stall; and they’re high risk
because deployments affect the entire system.

 The small size of microservices has positive outcomes. Estimation is more accu
rate, because microservices are mostly the same size; code is disposable, elimi
nating egocentric developer behaviors; and the system is dynamically
configurable and so can more readily handle the unexpected.

 There are two types of code: business logic and infrastructure libraries. They
have very different needs. Microservices are for business logic, because they can
handle the fuzzy, ever-changing requirements.

 To design a microservice system, start with requirements, express them as mes
sages, and then group the messages into services. Then think about how mes
sages are handled by services: Synchronously or asynchronously? Observed or
consumed?

 Microservices are natural software components. They are encapsulated and
reusable, have well-defined interfaces, and, most important, can be composed
together.

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

www.itbook.store/books/9781617293146

https://itbook.store/books/9781617293146

