
M A N N I N G

Justin Richer
Antonio Sanso

FOREWORD BY Ian Glazer

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

OAuth 2 in Action
by Justin Richer and Antonio Sanso

Chapter 13

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

iii

brief contents
Part 1 First steps ...1

1 ■ What is OAuth 2.0 and why should you care? 3
2 ■ The OAuth dance 21

Part 2 Building an OAuth 2 environment41

3 ■ Building a simple OAuth client 43
4 ■ Building a simple OAuth protected resource 59
5 ■ Building a simple OAuth authorization server 75
6 ■ OAuth 2.0 in the real world 93

Part 3 OAuth 2 implementation
and vulnerabilities ..119

7 ■ Common client vulnerabilities 121
8 ■ Common protected resources vulnerabilities 138
9 ■ Common authorization server vulnerabilities 154

10 ■ Common OAuth token vulnerabilities 168

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

iv brief contents

Part 4 Taking OAuth further ..179

11 ■ OAuth tokens 181
12 ■ Dynamic client registration 208
13 ■ User authentication with OAuth 2.0 236
14 ■ Protocols and profiles using OAuth 2.0 262
15 ■ Beyond bearer tokens 282
16 ■ Summary and conclusions 298

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

236

The OAuth 2.0 specification defines a delegation protocol useful for conveying autho-
rization decisions across a network of web-enabled applications and APIs. Because
OAuth 2.0 is used to gather the consent of an authenticated end user, many devel-
opers and API providers have concluded that OAuth 2.0 is an authentication proto-
col that can be used to log in users securely. However, in spite of it being a security
protocol that makes use of user interaction, OAuth 2.0 is not an authentication
protocol. Let’s say that again, to be clear:

OAuth 2.0 is not an authentication protocol.

Much of the confusion comes from the fact that OAuth 2.0 is commonly used inside
of authentication protocols, and that OAuth 2.0 embeds several authentication
events inside of a regular OAuth 2.0 process. As a consequence, many developers
will see the OAuth 2.0 process and assume that by using OAuth, they’re performing
user authentication. This turns out to be not only untrue but also dangerous for
service providers, developers, and end users.

This chapter covers
■ ■■ The reasons OAuth 2.0 is not an authentication protocol

■ ■■ Building an authentication protocol using OAuth 2.0

■ ■■ Identifying and avoiding common mistakes when using OAuth 2.0 in authentication

■ ■■ Implementing OpenID Connect on top of OAuth 2.0

13User authentication
with OAuth 2.0

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Why OAuth 2.0 is not an authentication protocol 237

13.1 Why OAuth 2.0 is not an authentication protocol
First we need to answer a fundamental question: What is authentication, anyway?
Authentication, in this context, is what tells an application who the current user is and
whether they’re currently using your application. It’s the piece of the security archi-
tecture that tells you the user is who they claim to be, usually by providing a set of
credentials (such as a username and password) to the application that prove this fact.
A practical authentication protocol will probably also tell you a number of identity
attributes about this user, such as a unique identifier, an email address, and a name to
use when the application says, “Good Morning.”

However, OAuth 2.0 tells the application none of that. OAuth 2.0, on its own, says
absolutely nothing about the user, nor does it say how the user proved their presence,
or even if the user is present at all. As far as an OAuth 2.0 client is concerned, it asked
for a token, it got a token, and it eventually used that token to access some API. It
doesn’t know anything about who authorized the application or whether there was
even a user there at all. In fact, many of the major use cases for OAuth 2.0 are about
obtaining an access token for use when the user isn’t able to interactively authorize the
application any longer. Thinking back to our printing example, although it’s true that
the user logged in to both the printing service and the storage service, the user is in
no way directly involved in the connection between the printing service and the storage
service. Instead, the OAuth 2.0 access token allowed the printing service to act on the
user’s behalf. This is a powerful paradigm for delegated client authorization, but it’s
rather antithetical to authentication, in which the whole point is figuring out whether
the user is there and who they are.

13.1.1 Authentication vs. authorization: a delicious metaphor

To help clear things up, it may be helpful to think of the difference between authenti-
cation and authorization in terms of a metaphor: fudge and chocolate.1 Although there
are some superficial similarities, the nature of these two items is clearly different: choc-
olate is an ingredient whereas fudge is a confection. You can make chocolate fudge,
which is a truly delicious thing in the opinion of your humble authors. This treat is
clearly defined by its chocolaty character. As such, it’s tempting—but ultimately incor-
rect—to say that chocolate and fudge are equivalent. Let’s unpack that a bit here, and
see what on earth it has to do with OAuth 2.0.

Chocolate can be used to make many different things in many different forms, but
it’s always based on cacao. It’s a versatile and useful component that lends its distinct
flavor to everything from cakes and ice creams to pastry fillings and mole sauce. You
can even enjoy chocolate completely on its own with no other ingredients, though
even then it can take a number of different forms. One other popular item that can

1 Much thanks to Vittorio Bertocci for this excellent metaphor, from the blog post “OAuth 2.0 and
Sign-In,” available at http://www.cloudidentity.com/blog/2013/01/02/oauth-2-0-and-sign-in-4/

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

238 Chapter 13 User authentication with OAuth 2.0

be made with chocolate is, of course, chocolate fudge. Here it’s clear to the fudge con-
sumer that the chocolate is the star ingredient of this particular confection.

OAuth 2.0, in this metaphor, is chocolate. It’s a versatile ingredient fundamental to
a number of different security architectures on the web today. OAuth 2.0’s delegation
model is distinctive, and it’s always made up of the same roles and actors. OAuth 2.0
can be used to protect RESTful APIs and web resources. It can be used by clients on
web servers and native applications. It can be used by end users to delegate limited
authority and by trusted applications to transmit back-channel data. OAuth 2.0 can
even be used to make an identity and authentication API, where it’s clear that OAuth
2.0 is the key enabling technology.

Fudge, conversely, is a confection that can be made out of many different things
and it takes on their flavor: from peanut butter to coconut, from oranges to potatoes.2
In spite of the variety of flavors, fudge always has a particular form and texture that
makes it recognizable as fudge, as opposed to some other flavored confection such as
mousse or ganache. One popular flavor of fudge is, of course, chocolate fudge. Even
though it’s clear that chocolate is the star ingredient in this confection, it takes several
additional ingredients and a few key processes to transform chocolate into chocolate
fudge. The result is something recognizable as chocolate in flavor but fudge in form,
and using chocolate to make fudge does not make chocolate equal to fudge.

Authentication in our metaphor is more like fudge. A few key components and pro-
cesses must be brought together in the right way to make it work properly and securely,
and there is a wide variety of options for those components and processes. Users could
be required, for example, to carry a device, memorize a secret password, present a
biometric sample, prove that they can log in to another remote server, or any number
of other approaches. To do their job, these systems can use public key infrastructure
(PKI) and certificates, federated trust frameworks, browser cookies, or even propri-
etary hardware and software. OAuth 2.0 can be one of these technology components,
but of course it doesn’t have to be. Without other factors, OAuth 2.0 isn’t sufficient to
carry user authentication.

As there are recipes for making chocolate fudge, there are patterns for making
OAuth-based authentication protocols. A number of these are made for specific pro-
viders, such as Facebook, Twitter, LinkedIn, or GitHub, and there are even open stan-
dards such as OpenID Connect that can work across many different providers. These
protocols all start with a common base of OAuth and use their own additional compo-
nents to provide authentication capabilities in slightly different ways.

13.2 Mapping OAuth to an authentication protocol
How, then, can we build an authentication protocol with OAuth as a base? First,
we need to map the different OAuth 2.0 parties on to the appropriate parts of an
authentication transaction. In an OAuth 2.0 transaction, a resource owner authorizes

2 No joke, potato fudge is surprisingly good.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Mapping OAuth to an authentication protocol 239

Resource
Owner

User

Authorization
Server

Identity Provider

Protected
Resource

Security D
om

ain Boundary

Client

Relying Party

OAuth
Sign-In

The security
domain

boundary is
crossed

Figure 13.1 Attempting to make an authentication protocol out of OAuth, and failing

a client to access a protected resource using a token from an authorization server.
In an authentication transaction, an end user logs in to a relying party (RP) using
an identity provider (IdP). With this in mind, a common approach at designing an
authentication protocol such as this is to map the relying party on to the protected
resource (figure 13.1). After all, isn’t the relying party the component protected by the
authentication protocol?

Although this may seem to be a sensible way to deploy an identity protocol on top of
OAuth 2.0, we can see in figure 13.1 that the security boundaries don’t line up well. In
OAuth 2.0, the client and the resource owner are working together—the client is act-
ing on behalf of the resource owner. The authorization server and protected resource
also work together, as the authorization server generates the tokens accepted by the
protected resource. In other words, there’s a security and trust boundary between the
user/client and authorization server/protected resource, and OAuth 2.0 is the pro-
tocol used to cross that boundary. When we try to map things, as in figure 13.1, the
boundary is now between the IdP and the protected resource. This forces an unnatural
crossing of this security boundary, where the protected resource is now interacting
directly with the user. However, in OAuth 2.0, the resource owner never generally
interacts with the protected resource: it’s an API meant to be called by the client
application. Remember from the coding exercises in previous chapters, our protected
resource doesn’t even have a UI to speak of. The client, which does interact with the
user, is nowhere to be found in this new mapping.

That doesn’t work, and we need to try something else that respects these security
boundaries. Let’s try to make the RP out of the OAuth 2.0 client, since that’s the

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

240 Chapter 13 User authentication with OAuth 2.0

component that the end user, our resource owner, is normally interacting with anyway.
We’ll also combine the authorization server and protected resource into a single com-
ponent, the IdP. We’re going to have the resource owner delegate access to the client,
but the resource they’re delegating access to is their own identity information. That
is to say, they’re authorizing the RP to find out who is here right now, which is of course
the essence of the authentication transaction that we’re trying to build (figure 13.2).

Although it may seem somewhat counterintuitive to build authentication on top
of authorization, we can see here that leveraging the OAuth 2.0 security delegation
model gives us a powerful means for connecting systems. Furthermore, notice that
we can cleanly map all parts of the OAuth 2.0 system into their corresponding com-
ponents in an authorization protocol. If we extend OAuth 2.0 so that the information
coming from the authorization server and protected resource conveys information
about the user and their authentication context, we can give the client everything it
needs to log the user in securely.

Now we’ve got an authentication protocol made up of our familiar OAuth 2.0
pieces. Since we’re working in a new protocol space, they get different names. The
client is now the relying party, or RP, and the two terms can be used interchangeably
for this protocol. We’ve conceptually combined the authorization server and protected
resource into the Identity Provider, or IdP. It’s possible that the two aspects of the ser-
vice, issuing tokens and serving user identity information, could be served by separate
servers, but as far as the RP is concerned, they’re functioning as a single unit. We’re
also going to add a second token alongside the access token, and we’ll use this new ID
token to carry information about the authentication event itself (figure 13.3).

Resource
Owner

User

Authorization
Server

Identity
Provider

Protected
Resource

Client

+

OAuth

Security D
om

ain Boundary

Sign-In

Relying Party

The security
domain

boundary is
preserved

Figure 13.2 Making an authentication protocol out of OAuth, more successfully

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 How OAuth 2.0 uses authentication 241

The RP can now find out who the user is and how they logged in, but why are we using
two tokens here? We could provide information about the user directly in the token
received from the authorization server, or we could provide a user information API
that can be called as an OAuth protected resource. As it turns out, there is value in
doing both, and we’ll look at the way the OpenID Connect protocol does this later in
this chapter. To accomplish this, we have two tokens used in parallel with each other,
and we’ll look at some of the details in a bit.

13.3 How OAuth 2.0 uses authentication
In the previous section, we saw how it’s possible to build an authentication proto-
col on top of an authorization protocol. However, it’s also true an OAuth transaction
requires several forms of authentication to take place in order for the authorization
delegation process to function: the resource owner authenticates to the authorization
server’s authorization endpoint, the client authenticates to the authorization server at
the token endpoint, and there may be others depending on the setup. We’re building
authentication on top of authorization, and the authorization protocol itself relies on
authentication, isn’t that a bit overcomplicated?

It may seem an odd setup, but notice that this setup can leverage the fact that the
user is authenticating at the authorization server, but at no point are the end user’s
original credentials communicated to the client application (our RP) through the
OAuth 2.0 protocol. By limiting the information that each party needs, the transaction
can be made much more secure and less prone to failure, and it can function across

End User

Session
at the

Relying Party

Identity Provider

Identity Profile API Relying Party
(Application)

End User’s Credentials,
Authorization of the Relying Party

ID Token and
Access Token

Access Token and
User Information

Figure 13.3 Components of an OAuth-based authentication and identity protocol

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

242 Chapter 13 User authentication with OAuth 2.0

security domains. The user authenticates directly to a single party, as does the client,
and neither needs to impersonate the other.

Another major benefit of building authentication on top of authorization in this
way is that it allows for end-user consent at runtime. By allowing the end user to
decide which applications they release their identity to, an OAuth 2.0–based identity
protocol can scale across security domains to the internet at large. Instead of organi-
zations needing to decide ahead of time whether all of their users are allowed to log
in at another system, each individual user can decide to log in where they choose.
This fits the Trust On First Use (TOFU) model of OAuth 2.0 that we first saw in
 chapter 2.

Additionally, the user can delegate access to other protected APIs alongside their
identity. With one call, an application can find out whether a user is logged in, what
the application should call the user, download photos for printing, and post updates to
the user’s message stream. If a service is already offering an OAuth 2.0–protected API,
it’s not much of a stretch to start offering authentication services as well. This ability
to add on services including identity has proved useful in the API-driven world of the
web today.

All of this fits nicely within the OAuth 2.0 access model, and this simplicity is com-
pelling. However, by accessing both identity and authorization at the same time, many
developers conflate the two functions. Let’s take a look at a few common mistakes that
this setup can lead to.

13.4 Common pitfalls of using OAuth 2.0 for authentication
We’ve demonstrated that it’s possible to build an authentication protocol on top of
OAuth, yet there are a number of things that tend to trip up those who do so. These
mistakes can happen either on the side of the identity provider or on the side of the
identity consumer, and most come from misunderstandings of what different parts of
the protocol say.

13.4.1 Access tokens as proof of authentication

Since the resource owner usually needs to authenticate at the authorization end-
point prior to an access token being issued, it’s tempting to consider reception of
an access token as proof of that authentication. However, the token itself conveys
no information about the authentication event, or whether an authentication event
even occurred during this transaction. After all, the token could have been issued
from a long-running (and potentially hijacked) session, or it could have been auto-
matically authorized for some non-personal scope. The token could have been
issued directly to the client using an OAuth 2.0 grant type that doesn’t require user
interaction such as the client credentials, assertion, or refresh token call. Addition-
ally, if the client isn’t careful about where it accepts tokens from, the token could
have been issued to a different client and injected (see section 13.4.3 for details on
this situation).

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Common pitfalls of using OAuth 2.0 for authentication 243

In any event, no matter how it got the token, the client can’t tell anything about the
user or their authentication status from the access token. This stems from the fact that
the client is not the intended audience of the OAuth 2.0 access token. In OAuth 2.0,
the access token is designed to be opaque to the client, but the client needs to be able
to derive some user information from the token. Instead, the client is the presenter of
the access token, and the audience is the protected resource.

Now, we could define a token format that the client could parse and understand.
This token would carry information about the user and authentication context that
the client could read and validate. However, general OAuth 2.0 doesn’t define a
specific format or structure for the access token, and many existing deployments
of OAuth have their own token formats. Furthermore, the life of the access token
is likely to outlive the authentication event that would be represented in this token
structure. Since the token is passed to protected resources, some of which have
nothing to do with identity, it would also be potentially problematic for these pro-
tected resources to learn sensitive information about the user’s login event. To
overcome these limitations, protocols such as OpenID Connect’s ID token and
Facebook Connect’s Signed Response provide a secondary token alongside the
access token that communicates the authentication information directly to the cli-
ent. This allows the primary access token to remain opaque to the client, as in
regular OAuth, whereas the secondary authentication token can be well-defined
and parsed.

13.4.2 Access of a protected API as proof of authentication

Even if the client can’t understand the token, it can always present the token to a pro-
tected resource that can. What if we define a protected resource that tells the client
who issued the token? Since the access token can be traded for a set of user attributes,
it’s tempting to think that possession of a valid access token is enough to prove that a
user is authenticated.

This line of thinking turns out to be true in some cases, but only when the access
token was freshly minted in the context of a user being authenticated at the authori-
zation server. Remember, though, this isn’t the only way to obtain an access token in
OAuth. Refresh tokens and assertions can be used to obtain access tokens without the
user being present, and in some cases access grants can occur without the user having
to authenticate at all.

Furthermore, the access token will generally be usable long after the user is no
longer present. The protected resource isn’t generally going to be in a position to tell
from the token alone whether the user is present, since by the nature of the OAuth
2.0 protocol the user won’t be present on the connection between the client and pro-
tected resource. In many larger OAuth 2.0 ecosystems, the user has no means of ever
authenticating to the protected resource. Although the protected resource can prob-
ably tell which user originally authorized the token, it will generally be hard pressed to
say anything about that user’s current state.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

244 Chapter 13 User authentication with OAuth 2.0

This becomes especially problematic when there is a large gap of time between the
authorization event and the use of the token at the protected resource. OAuth 2.0 can
work well when the user is no longer present at either the client or the authorization
server, but because the entire point of an authentication protocol is to know whether
the user is present, the client can’t rely on the presence of a functioning access token
to determine whether the user’s there. The client can counter this problem by only
checking for user information when it knows the token is relatively fresh, and by not
assuming a user is present just because the user API can be accessed by a given access
token. We could also counter this by having an artifact directed to the client directly
that it knows to accept only directly from the IdP, such as the ID token and signed
request discussed in the previous section. These tokens have a separate lifecycle from
the access tokens, and their contents can be used alongside any additional information
from a protected resource.

13.4.3 Injection of access tokens

An additional (and dangerous) threat occurs when clients accept access tokens from
sources other than the return of an intentional request to token endpoint. This is
especially troublesome for a client that uses the implicit flow, in which the token is
passed directly to the client as a parameter in the URL hash. An attacker can take an
access token, either a valid one from a different application or a spoofed one, and
pass it to the waiting RP as if it were requested by that RP. This is problematic enough
in plain OAuth 2.0, in which the client can be tricked into accessing resources other
than those of the real resource owner, but it is utterly disastrous in an authentication
protocol because it would allow an attacker to copy tokens and use them to log in to
another application.

This issue can also occur if different parts of an application pass the access token
between components in order to “share” access among them. This is problematic
because it opens up a place for access tokens to potentially be injected into an applica-
tion by an outside party and potentially leak outside of the application. If the client
application doesn’t validate the access token through some mechanism, it has no way
of differentiating between a valid token and an attacker’s token.

This can be mitigated by using the authorization code flow instead of the implicit
flow, which would mean the client would accept tokens only directly from the authori-
zation server’s token endpoint. The state parameter allows a client to provide a value
that is unguessable by an attacker. If this parameter is absent or it doesn’t align with an
expected value, the client can easily reject the incoming token as invalid.

13.4.4 Lack of audience restriction

Most OAuth 2.0 APIs don’t provide any mechanism of audience restriction for their
returned information. That is to say, there’s no way for a client to tell whether an access
token was intended for it or another client. It’s possible to take a naive client, hand
it a (valid) token from another client, and have the naive client call a user API. Since

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Common pitfalls of using OAuth 2.0 for authentication 245

the protected resource doesn’t know the identity of the client making the call, only the
validity of the token, this act will return valid user information. However, this informa-
tion was intended for consumption by another client. The user hasn’t even authorized
the naive client, and yet it treats the user as logged in.

This problem can be mitigated by communicating the authentication information
to a client along with an identifier that the client can recognize and validate as its own.
This will allow the client to differentiate between an authentication for itself and an
authentication for another application. This attack can be further mitigated by pass-
ing the set of authentication information directly to the client during the OAuth 2.0
process instead of through a secondary mechanism such as an OAuth 2.0–protected
API, preventing a client from having an unknown and untrusted set of information
injected later in the process.

13.4.5 Injection of invalid user information

If an attacker is able to intercept or co-opt one of the calls from the client, it could alter
the content of the returned user information without the client being able to know
anything was amiss. This would allow an attacker to impersonate a user at a naive client
by swapping out a user identifier in the right call sequence, for example, in the return
value from a user information API or inside a token directed at the client.

This attack can be mitigated by cryptographically protecting and verifying the
authentication information as it’s passed to the client. All communication pathways
between the client and the authorization server need to be protected by TLS, and
the client needs to verify the server’s certificate when it connects. In addition, the
user information or the token (or both) can be signed by the server and verified
by the client. This additional signature will prevent an adversary from altering or
injecting user information even if they’re able to hijack the connection between the
parties.

13.4.6 Different protocols for every potential identity provider

One of the biggest problems with OAuth 2.0–based identity APIs is that different iden-
tity providers will inevitably implement the details of the identity API differently, even
if they’re using fully standards-compliant OAuth as the basis. For example, a user’s
unique identifier might be found in a user_id field in one provider but in the sub
field in another provider. Even though these fields are semantically equivalent, they
would require two separate code paths to process. Although the authorization may
happen the same way at each provider, the conveyance of the authentication informa-
tion could be different.

This problem occurs because the mechanisms for conveying authentication infor-
mation discussed here are explicitly left out of scope for OAuth 2.0. OAuth 2.0 defines
no specific token format, defines no common set of scopes for the access token, and
doesn’t address how a protected resource validates an access token. Consequently, this
problem can be mitigated by providers using a standard authentication protocol built

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

246 Chapter 13 User authentication with OAuth 2.0

on top of the OAuth standard so that, no matter where the identity information is com-
ing from, it’s transmitted in the same way. Is there such a standard?

13.5 OpenID Connect: a standard for authentication and identity
on top of OAuth 2.0
OpenID Connect3 is an open standard published4 by the OpenID Foundation in Feb-
ruary 2014 that defines an interoperable way to use OAuth 2.0 to perform user authen-
tication. In essence, it’s a widely published “recipe for chocolate fudge” that has been
built and tested by a wide variety of implementers. As an open standard, OpenID Con-
nect can be implemented without license or intellectual property concerns. Since the
protocol is designed to be interoperable, an OpenID client application can speak one
protocol to many identity providers instead of implementing a slightly different proto-
col to each identity provider.

OpenID Connect is built directly on OAuth 2.0 and remains compatible with it. In
many instances, it’s deployed along with a plain OAuth infrastructure that protects
other APIs. In addition to OAuth 2.0, OpenID Connect uses the JSON Object Sign-
ing and Encryption (JOSE) suite of specifications (which we covered in chapter 11)
for carrying signed and encrypted information around in different places. An OAuth
2.0 deployment with JOSE capabilities is already far along on the way to being a fully
compliant OpenID Connect system, as the delta between the two is relatively small. But
that delta makes a big difference, and OpenID Connect manages to avoid many of the
pitfalls discussed previously by adding several key components to the OAuth 2.0 base.

13.5.1 ID tokens

The OpenID Connect ID token is a signed JSON Web Token (JWT) given to the client
application alongside the regular OAuth access token. Unlike the access token, the ID
token is directed to the RP and is intended to be parsed by it.

As with the signed access tokens that we created in chapter 11, the ID token con-
tains a set of claims about the authentication session, including an identifier for the
user (sub), the identifier for the identity provider that issued the token (iss), and
the identifier of the client for which this token was created (aud). Additionally, the
ID token contains information about the token’s own validity time window (with the
exp and iat claims) as well as any additional information about the authentication
context to be conveyed to the client. For example, the token can say how long ago the
user was presented with a primary authentication mechanism (auth_time) or what
kind of primary authentication they used at the IdP (acr). The ID token can also have
other claims inside it, both standard JWT claims such as those listed in chapter 11 as
well as extended claims for the OpenID Connect protocol. The required claims are in
boldface in table 13.1.

3 http://openid.net/connect/
4 http://openid.net/specs/openid-connect-core-1_0.html

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 OpenID Connect: a standard for authentication and identity on top of OAuth 2.0 247

Table 13.1 Claims inside an ID token

Claim Name Claim Description

iss The issuer of the token; URL of the IdP.

sub The subject of the token, a stable and unique identifier for the user at the IdP. This
is usually a machine-readable string and shouldn’t be used as a username.

aud The audience of the token; must contain the client ID of the RP.

exp The expiration timestamp of the token. All ID tokens expire, and usually pretty quickly.

iat The timestamp of when the token was issued.

auth_time The timestamp of when the user authenticated to the IdP.

nonce A string sent by the RP during the authentication request, used to mitigate replay
attacks similar to the state parameter. It must be included if the RP sends it.

acr The authentication context reference, which indicates an overall categorization of the
authentication that the user performed at the IdP.

amr The authentication method reference, which indicates how the user authenticated to
the IdP.

azp The authorized party for this token; must contain the client ID of the RP if it’s included.

at_hash Cryptographic hash of the access token.

c_hash Cryptographic hash of the authorization code.

The ID token is issued in addition to an access token as the id_token member of the
token endpoint response, not in lieu of it. This is in recognition of the fact that the two
tokens have different intended audiences and uses. The two-token approach allows the
access token to remain opaque to the client as in regular OAuth while allowing the ID
token be parsed. Furthermore, the two tokens can also have different lifecycles, with
the ID token often expiring more quickly. Although the ID token represents a single
authentication event, and it’s never passed to an external service, the access token can
be used to fetch protected resources long after the user has left. Although it’s true that
you could still use the access token to ask who authorized the client in the first place,
doing so wouldn’t tell you anything about the user’s presence, as you saw previously.

{

 "access_token": "987tghjkiu6trfghjuytrghj",

 "token_type": "Bearer",

 "id_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jY

Wxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Im9hdXRoLWNsaWVud

C0xIiwiZXhwIjoxNDQwOTg3NTYxLCJpYXQiOjE0NDA5ODY1NjF9.LC5XJDhxhA5BLcT3VdhyxmMf6

EmlFM_TpgL4qycbHy7JYsO6j1pGUBmAiXTO4whK1qlUdjR5kUm ICcYa5foJUfdT9xFGDtQhRcG3-

dOg2oxhX2r7nhCjzUnOIebr5POySGQ8ljT0cLm45edv_rO5fSVPdwYGSa7QGdhB0bJ8KJ__Rs

yKB707n09y1d92ALwAfaQVoyCjYB0uiZM9Jb8yHsvyMEudvSD5urRuHnGny8YlGDIofP6SXh5-

1TlR7ST7R7h9f4Pa0lD9SXEzGUG816HjIFOcD4aAJXxn_QMlRGSfL8NlIz29PrZ2xqg8w2w84hBQ

cgchAmj1TvaT8ogg6w"

}

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

248 Chapter 13 User authentication with OAuth 2.0

Finally, the ID token itself is signed by the identity provider’s key, adding another layer
of protection to the claims inside it in addition to the TLS transport protection that
was used to get the token in the first place. Since the ID token is signed by the authori-
zation server, it also provides a location to add detached signatures over the authoriza-
tion code (c_hash) and access token (at_hash). The client can validate these hashes
while still keeping the authorization code and access token content opaque to the
client, preventing a whole class of injection attacks.

By applying a few simple checks to this ID token, the same checks used when pro-
cessing a signed JWT as we did in chapter 11, a client can protect itself from a large
number of common attacks:

1 Parse the ID token to ensure it’s a valid JWT and collect the claims.
■■ Split the string on the “.” character.
■■ Base64URL decode each section.
■■ Parse the first two sections (header and payload) as JSON.

2 Validate the signature of the token against the public key of the IdP, published
at a discoverable location.

3 See that the ID token is issued by a trusted IdP.
4 Ensure the client’s own client identifier is included in the audience list of the

ID token.
5 Confirm that the expiration, issued-at, and not-before timestamp values are

reasonable given the current time.
6 Make sure that the nonce, if present, matches the one sent out.
7 Validate the hashes for the authorization code or access token, if applicable.

Each of these steps is deterministic and mechanical, requiring minimal coding
effort. Some more advanced modes of OpenID Connect allow for the ID token to be
encrypted as well, which changes the parsing and verification process slightly but with
the same results.

13.5.2 The UserInfo endpoint

Since the ID token contains all the necessary information for processing the authen-
tication event, OpenID Connect clients don’t need anything more than this to pro-
cess a successful login. However, the access token can be used at a standard protected
resource that contains profile information about the current user, which is called
the UserInfo endpoint. The claims at this endpoint aren’t part of the authentica-
tion process previously discussed but instead provide bundled identity attributes
that make the authentication protocol more valuable to application developers.
After all, it’s preferable to say, “Good Morning, Alice” instead of, “Good Morning,
9XE3-JI34-00132A.”

The request to the UserInfo endpoint is a simple HTTP GET or POST, with the
access token (not the ID token) sent as the authorization. There are no input param-
eters in a normal request, though like with much of OpenID Connect there are some

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 OpenID Connect: a standard for authentication and identity on top of OAuth 2.0 249

advanced methods that can be used here. The UserInfo endpoint follows a protected
resource design of having the same resource for all users in the system, as opposed to
a different resource URI for each user. The IdP figures out which user is being asked
about by dereferencing the access token.

GET /userinfo HTTP/1.1

Host: localhost:9002

Accept: application/json

The response from the UserInfo endpoint is a JSON object that contains claims about
the user. These claims tend to be stable over time, and it’s common to cache the results
of the UserInfo endpoint call instead of fetching them on every authentication request.
Using advanced capabilities of OpenID Connect, it’s also possible to return the User-
Info response as a signed or encrypted JWT.

HTTP/1.1 200 OK

Content-type: application/json

{

 "sub": "9XE3-JI34-00132A",

 "preferred_username": "alice",

 "name": "Alice",

 "email": "alice.wonderland@example.com",

 "email_verified": true

}

OpenID Connect uses the special openid scope value to gate access to the UserInfo
endpoint. OpenID Connect defines a set of standardized OAuth scopes that map
to subsets of these user attributes (profile, email, phone, and address, shown in
table 13.2), allowing plain OAuth transactions to request everything necessary for an
authentication. The OpenID Connect specification goes into greater detail for each of
these scopes and what attributes they map to.

OpenID Connect defines a special openid scope that controls overall access to
the UserInfo endpoint by the access token. The OpenID Connect scopes can be used
alongside other non–OpenID Connect OAuth 2.0 scopes without conflict, and the

Table 13.2 Mapping OAuth scopes to OpenID Connect UserInfo claims

Scope Claims

openid sub

profile name, family_name, given_name, middle_name, nickname, preferred_
username, profile, picture, website, gender, birthdate, zoneinfo,
locale, updated_at

email email, email_verified

address address, a JSON object which itself contains formatted, street_address,
locality, region, postal_code, country

phone phone_number, phone_number_verified

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

250 Chapter 13 User authentication with OAuth 2.0

access token issued can potentially be targeted at several different protected resources
in addition to the UserInfo endpoint. This approach allows an OpenID Connect iden-
tity system to smoothly coexist with an OAuth 2.0 authorization system.

13.5.3 Dynamic server discovery and client registration

OAuth 2.0 was written to allow a variety of different deployments, but by design doesn’t
specify how these deployments come to be set up or how the components know about
each other. This is acceptable in the regular OAuth world in which one authorization
server protects a specific API, and the two are usually closely coupled. OpenID Con-
nect defines a common API that can be deployed across a wide variety of clients and
providers. It would not be scalable for each client to have to know ahead of time about
each provider, nor would it be at all reasonable to require each provider to know about
every potential client.

To counteract this, OpenID Connect defines a discovery protocol5 that allows cli-
ents to easily fetch information on how to interact with a specific identity provider.
This discovery process happens in two steps. First, the client needs to discover the
issuer URL of the IdP. This can be configured directly, such as in a common NASCAR-
style provider chooser in figure 13.4.

Alternatively, the issuer can be discovered based on the WebFinger protocol.
WebFinger works by taking a common means of user identification, email addresses,
and provides a set of deterministic transformation rules that takes this friendly user-fac-
ing input and outputs a discovery URI (figure 13.5). In essence, you take the domain
portion of the email address identifier, append https:// to the front, and append
/.well-know/webfinger to the end of it to create a URI. Optionally, you can also pass
in information about what the user originally typed in as well as the kind of informa-
tion you’re looking for. In OpenID Connect, this discovery URI can be fetched over
HTTPS to determine the issuer for a particular user’s address.

5 http://openid.net/specs/openid-connect-discovery-1_0.html

Select your identity provider:

Figure 13.4 A NASCAR-style identity provider selector

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 OpenID Connect: a standard for authentication and identity on top of OAuth 2.0 251

After the issuer is determined, the client still needs essential information about the
server, such as the location of the authorization and token endpoints. This is discov-
ered by appending /.well-known/openid-configuration to the issuer URI discov-
ered in the first step and fetching the resulting URL. This returns a JSON document
containing all of the attributes of the server that the client needs in order to start the
authentication transaction. The following is an example adapted from a publicly avail-
able test server:

{

"issuer": "https://example.com/",
"request_parameter_supported": true,

"registration_endpoint": "https://example.com/register",

"token_endpoint": "https://example.com/token",
"token_endpoint_auth_methods_supported":

["client_secret_post", "client_secret_basic", "client_secret_jwt",

"private_key_jwt", "none"],

"jwks_uri": "https://example.com/jwk",

"id_token_signing_alg_values_supported":

["HS256", "HS384", "HS512", "RS256", "RS384", "RS512", "ES256", "ES384",

"ES512", "PS256", "PS384", "PS512", "none"],

"authorization_endpoint": "https://example.com/authorize",
"introspection_endpoint": "https://example.com/introspect",

"service_documentation": "https://example.com/about",

"response_types_supported":

["code", "token"],

"token_endpoint_auth_signing_alg_values_supported":

["HS256", "HS384", "HS512", "RS256", "RS384", "RS512", "ES256", "ES384",

"ES512", "PS256", "PS384", "PS512"],

"revocation_endpoint": "https://example.com/revoke",

"grant_types_supported":

["authorization_code", "implicit", "urn:ietf:params:oauth:grant-

type:jwt-bearer", "client_credentials", "urn:ietf:params:oauth:grant_

type:redelegate"],

"scopes_supported":

["profile", "email", "address", "phone", "offline_access", "openid"],

"userinfo_endpoint": "https://example.com/userinfo",

"op_tos_uri": "https://example.com/about",

"op_policy_uri": "https://example.com/about",

}

user@example.com

https://example.com/.well-known/webfi nger
 ?resource=user@example.com
 &rel=http://openid.net/specs/connect/1.0/issuer

Figure 13.5 WebFinger transforms an email address into a URL

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

252 Chapter 13 User authentication with OAuth 2.0

Once the client knows about the server, the server needs to know about the client.
For this, OpenID Connect defines a client registration protocol6 that allows clients
to be introduced to new identity providers. The OAuth Dynamic Client Registration
protocol extension, discussed in chapter 12, was developed in parallel to the OpenID
Connect version, and the two are compatible with each other on the wire.

By leveraging discovery, registration, a common identity API, and end-user choice,
OpenID Connect can function at internet scale. Even when no parties have to know
about each other ahead of time, two compliant OpenID Connect instances can inter-
act with each other to effect an authorization protocol across security boundaries.

13.5.4 Compatibility with OAuth 2.0

Even with all of this robust authentication capability, OpenID Connect is by design still
compatible with plain OAuth 2.0. In fact, if a service is already using OAuth 2.0 and the
JOSE specifications, including JWT, that service is already well on its way to supporting
OpenID Connect in full.

To facilitate the building of good client applications, the OpenID Connect working
group has published documents on building a basic OpenID Connect client7 using the
authorization code flow as well as building an implicit OpenID Connect client.8 Both
of these documents walk the developer through building a basic OAuth 2.0 client and
adding the handful of components necessary for OpenID Connect functionality, many
of which have been described here.

13.5.5 Advanced capabilities

Although the core of the OpenID Connect specification is fairly straightforward, not
all use cases can be adequately addressed by the base mechanisms. To support many
advanced use cases, OpenID Connect also defines a number of optional advanced
capabilities beyond standard OAuth. Covering all of these in depth could easily fill
another book,9 but we can at least touch on a few key components in this section.

An OpenID Connect client can optionally authenticate using a signed JWT in lieu of
OAuth’s more traditional shared client secret. This JWT can be signed with a client’s
asymmetric key if it registers its public key with the server, or it can be signed symmetri-
cally with the client secret. This method provides a higher level of security for clients,
which avoid sending their passwords across the network.

Similarly, an OpenID Connect client can optionally send its requests to the authoriza-
tion endpoint as a signed JWT instead of a set of form parameters. As long as the key
used to sign this request object is registered with the server, the server can validate the
parameters inside the request object and be assured that the browser did not tamper
with them.

6 http://openid.net/specs/openid-connect-registration-1_0.html
7 http://openid.net/specs/openid-connect-basic-1_0.html
8 http://openid.net/specs/openid-connect-implicit-1_0.html
9 If you think that’s a good idea, please contact our publisher and let them know!

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Building a simple OpenID Connect system 253

An OpenID Connect server can optionally sign or encrypt the output from the server,
including the UserInfo endpoint, as a JWT. The ID token can likewise be encrypted in
addition to being signed by the server. These protections can assure the client that the
output was not tampered with, in addition to the assurances garnered from using TLS
on the connection.

Other parameters have been added as extensions to the OAuth 2.0 endpoints,
including hints for display types, prompting behavior, and authentication context references.
Using the request object construct, an OpenID Connect client can make much more
fine-tuned requests of the authorization server than its OAuth 2.0 counterparts thanks
to the inherent expressivity of the request object’s JSON payload. These requests
can include fine-grained user claims information, such as requesting that only a user
matching a specific identifier be logged in.

OpenID Connect provides a way for the server (or another third party) to initiate the
login process. Although all canonical OAuth 2.0 transactions are initiated by the client
application, this optional feature gives the client a way to receive signals to start the
login process with a specific IdP.

OpenID Connect also defines a few different ways to retrieve tokens, including
hybrid flows whereby some information (such as the ID token) is conveyed on the front
channel and other information (such as the access token) is conveyed on the back
channel. These flows should not be thought of as simple combinations of existing
OAuth 2.0 flows, but instead as new functionality for different applications.

Finally, OpenID Connect provides a specification for managing sessions between the
RP and IdP, or even between multiple RPs. Since OAuth 2.0 has no notion of the
user being present apart from the moment of authorization delegation, extensions
are required for handling the lifecycle of a federated authentication. If the user logs
out from one RP, they may want to log out from others as well, and the RP needs to be
able to signal the IdP that this should happen. Other RPs need to be able to listen for
a signal from the IdP that a logout has taken place and be able to react accordingly.

OpenID Connect provides all of these extensions without breaking compatibility
with OAuth 2.0.

13.6 Building a simple OpenID Connect system
Open up ch-13-ex-1 to find a fully functional OAuth 2.0 system. We’re now going to
build a simple OpenID Connect system on top of our existing OAuth 2.0 infrastruc-
ture. Although an entire book could be dedicated to implementing all of the features
of OpenID Connect, we are going to cover the basics here in this exercise. We’ll be
adding support for issuing the ID token to the authorization code flow on our autho-
rization server. We’ll also be building a UserInfo endpoint into our protected resource
with a shared database, because this is a common deployment pattern. Notice that
even though our authorization server and UserInfo endpoint are running in separate
processes, from the RP’s perspective they’re functioning as a single IdP. We’ll also be
making our generic OAuth 2.0 client into an OpenID Connect RP by parsing and vali-
dating the ID token and fetching the UserInfo for display.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

254 Chapter 13 User authentication with OAuth 2.0

In all of these exercises, we’ve left out one key component: authenticating the user.
Instead, we’re once again using a simple drop-down selection on the authorization
page to determine which user is “logged in” to the IdP, as we did in chapter 3. In a
production system, the primary authentication mechanism used at the IdP is of utmost
importance, as the federated identity issued by the server hinges on this. Many good
primary authentication libraries exist, and incorporating them to our framework is
left as an exercise to the reader. But still, in case it needs to be said: please don’t use
a simple drop-down box as the authentication mechanism in your production system.

13.6.1 Generating the ID token

First, we need to generate an ID token and hand it out alongside our access token. We’ll
use the same libraries and techniques that we used in chapter 11, since an ID token is
really just a special JWT. If you want details on JWTs, head back to chapter 11 for more.

Open up authorizationServer.js in an editor. Up near the top of the file, we’ve
supplied user information for two users in the system, Alice and Bob. We’ll need this
for creating both the ID token and the UserInfo response. For simplicity, we’ve opted
for a simple in-memory variable indexed by the username selectable from the drop-
down menu on the authorization page. In a production system, this would likely be
tied into a database, directory service, or other persistent store.

var userInfo = {

 "alice": {

 "sub": "9XE3-JI34-00132A",

 "preferred_username": "alice",

 "name": "Alice",

 "email": "alice.wonderland@example.com",

 "email_verified": true

 },

 "bob": {

 "sub": "1ZT5-OE63-57383B",

 "preferred_username": "bob",

 "name": "Bob",

 "email": "bob.loblob@example.net",

 "email_verified": false

 }

};

Next, we’ll create the ID token after we’ve already created our access token. First we
need to determine whether or not we’re supposed to be creating an ID token at all.
We want to generate an ID token only if the user authorized the openid scope, and if
we’ve got a user to speak of at all.

if (__.contains(code.scope, 'openid') && code.user) {

Next we’ll create a header for our ID token and add all of the fields required for
the payload. First we set our authorization server as the issuer and add the subject

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Building a simple OpenID Connect system 255

identifier of the user. Remember, these two fields together give a globally unique iden-
tifier for the user. We’ll then set the client ID of the requesting client to the audience
of the token. Finally, we’ll timestamp the token and set an expiration of five minutes in
the future. This is generally more than enough time for an ID token to be processed
and tied to a user session at an RP. Remember that the RP doesn’t have to use the ID
token at any external resource, so the timeout can and should be relatively short.

var header = { 'typ': 'JWT', 'alg': rsaKey.alg, 'kid': rsaKey.kid };

var ipayload = {

 iss: 'http://localhost:9001/',

 sub: code.user.sub,

 aud: client.client_id,

 iat: Math.floor(Date.now() / 1000),

 exp: Math.floor(Date.now() / 1000) + (5 * 60)

};

We’ll also add in the nonce value, but only if the client sent it on the original request
to the authorization endpoint. This value is analogous to the state parameter in many
ways, but closes a slightly different cross-site attack vector.

if (code.request.nonce) {

 ipayload.nonce = code.request.nonce;

}

Then we’ll sign it with the server’s key and serialize it as a JWT.

var privateKey = jose.KEYUTIL.getKey(rsaKey);

var id_token = jose.jws.JWS.sign(header.alg, JSON.stringify(header),

JSON.stringify(ipayload), privateKey);

Finally, we’ll issue it alongside the access token by modifying the existing token
response.

token_response.id_token = id_token;

And that’s all we have to do. Although we could store our ID token along with our
other tokens if we wanted to, it’s never passed back to the authorization server or any
protected resource; therefore, there’s no real need to do so. Instead of acting like an
access token, it acts like an assertion from the authorization server to the client. Once
we send it to the client, we’re pretty much done with it.

13.6.2 Creating the UserInfo endpoint

Next we’ll be adding in the UserInfo endpoint to our protected resource. Open up
protectedResource.js for this part of the exercise. Notice that while the IdP is a
 single logical component in the OpenID protocol, it’s acceptable and valid to imple-
ment it as separate servers are we’re doing here. We’ve imported the getAccessToken
and requireAccessToken helper functions from previous exercises. These will use
the local database to look up not only the token information but also the user infor-
mation associated with the token. Our IdP will be serving user information from
/ userinfo in response to HTTP GET or POST requests. Due to limitations in the

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

256 Chapter 13 User authentication with OAuth 2.0

Express.js framework that we’re using in our code, we have to define this slightly dif-
ferently from previous exercises by using an externally named function variable for our
handler code, but the effect is roughly the same as before.

var userInfoEndpoint = function(req, res) {

};

app.get('/userinfo', getAccessToken, requireAccessToken, userInfoEndpoint);

app.post('/userinfo', getAccessToken, requireAccessToken, userInfoEndpoint);

Next we’ll check to make sure that the incoming token contains at least the openid
scope. If it doesn’t, we’ll return an error.

if (!__.contains(req.access_token.scope, 'openid')) {

 res.status(403).end();

 return;

}

Once again, we need to get the right set of user information from our data store. We’ll
base this on the user that authorized the access token, similarly to how we dispatched
information in one of the exercises in chapter 4. If we can’t find a user, we’ll return
an error.

var user = req.access_token.user;

if (!user) {

 res.status(404).end();

 return;

}

Next we need to build up the response. We can’t return the entire user info object,
since the user may have authorized only a subset of the available scopes. Because each
scope maps to a subset of the user’s information, we’ll go through each of the scopes
in the access token and add the associated claims to our output object as we go.

var out = {};

__.each(req.access_token.scope, function (scope) {

 if (scope == 'openid') {

 __.each(['sub'], function(claim) {

 if (user[claim]) {

 out[claim] = user[claim];

 }

 });

 } else if (scope == 'profile') {

 __.each(['name', 'family_name', 'given_name', 'middle_name',

'nickname', 'preferred_username', 'profile', 'picture', 'website',

'gender', 'birthdate', 'zoneinfo', 'locale', 'updated_at'],

function(claim) {

 if (user[claim]) {

 out[claim] = user[claim];

 }

 });

 } else if (scope == 'email') {

 __.each(['email', 'email_verified'], function(claim) {

 if (user[claim]) {

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Building a simple OpenID Connect system 257

 out[claim] = user[claim];

 }

 });

 } else if (scope == 'address') {

 __.each(['address'], function(claim) {

 if (user[claim]) {

 out[claim] = user[claim];

 }

 });

 } else if (scope == 'phone') {

 __.each(['phone_number', 'phone_number_verified'], function(claim) {

 if (user[claim]) {

 out[claim] = user[claim];

 }

 });

 }

});

The end result is an object that contains all of the claims for the correct user that were
authorized by that user for this client. This process provides an incredible amount of
flexibility in terms of privacy, security, and user choice. We’ll return this object as JSON.

res.status(200).json(out);

return;

The final function looks like listing 14 in appendix B.
With two small additions, we’ve made our functional OAuth 2.0 server into an

 OpenID Connect IdP as well. We were able to re-use many of the components that
we’ve explored in previous chapters such as JWT generation (chapter 11), inbound
access token processing (chapter 4), and scanning for scopes (chapter 4). There are
many additional features to OpenID Connect that we talked about earlier, including
request objects, discovery, and registration, but implementation of these is left as an
exercise to the reader (or the reader of another book).

13.6.3 Parsing the ID token

Now that the server is able to generate ID tokens, the client needs to be able to parse
them. We’re going to use a similar method to that used in chapter 11 where we parsed
and validated a JWT at our protected resource. This time, the token is targeted to the
client, so we’ll be inside client.js in an editor to get started. We’ve statically config-
ured the client and the server with each other’s information, but in OpenID Connect
all of this can be done dynamically using dynamic client registration and server discov-
ery. As an added exercise, pull in the dynamic client registration code from chapter 12
and implement server discovery on top of this framework.

First, we need to pull the token value off the token response. Since it’s passed to us
in the same structure that the access token is in, we’ll pull it off that object in our token
response parsing function. We’ll also throw out any old user information or ID tokens
we might have had sitting around from a previous login.

if (body.id_token) {

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

258 Chapter 13 User authentication with OAuth 2.0

 userInfo = null;

 id_token = null;

After that, we’ll parse the ID token’s payload into a JSON object and test the content of
the ID token, starting with its signature. In OpenID Connect, the client will commonly
fetch the server’s keys from a JSON Web Key (JWK) set URL, but we’ve provided it
statically in the code alongside the server’s configuration. For an added exercise, con-
figure the server to publish its public key and configure the client to fetch the server’s
key when needed at runtime. Our server uses the RS256 signature method for its ID
tokens, and we’re using the jsrsasign library to handle our JOSE functions, as we did
in chapter 11.

var pubKey = jose.KEYUTIL.getKey(rsaKey);

var tokenParts = body.id_token.split('.');

var payload = JSON.parse(base64url.decode(tokenParts[1]));

if (jose.jws.JWS.verify(body.id_token, pubKey, [rsaKey.alg])) {

Then we need to check a few of the fields to make sure they make sense. Once again,
we’ve pulled out each check into its own nested if statement, only accepting the token
if all checks pass. First we’ll make sure the issuer matches that of our authorization
server, and also that our client ID is in the audience list.

if (payload.iss == 'http://localhost:9001/') {

 if ((Array.isArray(payload.aud) && __.contains(payload.aud,

client.client_id)) ||

 payload.aud == client.client_id) {

Then we’ll make sure that the issued at and expiration timestamps make sense.

var now = Math.floor(Date.now() / 1000);

if (payload.iat <= now) {

 if (payload.exp >= now) {

A few extra tests use more advanced forms of the protocol, such as comparing a nonce
value if we had sent one in the original request or calculating the hashes for the access
token or code. These tests aren’t needed for a simple client using the authorization
code grant type, and they’re left as exercises for the reader.

If and only if all of these checks pass, we have a valid ID token that we can save in our
application. In fact, we don’t need to save the entire token anymore, since we’ve vali-
dated it already, so we’re going to save the payload portion so that we can access it later:

id_token = payload;

Throughout our application, we can use a pairing of the id_token.iss and id_token.
sub values from the ID token as a globally unique identifier for the current user. This
technique is much more collision resistant than a username or email address would
be because the issuer URL automatically scopes the values in the subject field. Once
we’ve got the ID token, we send the user to an alternate display page showing that
they’ve successfully logged in as the current user.

res.render('userinfo', {userInfo: userInfo, id_token: id_token});

return;

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Building a simple OpenID Connect system 259

This gives us a display including the issuer and subject, as well as a button to fetch the
UserInfo for the current user. The final processing function looks like listing 15 in
appendix B.

13.6.4 Fetching the UserInfo

After we’ve processed the authentication event, chances are we’re going to want to know
more about the user than a single machine-readable identifier. To access their profile
information, including things such as their name and email address, we’re going to call
the UserInfo endpoint at the IdP using the access token that we received during the OAuth
2.0 process. It’s possible that this access token could be used for additional resources as
well, but we’re going to focus specifically on its use with the UserInfo endpoint.

Instead of automatically downloading the user information immediately upon
authentication, we’re going to make our RP call the UserInfo endpoint only when
needed. In our application, we’ll be saving this to the userInfo object and rendering
it to a web page.

We’ve already included the rendering template in the project for you, so we’ll start
by creating a handler function for /userinfo on the client.

app.get('/userinfo', function(req, res) {

});

This call works like any other OAuth 2.0 protected resource. In this specific case, we’re
going to make an HTTP GET request with the access token in the authorization header.

var headers = {

 'Authorization': 'Bearer ' + access_token

};

var resource = request('GET', authServer.userInfoEndpoint,

 {headers: headers}

);

The UserInfo endpoint returns a JSON object that we can then save and process how
we see fit. If we receive a successful response, we’re going to save the user information
and hand it to our rendering template. Otherwise, we’ll display an error page.

Figure 13.6 The client page showing a logged-in user

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

260 Chapter 13 User authentication with OAuth 2.0

if (resource.statusCode >= 200 && resource.statusCode < 300) {

 var body = JSON.parse(resource.getBody());

 userInfo = body;

 res.render('userinfo', {userInfo: userInfo, id_token: id_token});

 return;

} else {

 res.render('error', {error: 'Unable to fetch user information'});

 return;

}

This should give you a page that looks something like what is shown in figure 13.7. And
that’s all there is to it. Try authorizing different scopes and looking at the difference it
makes in the data that comes back from the endpoint. If you’ve written an OAuth 2.0
client in the past (which you have, back in chapter 3), then this should all seem trivial,
and for good reason: OpenID Connect is designed from the start to be something built
on top of OAuth 2.0.

For an added exercise, wire the client’s /userinfo page to require a valid OpenID
Connect login. That is to say, there must be a valid ID token as well as an access token
that can be used to fetch user information already stored at the client when someone
goes to that page, and if there is not, the client will automatically start the authentica-
tion protocol process.

13.7 Summary
Many people erroneously believe that OAuth 2.0 is an authentication protocol, but
now you know the truth of the matter.

■■ OAuth 2.0 is not an authentication protocol, but it can be used to build an
authentication protocol.

■■ Many existing authentication protocols that have been built using OAuth 2.0 are
in use on the web today, most of them tied to specific providers.

Figure 13.7 The client showing a successful login and fetch of user information

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

 Summary 261

■■ Designers of authentication protocols make many common mistakes on top of
OAuth 2.0. These mistakes can be avoided with careful design of the authentica-
tion protocol.

■■ With a few key additions, the OAuth 2.0 authorization server and protected
resource can act as an identity provider, and the OAuth 2.0 client can act as a
relying party.

■■ OpenID Connect provides a carefully designed open standard authentication
protocol built on top of OAuth 2.0.

Now that we’ve seen one major protocol built on top of OAuth 2.0, let’s take a closer
look at several more that are solving advanced use cases.

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

Richer ● Sanso

T
hink of OAuth 2 as the web version of a valet key. It is
an HTTP-based security protocol that allows users of
a service to enable applications to use that service on

their behalf without handing over full control. And OAuth is
used everywhere, from Facebook and Google, to startups and
cloud services.

OAuth 2 in Action teaches you practical use and deployment of
OAuth 2 from the perspectives of a client, an authorization
server, and a resource server. You’ll begin with an overview of
OAuth and its components and interactions. Next, you’ll get
hands-on and build an OAuth client, an authorization server,
and a protected resource. Th en you’ll dig into tokens,
dynamic client registration, and more advanced topics. By
the end, you’ll be able to confi dently and securely build and
deploy OAuth on both the client and server sides.

What’s Inside
● Covers OAuth 2 protocol and design
● Authorization with OAuth 2
● OpenID Connect and User-Managed Access
● Implementation risks
● JOSE, introspection, revocation, and registration
● Protecting and accessing REST APIs

Readers need basic programming skills and knowledge of
HTTP and JSON.

Justin Richer is a systems architect and soft ware engineer.
Antonio Sanso is a security soft ware engineer and a security
researcher. Both authors contribute to open standards and
open source.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/oauth-2-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

OAuth 2 IN ACTION

WEB DEVELOPMENT/SECURITY

M A N N I N G

“Provides pragmatic
guidance on what to do ...

and what not to do.”
—From the Foreword by

Ian Glazer, Salesforce

“Unmatched in both
scope and depth. Code

examples show how
 protocols work internally.”

—Thomas O’Rourke
Upstream Innovations

“A thorough treatment of
OAuth 2 ... the authors really

know this domain.”
—Travis Nelson

Software Technology Group

“A complex topic
 made easy.”—Jorge Bo, 4Finance IT

SEE INSERT

www.itbook.store/books/9781617293276

https://itbook.store/books/9781617293276

	coverSample
	BriefContents
	SampleChapter13
	CoverB

