
M A N N I N G

Justin Richer
Antonio Sanso

FOREWORD BY Ian Glazer

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

OAuth 2 in Action
by Justin Richer and Antonio Sanso

Chapter 1

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

iii

brief contents
Part 1 First steps ...1

1 ■ What is OAuth 2.0 and why should you care? 3
2 ■ The OAuth dance 21

Part 2 Building an OAuth 2 environment41

3 ■ Building a simple OAuth client 43
4 ■ Building a simple OAuth protected resource 59
5 ■ Building a simple OAuth authorization server 75
6 ■ OAuth 2.0 in the real world 93

Part 3 OAuth 2 implementation
and vulnerabilities ..119

7 ■ Common client vulnerabilities 121
8 ■ Common protected resources vulnerabilities 138
9 ■ Common authorization server vulnerabilities 154

10 ■ Common OAuth token vulnerabilities 168

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

iv brief contents

Part 4 Taking OAuth further ..179

11 ■ OAuth tokens 181
12 ■ Dynamic client registration 208
13 ■ User authentication with OAuth 2.0 236
14 ■ Protocols and profiles using OAuth 2.0 262
15 ■ Beyond bearer tokens 282
16 ■ Summary and conclusions 298

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

Part 1

First steps

In this section, you’ll get a thorough overview of the OAuth 2.0 protocol, how
it works, and why it works the way that it does. We’ll start with an overview of what
OAuth is and how people used to solve the delegation problem before OAuth
was invented. We’ll also take a look at the boundaries of what OAuth is not and
how it fits into the larger web security ecosystem. We’ll then take a deep look at
the authorization code grant type, the most canonical and complete grant type
available in OAuth 2.0 today. These topics will provide a solid basis for under-
standing the rest of the book.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

3

1What is OAuth 2.0 and why
should you care?

This chapter covers
■ ■■ What OAuth 2.0 is

■ ■■ What developers do without OAuth

■ ■■ How OAuth works

■ ■■ What OAuth 2.0 is not

If you’re a software developer on the web today, chances are you’ve heard of OAuth.
It is a security protocol used to protect a large (and growing) number of web APIs all
over the world, from large-scale providers such as Facebook and Google to small one-
off APIs at startups and inside enterprises of all sizes. It’s used to connect websites to
one another and it powers native and mobile applications connecting to cloud ser-
vices. It’s being used as the security layer for a growing number of standard protocols
in a variety of domains, from healthcare to identity, from energy to the social web.
OAuth is far and away the dominant security method on the web today, and its ubiq-
uity has leveled the playing field for developers wanting to secure their applications.

But what is it, how does it work, and why do we need it?

1.1 What is OAuth 2.0?
OAuth 2.0 is a delegation protocol, a means of letting someone who controls a
resource allow a software application to access that resource on their behalf with-
out impersonating them. The application requests authorization from the owner

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

4 Chapter 1 What is OAuth 2.0 and why should you care?

of the resource and receives tokens that it can use to access the resource. This all
happens without the application needing to impersonate the person who controls
the resource, since the token explicitly represents a delegated right of access. In
many ways, you can think of the OAuth token as a “valet key” for the web. Not all
cars have a valet key, but for those that do, the valet key provides additional security
beyond simply handing over the regular key. The valet key of a car allows the owner
of the car to give limited access to someone, the valet, without handing over full
control in the form of the owner’s key. Simple valet keys limit the valet to accessing
the ignition and doors but not the trunk or glove box. More complex valet keys can
limit the upper speed of the car and even shut the car off if it travels more than a
set distance from its starting point, sending an alert to the owner. In much the same
way, OAuth tokens can limit the client’s access to only the actions that the resource
owner has delegated.

For example, let’s say that you have a cloud photo-storage service and a photo-
printing service, and you want to be able to print the photos that you have stored in
your storage service. Luckily, your cloud-printing service can communicate with your
cloud-storage service using an API. This is great, except that the two services are run
by different companies, which means that your account with the storage service has no
connection to your account with the printing service. We can use OAuth to solve this
problem by letting you delegate access to your photos across the different services, all
without giving your password away to the photo printer.

Although OAuth is largely indifferent to what kind of resource it is protecting,
it does fit nicely with today’s RESTful web services, and it works well for both web
and native client applications. It can be scaled from a small single-user application
up to a multimillion-user internet API. It’s as much at home on the untamed wilds
of the web, where it grew up and is used to protect user-facing APIs of all types, as
it is inside the controlled and monitored boundaries of an enterprise, where it’s
being used to manage access to a new generation of internal business APIs and
systems.

And that’s not all: if you’ve used mobile or web technology in the past five years,
chances are even higher that you’ve used OAuth to delegate your authority to an appli-
cation. In fact, if you’ve ever seen a web page like the one shown in figure 1.1, then
you’ve used OAuth, whether you realize it or not.

In many instances, the use of the OAuth protocol is completely transparent, such
as in Steam’s and Spotify’s desktop applications. Unless an end user is actively looking
for the telltale marks of an OAuth transaction, they would never know it’s being used.1
This is a good thing, since a good security system should be nearly invisible when all is
functioning properly.

1 The good news is that by the end of this book, you should be able to pick up on all of these telltale
signs yourself.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 What is OAuth 2.0? 5

We know that OAuth is a security protocol, but what exactly does it do? Since you’re
holding a book that’s purportedly about OAuth 2.0, that’s a fair question. According
to the specification that defines it:2

The OAuth 2.0 authorization framework enables a third-party application to obtain lim-
ited access to an HTTP service, either on behalf of a resource owner by orchestrating an
approval interaction between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf.

Let’s unpack that a bit: as an authorization framework, OAuth is all about getting the
right of access from one component of a system to another. In particular, in the OAuth
world, a client application wants to gain access to a protected resource on behalf of a
resource owner (usually an end user). These are the components that we have so far:

■■ The resource owner has access to an API and can delegate access to that API. The
resource owner is usually a person and is generally assumed to have access to a
web browser. Consequently, this book’s diagrams represent this party as a person
sitting with a web browser.

■■ The protected resource is the component that the resource owner has access to. This
can take many different forms, but for the most part it’s a web API of some kind.
Even though the name “resource” makes it sound as though this is something
to be downloaded, these APIs can allow read, write, and other operations just as
well. This book’s diagrams show protected resources as a rack of servers with a
lock icon.

■■ The client is the piece of software that accesses the protected resource on behalf
of the resource owner. If you’re a web developer, the name “client” might make
you think this is the web browser, but that’s not how the term is used here. If

2 RFC 6749 https://tools.ietf.org/html/rfc6749

Figure 1.1 An OAuth authorization dialog from the exercise framework for this book

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

6 Chapter 1 What is OAuth 2.0 and why should you care?

you’re a business application developer, you might think of the “client” as the
person who’s paying for your services, but that’s not what we’re talking about,
either. In OAuth, the client is whatever software consumes the API that makes up
the protected resource. Whenever you see “client” in this book, we’re almost cer-
tainly talking about this OAuth-specific definition. This book’s diagrams depict
clients as a computer screen with gears. This is partially in deference to the fact
that there are many different forms of client applications, as we’ll see in chapter
6, so no one icon will universally suffice.

We’ll cover these all in greater depth in chapter 2 when we look at “The OAuth Dance”
in detail. But for now, we need to realize that we’ve got one goal in this whole setup: get-
ting the client to access the protected resource for the resource owner (see figure 1.2).

In the printing example, let’s say you’ve uploaded your vacation photos to the
photo-storage site, and now you want to have them printed. The storage site’s API is
the resource, and the printing service is the client of that API. You, as the resource
owner, need to be able to delegate part of your authority to the printer so that it can
read your photos. You probably don’t want the printer to be able to read all of your
photos, nor do you want the printer to be able to delete photos or upload new ones of
its own. Ultimately, what you’re interested in is getting certain photos printed, and if
you’re like most users, you’re not going to be thinking about the security architectures
of the systems you’re using to get that done.

Thankfully, because you’re reading this book, chances are that you’re not like most
users and you do care about security architectures. In the next section, we’ll see how
this problem could be solved imperfectly without OAuth, and then we’ll look at how
OAuth can solve it in a better way.

Resource
Owner

The Goal:

Give the client access
to the protected

resource on behalf of
the resource owner.

Protected
Resource

Client

Figure 1.2 Connecting the client on behalf of the resource owner

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 The bad old days: credential sharing (and credential theft) 7

1.2 The bad old days: credential sharing (and credential theft)
The problem of wanting to connect multiple disparate services is hardly new, and we
could make a compelling argument that it’s been around from the moment there was
more than one network-connected service in the world.

One approach, popular in the enterprise space, is to copy the user’s credentials and
replay them on another service (see figure 1.3). In this case, the photo printer assumes that
the user is using the same credentials at the printer that they’re using at the storage
site. When the user logs in to the printer, the printer replays the user’s username and
password at the storage site in order to gain access to the user’s account over there,
pretending to be the user.

In this scenario, the user needs to authenticate to the client using some kind of cre-
dential, usually something that’s centrally controlled and agreed on by both the client
and the protected resource. The client then takes that credential, such as a username
and password or a domain session cookie, and replays it to the protected resource,
pretending to be the user. The protected resource acts as if the user had authenticated
directly, which does in fact make the connection between the client and protected
resource, as required previously.

This approach requires that the user have the same credentials at the client applica-
tion and the protected resource, which limits the effectiveness of this credential-theft
technique to a single security domain. For instance, this could occur if a single com-
pany controls the client, authorization server, and protected resources, and all of these
run inside the same policy and network control. If the printing service is offered by the
same company that provided the storage service, this technique might work as the user
would have the same account credentials on both services.

Resource
Owner

Copy the resource
owner’s credentials

and replay them to the
protected resource.

Protected
Resource

Client

Figure 1.3 Copy the resource owner’s credentials without asking

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

8 Chapter 1 What is OAuth 2.0 and why should you care?

This technique also exposes the user’s password to the client application, though inside
a single security domain using a single set of credentials, this is likely to be happening
anyway. However, the client is impersonating the user, and the protected resource has
no way to tell the difference between the resource owner and the impersonating client
because they’re using the same username and password in the same way.

But what if the two services occupied different security domains, a likely scenario
for our photo-printing example? We can’t copy the password the user gave us to log
into our application any longer, because it won’t work on the remote site. Faced with
this challenge, these would-be credential thieves could employ an age-old method for
stealing something: ask the user (figure 1.4).

If the printing service wants to get the user’s photos, it can prompt the user for their
username and password on the photo-storage site. As it did previously, the printer
replays these credentials on the protected resource and impersonates the user. In this
scenario, the credentials that the user uses to log into the client can be different from
those used at the protected resource. However, the client gets around this by asking
the user to provide a username and password for the protected resource. Many users
will in fact do this, especially when promised a useful service involving the protected
resource. Consequently, this remains one of the most common approaches to mobile
applications accessing a back end service through a user account today: the mobile
application prompts the user for their credentials and then replays those credentials
directly to the back end API over the network. To keep accessing the API, the client
application will store the user’s credentials so that they can be replayed as needed. This
is an extremely dangerous practice, since the compromise of any client in use will lead
to a full compromise of that user’s account across all systems.

Resource
Owner

Protected
Resource

Client

?

Ask for the resource
owner’s credentials

and replay them to the
protected resource.

Figure 1.4 Ask for the resource owner’s credentials, and replay them

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 The bad old days: credential sharing (and credential theft) 9

This approach still works only in a limited set of circumstances: the client needs to have
access to the user’s credentials directly, and those credentials need to be able to be
replayed against a service outside of the user’s presence. This rules out a large variety
of ways that the user can log in, including nearly all federated, many multifactor, and
most higher-security login systems.

Lightweight Directory Access Protocol (LDAP) authentication

Interestingly, this pattern is exactly how password-vault authentication technolo-
gies such as LDAP function. When using LDAP for authentication, a client applica-
tion collects credentials directly from the user and then replays these credentials
to the LDAP server to see whether they’re valid. The client system must have
access to the plaintext password of the user during the transaction; otherwise, it
has no way of verifying it with the LDAP server. In a very real sense, this method
is a form of man-in-the-middle attack on the user, although one that’s generally
benevolent in nature.

For those situations in which it does work, it exposes the user’s primary credentials to
a potentially untrustworthy application, the client. To continue to act as the user, the
client has to store the user’s password in a replayable fashion (often in plaintext or a
reversible encryption mechanism) for later use at the protected resource. If the client
application is ever compromised, the attacker gains access not only to the client but
also to the protected resource, as well as any other service where the end user may have
used the same password.

Furthermore, in both of these approaches, the client application is impersonating the
resource owner, and the protected resource has no way of distinguishing a call directly
from the resource owner from a call being directed through a client. Why is that unde-
sirable? Let’s return to the printing service example. Many of the approaches will work,
in limited circumstances, but consider that you don’t want the printing service to be
able to upload or delete photos from the storage service. You want the service to read
only those photos you want printed. You also want it to be able to read only while you
want the photos printed, and you’d like the ability to turn that access off at any time.

If the printing service needs to impersonate you to access your photos, the storage
service has no way to tell whether it’s the printer or you asking to do something. If the
printing service surreptitiously copies your password in the background (even though
it promised not to do so), it can pretend to be you and grab your photos whenever it
wants. The only way to turn off the rogue printing service is to change your password
at the storage service, invalidating its copy of your password in the process. Couple this
with the fact that many users reuse passwords across different systems and you have yet
another place where passwords can be stolen and accounts correlated with each other.
Quite frankly, in solving this connection problem, we made things worse.

By now you’ve seen that replaying user passwords is bad. What if, instead, we gave
the printing service universal access to all photos on the storage service on behalf of

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

10 Chapter 1 What is OAuth 2.0 and why should you care?

anyone it chose? Another common approach is to use a developer key (figure 1.5)
issued to the client, which uses this to call the protected resource directly.

In this approach, the developer key acts as a kind of universal key that allows the client
to impersonate any user that it chooses, probably through an API parameter. This has
the benefit of not exposing the user’s credentials to the client, but at the cost of the cli-
ent requiring a highly powerful credential. Our printing service could print any photos
that it wanted to at any time, for any user, since the client effectively has free rein over
the data on the protected resource. This can work to an extent, but only in instances in
which the client can be fully known to and trusted by the protected resource. It is vanish-
ingly unlikely that any such relationship would be built across two organizations, such
as those in our photo-printing scenario. Additionally, the damage done to the protected
resource if the client’s credentials are stolen is potentially catastrophic, since all users of
the storage service are affected by the breach whether they ever used the printer or not.

Another possible approach is to give users a special password (figure 1.6) that’s only
for sharing with third-party services. Users don’t use this password to log in themselves,
but paste it into applications that they want to work for them. This is starting to sound
like that limited-use valet key you saw at the beginning of the chapter.

This is starting to get closer to a desirable system, as the user no longer has to share
their real password with the client, nor does the protected resource need to implicitly
trust the client to act properly on behalf of all users at all times. However, the usabil-
ity of such a system is, on its own, not very good. This requires the user to generate,
distribute, and manage these special credentials in addition to the primary passwords
they already must curate. Since it’s the user who must manage these credentials, there
is also, generally speaking, no correlation between the client program and the creden-
tial itself. This makes it difficult to revoke access to a specific application.

Resource
Owner

A universal key that’s
good for opening the door
no matter who locked it.

Protected
Resource

Client

Figure 1.5 Use a
universal developer key,
and identify the user
on whose behalf you’re
(allegedly) acting

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Delegating access 11

Can’t we do better than this?
What if we were able to have this kind of limited credential, issued separately for

each client and each user combination, to be used at a protected resource? We could
then tie limited rights to each of these limited credentials. What if there were a network-
based protocol that allowed the generation and secure distribution of these limited
credentials across security boundaries in a way that’s both user-friendly and scalable to
the internet as a whole? Now we’re starting to talk about something interesting.

1.3 Delegating access
OAuth is a protocol designed to do exactly that: in OAuth, the end user delegates some
part of their authority to access the protected resource to the client application to act
on their behalf. To make that happen, OAuth introduces another component into the
system: the authorization server (figure 1.7).

The authorization server (AS) is trusted by the protected resource to issue special-
purpose security credentials—called OAuth access tokens—to clients. To acquire a
token, the client first sends the resource owner to the authorization server in order to
request that the resource owner authorize this client. The resource owner authenti-
cates to the authorization server and is generally presented with a choice of whether to
authorize the client making the request. The client is able to ask for a subset of func-
tionality, or scopes, which the resource owner may be able to further diminish. Once
the authorization grant has been made, the client can then request an access token
from the authorization server. This access token can be used at the protected resource
to access the API, as granted by the resource owner (see figure 1.8).

At no time in this process are the resource owner’s credentials exposed to the client:
the resource owner authenticates to the authorization server separately from anything

Figure 1.6 A service-
specific password that
limits access

A special password
(or token) that can be
used to access just this

protected resource.

Resource
Owner

Protected
Resource

Client

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

12 Chapter 1 What is OAuth 2.0 and why should you care?

Figure 1.7 The OAuth authorization server automates the service-specific password process

Authorization
Server

The authorization
server gives us a

mechanism to bridge
the gap between
the client and the

protected resource.

Resource
Owner

Protected
Resource

Client

Figure 1.8 The OAuth process, at a high level

Resource
Owner

Authorization
Server

Protected
Resource

Client

Client requests
authorization

Resource owner
grants authorization

Client sends
authorization grant

Authorization server
sends access token

Client sends
access token

Protected resource
sends resource

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Delegating access 13

used to communicate with the client. Neither does the client have a high-powered
developer key: the client is unable to access anything on its own and instead must be
authorized by a valid resource owner before it can access any protected resources. This
is true even though most OAuth clients have a means of authenticating themselves to
the authorization server.

The user generally never has to see or deal with the access token directly. Instead of
requiring the user to generate tokens and paste them into clients, the OAuth protocol
facilitates this process and makes it relatively simple for the client to request a token
and the user to authorize the client. Clients can then manage the tokens, and users can
manage the client applications.

This is a general overview of how the OAuth protocol works, but in fact there are
several ways to get an access token using OAuth. We’ll discuss the details of this process
in chapter 2 by looking in more detail at the authorization code grant type of OAuth
2.0. We’ll cover other methods of getting access tokens in chapter 6.

1.3.1 Beyond HTTP Basic and the password-sharing antipattern

Many of the more “traditional” approaches listed in the previous section are examples
of the password antipattern, in which a shared secret (the password) directly rep-
resents the party in question (the user). By sharing this secret password with appli-
cations, the user enables applications to access protected APIs. However, as we’ve
shown, this is fraught with real-world problems. Passwords can be stolen or guessed,
a password from one service is likely to be used verbatim on another service by the
same user, and storage of passwords for future API access makes them even more
susceptible to theft.

How did HTTP APIs become password-protected in the first place? The history
of the HTTP protocol and its security methods is enlightening. The HTTP protocol
defines a mechanism whereby a user in a browser is able to authenticate to a web page
using a username and password over a protocol known as HTTP Basic Auth. There is
also a slightly more secure version of this, known as HTTP Digest Auth, but for our pur-
poses they are interchangeable as both assume the presence of a user and effectively
require the presentation of a username and password to the HTTP server. Addition-
ally, because HTTP is a stateless protocol, it’s assumed that these credentials will be
presented again on every single transaction.

This all makes sense in light of HTTP’s origins as a document access protocol, but
the web has grown significantly in both scope and breadth of use since those early
days. HTTP as a protocol makes no distinction between transactions with a browser
in which the user is present and transactions with another piece of software without
an intermediary browser. This fundamental flexibility has been key to the unfathom-
able success and adoption of the HTTP protocol. But as a consequence, when HTTP
started to be used for direct-access APIs in addition to user-facing services, its existing
security mechanisms were quickly adopted for this new use case. This simple techno-
logical decision has contributed to the long-running misuse of continuously-presented
passwords for both APIs and user-facing pages. Whereas browsers have cookies and

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

14 Chapter 1 What is OAuth 2.0 and why should you care?

other session-management techniques at their disposal, the types of HTTP clients that
generally access a web API do not.

OAuth was designed from the outset as a protocol for use with APIs, wherein the
main interaction is outside of the browser. It usually has an end user in a browser to
start the process, and indeed this is where the flexibility and power in the delegation
model comes from, but the final steps of receiving the token and using it at a protected
resource lie outside the view of the user. In fact, some of the key use cases of OAuth
occur when the user is no longer present at the client, yet the client is still able to act
on the user’s behalf. Using OAuth allows us to move past the notions and assumptions
of the HTTP Basic protocol in a way that’s powerful, secure, and designed to work with
today’s API-based economy.

1.3.2 Authorization delegation: why it matters and how it’s used

Fundamental to the power of OAuth is the notion of delegation. Although OAuth
is often called an authorization protocol (and this is the name given to it in the RFC
which defines it), it is a delegation protocol. Generally, a subset of a user’s authoriza-
tion is delegated, but OAuth itself doesn’t carry or convey the authorizations. Instead,
it provides a means by which a client can request that a user delegate some of their
authority to it. The user can then approve this request, and the client can then act on
it with the results of that approval.

In our printing example, the photo-printing service can ask the user, “Do you have
any of your photos stored on this storage site? If so, we can totally print that.” The user is
then sent to the photo-storage service, which asks, “This printing service is asking to get
some of your photos; do you want that to happen?” The user can then decide whether
they want that to happen, deciding whether to delegate access to the printing service.

The distinction between a delegation and an authorization protocol is important
here because the authorizations being carried by the OAuth token are opaque to most
of the system. Only the protected resource needs to know the authorization, and as
long as it’s able to find out from the token and its presentation context (either by look-
ing at the token directly or by using a service of some type to obtain this information),
it can serve the API as required.

Connecting the online world

Many of the concepts in OAuth are far from novel, and even their execution owes much
to previous generations of security systems. However, OAuth is a protocol designed
for the world of web APIs, accessed by client software. The OAuth 2.0 framework in
particular provides a set of tools for connecting such applications and APIs across
a wide variety of use cases. As we’ll see in later chapters, the same core concepts
and protocols can be used to connect in browser applications, web services, native
and mobile applications, and even (with some extension) small-scale devices in the
internet of things. Throughout all of this, OAuth depends on the presence of an online
and connected world and enables new things to be built on that stratum.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Delegating access 15

1.3.3 User-driven security and user choice

Since the OAuth delegation process involves the resource owner, it presents a pos-
sibility not found in many other security models: important security decisions can be
driven by end user choice. Traditionally, security decisions have been the purview of
centralized authorities. These authorities determine who can use a service, with which
client software, and for what purpose. OAuth allows these authorities to push some of
that decision-making power into the hands of the users who will ultimately be using
the software.

OAuth systems often follow the principle of TOFU: Trust On First Use. In a TOFU
model, the first time a security decision needs to be made at runtime, and there is no
existing context or configuration under which the decision can be made, the user
is prompted. This can be as simple as “Connect a new application?” although many
implementations allow for greater control during this step. Whatever the user experi-
ence here, the user with appropriate authority is allowed to make a security decision.
The system offers to remember this decision for later use. In other words, the first time
an authorization context is met, the system can be directed to trust the user’s decision
for later processing: Trust On First Use.

Do I have to eat my TOFU?

The Trust On First Use (TOFU) method of managing security decisions is not required
by OAuth implementations, but it’s especially common to find these two technolo-
gies together. Why is that? The TOFU method strikes a good balance between the
flexibility of asking end users to make security decisions in context and the fatigue
of asking them to make these decisions constantly. Without the “Trust” portion of
TOFU, users would have no say in how these delegations are made. Without the “On
First Use” portion of TOFU, users would quickly become numb to an unending bar-
rage of access requests. This kind of security system fatigue breeds workarounds
that are usually more insecure than the practices that the security system is attempt-
ing to address.

This approach also presents the user’s decision in terms of functionality, not security:
“Do you want this client to do what it’s asking to do?” This is an important distinction
from more traditional security models wherein decision makers are asked ahead of
time to demarcate what isn’t permissible. Such security decisions are often overwhelm-
ing for the average user, and in any event the user cares more about what they’re trying
to accomplish instead of what they’re trying to prevent.

Now this isn’t to say that the TOFU method must be used for all transactions or deci-
sions. In practice, a three-layer listing mechanism offers powerful flexibility for security
architects (figure 1.9).

The whitelist determines known-good and trusted applications, and the blacklist
determines known-bad applications or other negative actors. These are decisions that
can easily be taken out of the hands of end users and decided a priori by system policy.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

16 Chapter 1 What is OAuth 2.0 and why should you care?

In a traditional security model, the discussion would stop here, since everything not on
the whitelist is automatically on the blacklist by default. However, with the addition of
the TOFU method, we can allow a graylist in the middle of these two, an unknown area
in which user-based runtime trust decisions can take precedence. These decisions can be
logged and audited, and the risk of breach minimized by policies. By offering the graylist
capability, a system can greatly expand the ways it can be used without sacrificing security.

1.4 OAuth 2.0: the good, the bad, and the ugly
OAuth 2.0 is very good at capturing a user delegation decision and expressing that
across the network. It allows for multiple different parties to be involved in the security
decision process, most notably the end user at runtime. It’s a protocol made up of
many different moving parts, but in many ways it’s far simpler and more secure than
the alternatives.

One key assumption in the design of OAuth 2.0 was that there would always be
several orders of magnitude more clients in the wild than there would be authoriza-
tion servers or protected resource servers (figure 1.10). This makes sense, as a single
authorization server can easily protect multiple resource servers, and there are likely
to be many different kinds of clients wanting to consume any given API. An authoriza-
tion server can even have several different classes of clients that are trusted at differ-
ent levels, but we’ll cover that in more depth in chapter 12. As a consequence of this
architectural decision, wherever possible, complexity is shifted away from clients and
onto servers. This is good for client developers, as the client becomes the simplest

Figure 1.9 Different levels of trust, working in parallel

Whitelist
Internal parties
Known business partners
Customer organizations
Trust frameworks

• Centralized control

• Traditional policy management

Graylist
Unknown entities
Trust On First Use

Blacklist
Known bad parties
Attack sites

• Centralized control

• Traditional policy management

• End user decisions
• Extensive auditing and logging
• Rules on when to move to the

white or black lists

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 OAuth 2.0: the good, the bad, and the ugly 17

piece of software in the system. Client developers no longer have to deal with signa-
ture normalizations or parsing complicated security policy documents, as they would
have in previous security protocols, and they no longer have to worry about handling
sensitive user credentials. OAuth tokens provide a mechanism that’s only slightly
more complex than passwords but significantly more secure when used properly.

The flip side is that authorization servers and protected resources are now respon-
sible for more of the complexity and security. A client needs to manage securing only
its own client credentials and the user’s tokens, and the breach of a single client would
be bad but limited in its damage to the users of that client. Breaching the client also
doesn’t expose the resource owner’s credentials, since the client never sees them in the
first place. An authorization server, on the other hand, needs to manage and secure
the credentials and tokens for all clients and all users on a system. Although this does
make it more of a target for attack, it’s significantly easier to make a single authoriza-
tion server highly secure than it is to make a thousand clients written by independent
developers just as secure.

The extensibility and modularity of OAuth 2.0 form one of its greatest assets, since
it allows the protocol to be used in a wide variety of environments. However, this same
flexibility leads to basic incompatibility problems between implementations. OAuth
leaves many pieces optional, which can confuse developers who are trying to imple-
ment it between two systems.

Figure 1.10 Notional relative numbers of components in an OAuth ecosystem

 Trusted
Clients

Certified
sClient

Dynamically
Registered

Clients

Protected
Resources

Authorization
Server

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

18 Chapter 1 What is OAuth 2.0 and why should you care?

Even worse, some of the available options in OAuth can be taken in the wrong con-
text or not enforced properly, leading to insecure implementations. These kinds of
vulnerabilities are discussed at length in the OAuth Threat Model Document3 and the
vulnerabilities section of this book (chapters 7, 8, 9, and 10). Suffice it to say, the fact
that a system implements OAuth, and even implements it correctly according to the
spec, doesn’t mean that this system is secure in practice.

Ultimately, OAuth 2.0 is a good protocol, but it’s far from perfect. We will see its
replacement at some point in the future, as with all things in technology, but no real
contender has yet emerged as of the writing of this book. It’s just as likely that OAuth
2.0’s replacement will end up being a profile or extension of OAuth 2.0 itself.

1.5 What OAuth 2.0 isn’t
OAuth is used for many different kinds of APIs and applications, connecting the online
world in ways never before possible. Even though it’s approaching ubiquity, there are
many things that OAuth is not, and it’s important to understand these boundaries
when understanding the protocol itself.

Since OAuth is defined as a framework, there has historically been some confu-
sion regarding what “counts” as OAuth and what does not. For the purposes of this
discussion, and truly for the purposes of this book, we’re taking OAuth to mean the
protocol defined by the core OAuth specification,4 which details several ways of get-
ting an access token. We’re also including the use of bearer tokens as defined in the
attendant specification,5 which dictates how to use this particular style of token. These
two actions—how to get a token and how to use a token—are the fundamental parts
of OAuth. As we’ll see in this section, there are a number of other technologies in the
wider OAuth ecosystem that work together with the core of OAuth to provide greater
functionality than what is available from OAuth itself. We contend that this ecosystem
is evidence of a healthy protocol and shouldn’t be conflated with the protocol itself.

OAuth isn’t defined outside of the HTTP protocol. Since OAuth 2.0 with bearer tokens
provides no message signatures, it is not meant to be used outside of HTTPS (HTTP
over TLS). Sensitive secrets and information are passed over the wire, and OAuth
requires a transport layer mechanism such as TLS to protect these secrets. A standard
exists for presenting OAuth tokens over Simple Authentication and Security Layer
(SASL)–protected protocols,6 there are new efforts to define OAuth over Constrained
Application Protocol (CoAP),7 and future efforts could make parts of the OAuth pro-
cess usable over non-TLS links (such as some discussed in chapter 15). But even in
these cases, there needs to be a clear mapping from the HTTPS transactions into other
protocols and systems.

3 RFC 6819 https://tools.ietf.org/html/rfc6819
4 RFC 6749 https://tools.ietf.org/html/rfc6749
5 RFC 6750 https://tools.ietf.org/html/rfc6750
6 RFC 7628 https://tools.ietf.org/html/rfc7628
7 https://tools.ietf.org/html/draft-ietf-ace-oauth-authz

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 What OAuth 2.0 isn’t 19

OAuth isn’t an authentication protocol, even though it can be used to build one. As we’ll
cover in greater depth in chapter 13, an OAuth transaction on its own tells you nothing
about who the user is, or even if they’re there. Think of our photo-printing example:
the photo printer doesn’t need to know who the user is, only that somebody said it was
OK to download some photos. OAuth is, in essence, an ingredient that can be used in
a larger recipe to provide other capabilities. Additionally, OAuth uses authentication
in several places, particularly authentication of the resource owner and client software
to the authorization server. This embedded authentication does not itself make OAuth
an authentication protocol.

OAuth doesn’t define a mechanism for user-to-user delegation, even though it is fundamen-
tally about delegation of a user to a piece of software. OAuth assumes that the resource
owner is the one that’s controlling the client. In order for the resource owner to autho-
rize a different user, more than OAuth is needed. This kind of delegation is not an
uncommon use case, and the User Managed Access protocol (discussed in chapter 14)
uses OAuth to create a system capable of user-to-user delegation.

OAuth doesn’t define authorization-processing mechanisms. OAuth provides a means to
convey the fact that an authorization delegation has taken place, but it doesn’t define
the contents of that authorization. Instead, it is up to the service API definition to use
OAuth’s components, such as scopes and tokens, to define what actions a given token
is applicable to.

OAuth doesn’t define a token format. In fact, the OAuth protocol explicitly states that
the content of the token is completely opaque to the client application. This is a
departure from previous security protocols such as WS-*, Security Assertion Markup
Language (SAML), or Kerberos, in which the client application needed to be able to
parse and process the token. However, the token still needs to be understood by the
authorization server that issues it and the protected resource that accepts it. Desire for
interoperability at this level has led to the development of the JSON Web Token (JWT)
format and the Token Introspection protocol, discussed in chapter 11. The token itself
remains opaque to the client, but now other parties can understand its format.

OAuth 2.0 defines no cryptographic methods, unlike OAuth 1.0. Instead of defining a new
set of cryptographic mechanisms specific to OAuth, the OAuth 2.0 protocol is built to
allow the reuse of more general-purpose cryptographic mechanisms that can be used out-
side of OAuth. This deliberate omission has helped lead to the development of the JSON
Object Signing and Encryption (JOSE) suite of specifications, which provides general-
purpose cryptographic mechanisms that can be used alongside and even outside OAuth.
We’ll see more of the JOSE specifications in chapter 11 and apply them to a message-level
cryptographic protocol using OAuth Proof of Possession (PoP) tokens in chapter 15.

OAuth 2.0 is also not a single protocol. As discussed previously, the specification is split
into multiple definitions and flows, each of which has its own set of use cases. The core
OAuth 2.0 specification has somewhat accurately been described as a security protocol
generator, because it can be used to design the security architecture for many different
use cases. As discussed in the previous section, these systems aren’t necessarily compat-
ible with each other.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

20 Chapter 1 What is OAuth 2.0 and why should you care?

Instead of attempting to be a monolithic protocol that solves all aspects of a security
system, OAuth focuses on one thing and leaves room for other components to play
their parts where it makes more sense. Although there are many things that OAuth
is not, OAuth does provide a solid basis that can be built on by other focused tools to
create more comprehensive security architecture designs.

1.6 Summary
OAuth is a widely used security standard that enables secure access to protected
resources in a fashion that’s friendly to web APIs.

■■ OAuth is about how to get a token and how to use a token.
■■ OAuth is a delegation protocol that provides authorization across systems.
■■ OAuth replaces the password-sharing antipattern with a delegation protocol

that’s simultaneously more secure and more usable.
■■ OAuth is focused on solving a small set of problems and solving them well, which

makes it a suitable component within larger security systems.

Ready to learn about how exactly OAuth accomplishes all of this on the wire? Read on
for the details of The OAuth Dance.

Code reuse between different OAuth flows

In spite of their wide variety, the different applications of OAuth do allow for a large
amount of code reuse between very different applications, and careful application of
the OAuth protocol can allow for future growth and flexibility in unanticipated direc-
tions. For instance, assume that there are two back end systems that need to talk
to each other securely without referencing a particular end user, perhaps doing a
bulk data transfer. This could be handled in a traditional developer API key because
both the client and resource are in the same trusted security domain. However, if the
system uses the OAuth client credentials grant (discussed in chapter 6) instead, the
system can limit the lifetime and access rights of tokens on the wire, and developers
can use existing OAuth libraries and frameworks for both the client and protected
resource instead of something completely custom. Since the protected resource is
already set up to process requests protected by OAuth access tokens, at a future
point when the protected resource wants to make its data available in a per-user
delegated fashion, it can easily handle both kinds of access simultaneously. For
instance, by using separate scopes for the bulk transfer and the user-specific data,
the resource can easily differentiate between these calls with minimal code changes.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

Richer ● Sanso

T
hink of OAuth 2 as the web version of a valet key. It is
an HTTP-based security protocol that allows users of
a service to enable applications to use that service on

their behalf without handing over full control. And OAuth is
used everywhere, from Facebook and Google, to startups and
cloud services.

OAuth 2 in Action teaches you practical use and deployment of
OAuth 2 from the perspectives of a client, an authorization
server, and a resource server. You’ll begin with an overview of
OAuth and its components and interactions. Next, you’ll get
hands-on and build an OAuth client, an authorization server,
and a protected resource. Th en you’ll dig into tokens,
dynamic client registration, and more advanced topics. By
the end, you’ll be able to confi dently and securely build and
deploy OAuth on both the client and server sides.

What’s Inside
● Covers OAuth 2 protocol and design
● Authorization with OAuth 2
● OpenID Connect and User-Managed Access
● Implementation risks
● JOSE, introspection, revocation, and registration
● Protecting and accessing REST APIs

Readers need basic programming skills and knowledge of
HTTP and JSON.

Justin Richer is a systems architect and soft ware engineer.
Antonio Sanso is a security soft ware engineer and a security
researcher. Both authors contribute to open standards and
open source.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/oauth-2-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

OAuth 2 IN ACTION

WEB DEVELOPMENT/SECURITY

M A N N I N G

“Provides pragmatic
guidance on what to do ...

and what not to do.”
—From the Foreword by

Ian Glazer, Salesforce

“Unmatched in both
scope and depth. Code

examples show how
 protocols work internally.”

—Thomas O’Rourke
Upstream Innovations

“A thorough treatment of
OAuth 2 ... the authors really

know this domain.”
—Travis Nelson

Software Technology Group

“A complex topic
 made easy.”—Jorge Bo, 4Finance IT

SEE INSERT

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

	coverSample
	BriefContents
	SamplePart01
	SampleChapter01
	CoverB

