
M A N N I N G

Dmitry Jemerov
Svetlana Isakova
FOREWORD BY Andrey Breslav

SAMPLE CHAPTER

www.itbook.store/books/9781617293290

https://itbook.store/books/9781617293290

Kotlin in Action
by Dmitry Jemerov and Svetlana Isakova

Sample Chapter 6

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293290

https://itbook.store/books/9781617293290

brief contents
PART 1 INTRODUCING KOTLIN ... 1

1 ■ Kotlin: what and why 3
2 ■ Kotlin basics 17
3 ■ Defining and calling functions 44
4 ■ Classes, objects, and interfaces 67
5 ■ Programming with lambdas 103
6 ■ The Kotlin type system 133

PART 2 EMBRACING KOTLIN ... 171
7 ■ Operator overloading and other conventions 173
8 ■ Higher-order functions: lambdas as parameters

and return values 200
9 ■ Generics 223

10 ■ Annotations and reflection 254
11 ■ DSL construction 282

www.itbook.store/books/9781617293290

https://itbook.store/books/9781617293290

www.itbook.store
The Kotlin type system
By now, you’ve seen a large part of Kotlin’s syntax in action. You’ve moved beyond
creating Java-equivalent code in Kotlin and are ready to enjoy some of Kotlin’s pro-
ductivity features that can make your code more compact and readable.

 Let’s slow down a bit and take a closer look at one of the most important parts
of Kotlin: its type system. Compared to Java, Kotlin’s type system introduces several
new features that are essential for improving the reliability of your code, such as
support for nullable types and read-only collections. It also removes some of the features
of the Java type system that have turned out to be unnecessary or problematic, such
as first-class support for arrays. Let’s look at the details.

6.1 Nullability
Nullability is a feature of the Kotlin type system that helps you avoid
NullPointerException errors. As a user of a program, you’ve probably seen an
error message similar to “An error has occurred: java.lang.NullPointerException,”

This chapter covers
 Nullable types and syntax for dealing with nulls

 Primitive types and their correspondence to the
Java types

 Kotlin collections and their relationship to Java
133

/books/9781617293290

https://itbook.store/books/9781617293290

134 CHAPTER 6 The Kotlin type system

www.itbook
with no additional details. Another version is a message like “Unfortunately, the appli-
cation X has stopped,” which often also conceals a NullPointerException as a
cause. Such errors can be troublesome for both users and developers.

 The approach of modern languages, including Kotlin, is to convert these problems
from runtime errors into compile-time errors. By supporting nullability as part of the
type system, the compiler can detect many possible errors during compilation and
reduce the possibility of having exceptions thrown at runtime.

 In this section, we’ll discuss nullable types in Kotlin: how Kotlin marks values that
are allowed to be null, and the tools Kotlin provides to deal with such values. Moving
beyond that, we’ll cover the details of mixing Kotlin and Java code with respect to
nullable types.

6.1.1 Nullable types

The first and probably most important difference between Kotlin’s and Java’s type sys-
tems is Kotlin’s explicit support for nullable types. What does this mean? It’s a way to
indicate which variables or properties in your program are allowed to be null. If a
variable can be null, calling a method on it isn’t safe, because it can cause a
NullPointerException. Kotlin disallows such calls and thereby prevents many pos-
sible exceptions. To see how this works in practice, let’s look at the following Java func-
tion:

/* Java */
int strLen(String s) {

return s.length();
}

Is this function safe? If the function is called with a null argument, it will throw a
NullPointerException. Do you need to add a check for null to the function? It
depends on the function’s intended use.

 Let’s try to rewrite this function in Kotlin. The first question you must answer is, do
you expect the function to be called with a null argument? We mean not only the
null literal directly, as in strLen(null), but also any variable or other expression
that may have the value null at runtime.

 If you don’t expect it to happen, you declare this function in Kotlin as follows:

fun strLen(s: String) = s.length

Calling strLen with an argument that may be null isn’t allowed and will be flagged
as error at compile time:

>>> strLen(null)
ERROR: Null can not be a value of a non-null type String

The parameter is declared as type String, and in Kotlin this means it must always
contain a String instance. The compiler enforces that, so you can’t pass an argument
containing null. This gives you the guarantee that the strLen function will never
throw a NullPointerException at runtime.
.store/books/9781617293290

https://itbook.store/books/9781617293290

135Nullability

www.itbook.st
 If you want to allow the use of this function with all arguments, including those
that can be null, you need to mark it explicitly by putting a question mark after the
type name:

fun strLenSafe(s: String?) = ...

You can put a question mark after any type, to
indicate that the variables of this type can store
null references: String?, Int?, MyCustom-
Type?, and so on (see figure 6.1).

 To reiterate, a type without a question mark denotes that variables of this type can’t
store null references. This means all regular types are non-null by default, unless
explicitly marked as nullable.

 Once you have a value of a nullable type, the set of operations you can perform on
it is restricted. For example, you can no longer call methods on it:

>>> fun strLenSafe(s: String?) = s.length()
ERROR: only safe (?.) or non-null asserted (!!.) calls are allowed
on a nullable receiver of type kotlin.String?

You can’t assign it to a variable of a non-null type:

>>> val x: String? = null
>>> var y: String = x
ERROR: Type mismatch: inferred type is String? but String was expected

You can’t pass a value of a nullable type as an argument to a function having a non-
null parameter:

>>> strLen(x)
ERROR: Type mismatch: inferred type is String? but String was expected

So what can you do with it? The most important thing is to compare it with null. And
once you perform the comparison, the compiler remembers that and treats the value
as being non-null in the scope where the check has been performed. For example,
this code is perfectly valid.

fun strLenSafe(s: String?): Int =
if (s != null) s.length else 0

>>> val x: String? = null
>>> println(strLenSafe(x))
0
>>> println(strLenSafe("abc"))
3

If using if checks was the only tool for tackling nullability, your code would become
verbose fairly quickly. Fortunately, Kotlin provides a number of other tools to help deal

Listing 6.1 Handling null values using if checks

Type? Type null= or

Figure 6.1 A variable of a nullable type
can store a null reference

By adding the check for null,
the code now compiles.
ore/books/9781617293290

https://itbook.store/books/9781617293290

136 CHAPTER 6 The Kotlin type system

www.itbook
with nullable values in a more concise manner. But before we look at those tools, let’s
spend time discussing the meaning of nullability and what variable types are.

6.1.2 The meaning of types

Let’s think about the most general questions: what are types, and why do variables
have them? The Wikipedia article on types (http://en.wikipedia.org/wiki/Data_type)
gives a pretty good answer to what a type is: “A type is a classification … that deter-
mines the possible values for that type, and the operations that can be done on values
of that type.”

 Let’s try to apply this definition to some of the Java types, starting with the double
type. As you know, a double is a 64-bit floating-point number. You can perform stan-
dard mathematical operations on these values. All of those functions are equally appli-
cable to all values of type double. Therefore, if you have a variable of type double,
then you can be certain that any operation on its value that’s allowed by the compiler
will execute successfully.

 Now let’s contrast this with a variable of type String. In Java, such a variable can
hold one of two kinds of values: an instance of the class String or null. Those kinds
of values are completely unlike each other: even Java’s own instanceof operator will
tell you that null isn’t a String. The operations that can be done on the value of the
variable are also completely different: an actual String instance allows you to call any
methods on the string, whereas a null value allows only a limited set of operations.

 This means Java’s type system isn’t doing a good job in this case. Even though the
variable has a declared type—String—you don’t know what you can do with values of
this variable unless you perform additional checks. Often, you skip those checks
because you know from the general flow of data in your program that a value can’t be
null at a certain point. Sometimes you’re wrong, and your program then crashes with
a NullPointerException.

Other ways to cope with NullPointerException errors
Java has some tools to help solve the problem of NullPointerException. For
example, some people use annotations (such as @Nullable and @NotNull) to
express the nullability of values. There are tools (for example, IntelliJ IDEA’s built-in
code inspections) that can use these annotations to detect places where a
NullPointerException can be thrown. But such tools aren’t part of the standard
Java compilation process, so it’s hard to ensure that they’re applied consistently. It’s
also difficult to annotate the entire codebase, including the libraries used by the proj-
ect, so that all possible error locations can be detected. Our own experience at Jet-
Brains shows that even widespread use of nullability annotations in Java doesn’t
completely solve the problem of NPEs.

Another path to solving this problem is to never use null values in code and to use
a special wrapper type, such as the Optional type introduced in Java 8, to represent
values that may or may not be defined. This approach has several downsides: the code
.store/books/9781617293290

http://en.wikipedia.org/wiki/Data_type
https://itbook.store/books/9781617293290

137Nullability

www.itbook.st
Nullable types in Kotlin provide a comprehensive solution to this problem. Distin-
guishing nullable and non-null types provides a clear understanding of what opera-
tions are allowed on the value and what operations can lead to exceptions at runtime
and are therefore forbidden.

NOTE Objects of nullable or non-null types at runtime are the same; a
nullable type isn’t a wrapper for a non-null type. All checks are performed at
compilation time. That means there’s no runtime overhead for working with
nullable types in Kotlin.

Now let’s see how to work with nullable types in Kotlin and why dealing with them is
by no means annoying. We’ll start with the special operator for safely accessing a
nullable value.

6.1.3 Safe call operator: “?.”

One of the most useful tools in Kotlin’s arsenal is the safe-call operator: ?., which
allows you to combine a null check and a method call into a single operation. For
example, the expression s?.toUpperCase() is equivalent to the following, more
cumbersome one: if (s != null) s.toUpperCase() else null.

 In other words, if the value on which you’re trying to call the method isn’t null,
the method call is executed normally. If it’s null, the call is skipped, and null is used
as the value instead. Figure 6.2 illustrates.

Note that the result type of such an invocation is nullable. Although String.toUp-
perCase returns a value of type String, the result type of an expression s?.toUp-
perCase() when s is nullable will be String?:

fun printAllCaps(s: String?) {
val allCaps: String? = s?.toUpperCase()
println(allCaps)

}

gets more verbose, the extra wrapper instances affect performance at runtime, and it’s
not used consistently across the entire ecosystem. Even if you do use Optional
everywhere in your own code, you’ll still need to deal with null values returned from
methods of the JDK, the Android framework, and other third-party libraries.

foo.bar()

foo?.bar()

null

foo != null

foo == null Figure 6.2 The safe-call operator calls
methods only on non-null values.

allCaps may
be null.
ore/books/9781617293290

https://itbook.store/books/9781617293290

138 CHAPTER 6 The Kotlin type system

www.itbook
>>> printAllCaps("abc")
ABC
>>> printAllCaps(null)
null

Safe calls can be used for accessing properties as well, not just for method calls. The
following example shows a simple Kotlin class with a nullable property and demon-
strates the use of a safe-call operator for accessing that property.

class Employee(val name: String, val manager: Employee?)

fun managerName(employee: Employee): String? = employee.manager?.name

>>> val ceo = Employee("Da Boss", null)
>>> val developer = Employee("Bob Smith", ceo)
>>> println(managerName(developer))
Da Boss
>>> println(managerName(ceo))
null

If you have an object graph in which multiple properties have nullable types, it’s often
convenient to use multiple safe calls in the same expression. Say you store information
about a person, their company, and the address of the company using different classes.
Both the company and its address may be omitted. With the ?. operator, you can access
the country property for a Person in one line, without any additional checks.

class Address(val streetAddress: String, val zipCode: Int,
val city: String, val country: String)

class Company(val name: String, val address: Address?)

class Person(val name: String, val company: Company?)

fun Person.countryName(): String {
val country = this.company?.address?.country
return if (country != null) country else "Unknown"

}
>>> val person = Person("Dmitry", null)
>>> println(person.countryName())
Unknown

Sequences of calls with null checks are a common sight in Java code, and you’ve now
seen how Kotlin makes them more concise. But listing 6.3 contains unnecessary repe-
tition: you’re comparing a value to null and returning either that value or something
else if it’s null. Let’s see if Kotlin can help get rid of that repetition.

Listing 6.2 Using safe calls to deal with nullable properties

Listing 6.3 Chaining multiple safe-call operators

Several safe-call
operators can be in a chain.
.store/books/9781617293290

https://itbook.store/books/9781617293290

139Nullability

www.itbook.st
6.1.4 Elvis operator: “?:”

Kotlin has a handy operator to provide default values instead of null. It’s called the
Elvis operator (or the null-coalescing operator, if you prefer more serious-sounding names
for things). It looks like this: ?: (you can visualize it being Elvis if you turn your head
sideways). Here’s how it’s used:

fun foo(s: String?) {
val t: String = s ?: ""

}

The operator takes two values, and its result is the first value if it isn’t null or the sec-
ond value if the first one is null. Figure 6.3 shows how it works.

The Elvis operator is often used together with the safe-call operator to substitute a
value other than null when the object on which the method is called is null. Here’s
how you can use this pattern to simplify listing 6.1.

fun strLenSafe(s: String?): Int = s?.length ?: 0

>>> println(strLenSafe("abc"))
3
>>> println(strLenSafe(null))
0

The countryName function from listing 6.3 also fits on one line now.

fun Person.countryName() =
company?.address?.country ?: "Unknown"

What makes the Elvis operator particularly handy in Kotlin is that operations such as
return and throw work as expressions and therefore can be used on the operator’s
right side. In that case, if the value on the left side is null, the function will immedi-
ately return a value or throw an exception. This is helpful for checking preconditions
in a function.

Listing 6.4 Using the Elvis operator to deal with null values

If “s” is null, the result
is an empty string.

foo

foo ?: bar

bar

foo != null

foo == null Figure 6.3 The Elvis operator substitutes
a specified value for null.
ore/books/9781617293290

https://itbook.store/books/9781617293290

140 CHAPTER 6 The Kotlin type system

www.itbook
 Let’s see how you can use this operator to implement a function to print a ship-
ping label with the person’s company address. The following listing repeats the decla-
rations of all the classes—in Kotlin, they’re so concise that it’s not a problem.

class Address(val streetAddress: String, val zipCode: Int,
val city: String, val country: String)

class Company(val name: String, val address: Address?)

class Person(val name: String, val company: Company?)

fun printShippingLabel(person: Person) {
val address = person.company?.address

?: throw IllegalArgumentException("No address")
with (address) {

println(streetAddress)
println("$zipCode $city, $country")

}
}

>>> val address = Address("Elsestr. 47", 80687, "Munich", "Germany")
>>> val jetbrains = Company("JetBrains", address)
>>> val person = Person("Dmitry", jetbrains)

>>> printShippingLabel(person)
Elsestr. 47
80687 Munich, Germany

>>> printShippingLabel(Person("Alexey", null))
java.lang.IllegalArgumentException: No address

The function printShippingLabel prints a label if everything is correct. If there’s
no address, it doesn’t just throw a NullPointerException with a line number, but
instead reports a meaningful error. If an address is present, the label consists of the
street address, the ZIP code, the city, and the country. Note how the with function,
which you saw in the previous chapter, is used to avoid repeating address four times
in a row.

 Now that you’ve seen the Kotlin way to perform “if not-null” checks, let’s talk
about the Kotlin safe version of instanceof checks: the safe-cast operator that often
appears together with safe calls and Elvis operators.

6.1.5 Safe casts: “as?”

In chapter 2, you saw the regular Kotlin operator for type casts: the as operator. Just
like a regular Java type cast, as throws a ClassCastException if the value doesn’t
have the type you’re trying to cast it to. Of course, you can combine it with an is
check to ensure that it does have the proper type. But as a safe and concise language,
doesn’t Kotlin provide a better solution? Indeed it does.

Listing 6.5 Using throw together with Elvis operator

Throws an exception
if the address is absent

“address” is
non-null.
.store/books/9781617293290

https://itbook.store/books/9781617293290

141Nullability

C

retu
if

.

www.itbook.st
The as? operator tries to cast a value to the specified type and returns null if the
value doesn’t have the proper type. Figure 6.4 illustrates this.

 One common pattern of using a safe cast is combining it with the Elvis operator.
For example, this comes in handy for implementing the equals method.

class Person(val firstName: String, val lastName: String) {
override fun equals(o: Any?): Boolean {

val otherPerson = o as? Person ?: return false

return otherPerson.firstName == firstName &&
otherPerson.lastName == lastName

}

override fun hashCode(): Int =
firstName.hashCode() * 37 + lastName.hashCode()

}

>>> val p1 = Person("Dmitry", "Jemerov")
>>> val p2 = Person("Dmitry", "Jemerov")
>>> println(p1 == p2)
true
>>> println(p1.equals(42))
false

With this pattern, you can easily check whether the parameter has a proper type, cast
it, and return false if the type isn’t right—all in the same expression. Of course,
smart casts also apply in this context: after you’ve checked the type and rejected null
values, the compiler knows that the type of the otherPerson variable’s value is
Person and lets you use it accordingly.

 The safe-call, safe-cast, and Elvis operators are useful and appear often in Kotlin
code. But sometimes you don’t need Kotlin’s support in handling nulls; you just
need to tell the compiler that the value is in fact not null. Let’s see how you can
achieve that.

6.1.6 Not-null assertions: “!!”

The not-null assertion is the simplest and bluntest tool Kotlin gives you for dealing with
a value of a nullable type. It’s represented by a double exclamation mark and converts

Listing 6.6 Using a safe cast to implement equals

foo as Type

foo as? Type

null

foo is Type

foo !is Type
Figure 6.4 The safe-cast operator tries
to cast a value to the given type and
returns null if the type differs.

hecks the
type and
rns false

no match
After the safe cast, the
variable otherPerson is
smart-cast to the Person type

The == operator calls
the “equals” method.
ore/books/9781617293290

https://itbook.store/books/9781617293290

142 CHAPTER 6 The Kotlin type system

www.itbook
any value to a non-null type. For null values, an exception is thrown. The logic is
illustrated in figure 6.5.

 Here’s a trivial example of a function that uses the assertion to convert a nullable
argument to a non-null one.

fun ignoreNulls(s: String?) {
val sNotNull: String = s!!
println(sNotNull.length)

}

>>> ignoreNulls(null)
Exception in thread "main" kotlin.KotlinNullPointerException

at <...>.ignoreNulls(07_NotnullAssertions.kt:2)

What happens if s is null in this function? Kotlin doesn’t have much choice: it will
throw an exception (a special kind of NullPointerException) at runtime. But note
that the place where the exception is thrown is the assertion itself, not a subsequent
line where you’re trying to use the value. Essentially, you’re telling the compiler, “I
know the value isn’t null, and I’m ready for an exception if it turns out I’m wrong.”

NOTE You may notice that the double exclamation mark looks a bit rude: it’s
almost like you’re yelling at the compiler. This is intentional. The designers
of Kotlin are trying to nudge you toward a better solution that doesn’t involve
making assertions that can’t be verified by the compiler.

But there are situations when not-null assertions are the appropriate solution for a
problem. When you check for null in one function and use the value in another
function, the compiler can’t recognize that the use is safe. If you’re certain the check
is always performed in another function, you may not want to duplicate it before using
the value; then you can use a not-null assertion instead.

 This happens in practice with action classes, which appear in many UI frameworks
such as Swing. In an action class, there are separate methods for updating the state of
an action (to enable or disable it) and for executing it. The checks performed in the
update method ensure that the execute method won’t be called if the conditions
aren’t met, but there’s no way for the compiler to recognize that.

Listing 6.7 Using a not-null assertion

foo

foo!!

NullPointerException

foo != null

foo == null
Figure 6.5 By using a not-null
assertion, you can explicitly throw
an exception if the value is null.

The exception
points to this line.
.store/books/9781617293290

https://itbook.store/books/9781617293290

143Nullability

www.itbook.st
 Let’s look at an example of a Swing action that uses a not-null assertion in this sit-
uation. The CopyRowAction action is supposed to copy the value of the selected row
in a list to the clipboard. We’ve omitted all the unnecessary details, keeping only the
code responsible for checking whether any row was selected (meaning therefore the
action can be performed) and obtaining the value for the selected row. The Action
API implies that actionPerformed is called only when isEnabled is true.

class CopyRowAction(val list: JList<String>) : AbstractAction() {
override fun isEnabled(): Boolean =

list.selectedValue != null

override fun actionPerformed(e: ActionEvent) {
val value = list.selectedValue!!
// copy value to clipboard

}
}

Note that if you don’t want to use !! in this case, you can write val value =
list.selectedValue ?: return to obtain a value of a non-null type. If you use
that pattern, a nullable value of list.selectedValue will cause an early return
from the function, so value will always be non-null. Although the not-null check
using the Elvis operator is redundant here, it may be a good protection against
isEnabled becoming more complicated later.

 There’s one more caveat to keep in mind: when you use !! and it results in an
exception, the stack trace identifies the line number in which the exception was
thrown but not a specific expression. To make it clear exactly which value was null,
it’s best to avoid using multiple !! assertions on the same line:

person.company!!.address!!.country

If you get an exception in this line, you won’t be able to tell whether it was company or
address that held a null value.

 So far, we’ve discussed mostly how to access the values of nullable types. But what
should you do if you need to pass a nullable value as an argument to a function that
expects a non-null value? The compiler doesn’t allow you to do that without a check,
because doing so is unsafe. The Kotlin language doesn’t have any special support for
this case, but there’s a standard library function that can help you: it’s called let.

6.1.7 The “let” function

The let function makes it easier to deal with nullable expressions. Together with a
safe-call operator, it allows you to evaluate an expression, check the result for null,
and store the result in a variable, all in a single, concise expression.

Listing 6.8 Using a not-null assertion in a Swing action

actionPerformed is
called only if isEnabled
returns “true”.

Don’t write code like this!
ore/books/9781617293290

https://itbook.store/books/9781617293290

144 CHAPTER 6 The Kotlin type system

www.itbook
 One of its most common uses is handling a nullable argument that should be
passed to a function that expects a non-null parameter. Let’s say the function send-
EmailTo takes one parameter of type String and sends an email to that address.
This function is written in Kotlin and requires a non-null parameter:

fun sendEmailTo(email: String) { /*...*/ }

You can’t pass a value of a nullable type to this function:

>>> val email: String? = ...
>>> sendEmailTo(email)
ERROR: Type mismatch: inferred type is String? but String was expected

You have to check explicitly whether this value isn’t null:

if (email != null) sendEmailTo(email)

But you can go another way: use the let function, and call it via a safe call. All the let
function does is turn the object on which it’s called into a parameter of the lambda. If
you combine it with the safe call syntax, it effectively converts an object of a nullable
type on which you call let into a non-null type (see figure 6.6).

The let function will be called only if the email value is non-null, so you use the
email as a non-null argument of the lambda:

email?.let { email -> sendEmailTo(email) }

After using the short syntax, the autogenerated name it, the result is much shorter:
email?.let { sendEmailTo(it) }. Here’s a more complete example that shows
this pattern.

fun sendEmailTo(email: String) {
println("Sending email to $email")

}

>>> var email: String? = "yole@example.com"
>>> email?.let { sendEmailTo(it) }
Sending email to yole@example.com
>>> email = null
>>> email?.let { sendEmailTo(it) }

Listing 6.9 Using let to call a function with a non-null parameter

it is non-null
inside lambda

foo?.let {
 ...it...
}

Nothing happens

foo != null

foo == null Figure 6.6 Safe-calling “let” executes a
lambda only if an expression isn’t null.
.store/books/9781617293290

https://itbook.store/books/9781617293290

145Nullability

www.itbook.st
Note that the let notation is especially convenient when you have to use the value of
a longer expression if it’s not null. You don’t have to create a separate variable in this
case. Compare this explicit if check

val person: Person? = getTheBestPersonInTheWorld()
if (person != null) sendEmailTo(person.email)

to the same code without an extra variable:

getTheBestPersonInTheWorld()?.let { sendEmailTo(it.email) }

This function returns null, so the code in the lambda will never be executed:

fun getTheBestPersonInTheWorld(): Person? = null

When you need to check multiple values for null, you can use nested let calls to
handle them. But in most cases, such code ends up fairly verbose and hard to follow.
It’s generally easier to use a regular if expression to check all the values together.

 One other common situation is properties that are effectively non-null but can’t
be initialized with a non-null value in the constructor. Let’s see how Kotlin allows you
to deal with that situation.

6.1.8 Late-initialized properties

Many frameworks initialize objects in dedicated methods called after the object
instance has been created. For example, in Android, the activity initialization happens
in the onCreate method. JUnit requires you to put initialization logic in methods
annotated with @Before.

 But you can’t leave a non-null property without an initializer in the constructor
and only initialize it in a special method. Kotlin normally requires you to initialize all
properties in the constructor, and if a property has a non-null type, you have to pro-
vide a non-null initializer value. If you can’t provide that value, you have to use a
nullable type instead. If you do that, every access to the property requires either a
null check or the !! operator.

class MyService {
fun performAction(): String = "foo"

}

class MyTest {
private var myService: MyService? = null

@Before fun setUp() {
myService = MyService()

}

@Test fun testAction() {
Assert.assertEquals("foo",

Listing 6.10 Using non-null assertions to access a nullable property

Declares a property
of a nullable type to
initialize it with null

Provides a real initializer
in the setUp method
ore/books/9781617293290

https://itbook.store/books/9781617293290

146 CHAPTER 6 The Kotlin type system

www.itbook
myService!!.performAction())
}

}

This looks ugly, especially if you access the property many times. To solve this, you can
declare the myService property as late-initialized. This is done by applying the
lateinit modifier.

class MyService {
fun performAction(): String = "foo"

}

class MyTest {
private lateinit var myService: MyService

@Before fun setUp() {
myService = MyService()

}

@Test fun testAction() {
Assert.assertEquals("foo",

myService.performAction())
}

}

Note that a late-initialized property is always a var, because you need to be able to
change its value outside of the constructor, and val properties are compiled into final
fields that must be initialized in the constructor. But you no longer need to initialize it
in a constructor, even though the property has a non-null type. If you access the
property before it’s been initialized, you get an exception “lateinit property
myService has not been initialized”. It clearly identifies what has happened and is
much easier to understand than a generic NullPointerException.

NOTE A common use case for lateinit properties is dependency injection.
In that scenario, the values of lateinit properties are set externally by a
dependency-injection framework. To ensure compatibility with a broad range
of Java frameworks, Kotlin generates a field with the same visibility as the
lateinit property. If the property is declared as public, the field will be
public as well.

Now let’s look at how you can extend Kotlin’s set of tools for dealing with null values
by defining extension functions for nullable types.

6.1.9 Extensions for nullable types

Defining extension functions for nullable types is one more powerful way to deal with
null values. Rather than ensuring that a variable can’t be null before a method call,
you can allow the calls with null as a receiver, and deal with null in the function.

Listing 6.11 Using a late-initialized property

You have to take care of
nullability: use !! or ?.

Declares a property of a non-null
type without an initializer

Initializes the property in the
setUp method as before

Accesses the property
without extra null checks
.store/books/9781617293290

https://itbook.store/books/9781617293290

147Nullability

www.itbook.st
This is only possible for extension functions; regular member calls are dispatched
through the object instance and therefore can never be performed when the instance
is null.

 As an example, consider the functions isEmpty and isBlank, defined as exten-
sions of String in the Kotlin standard library. The first one checks whether the string
is an empty string "", and the second one checks whether it’s empty or if it consists
solely of whitespace characters. You’ll generally use these functions to check that the
string is non-trivial in order to do something meaningful with it. You may think it
would be useful to handle null in the same way as trivial empty or blank strings. And,
indeed, you can do so: the functions isEmptyOrNull and isBlankOrNull can be
called with a receiver of type String?.

fun verifyUserInput(input: String?) {
if (input.isNullOrBlank()) {

println("Please fill in the required fields")
}

}

>>> verifyUserInput(" ")
Please fill in the required fields
>>> verifyUserInput(null)
Please fill in the required fields

You can call an extension function that was declared for
a nullable receiver without safe access (see figure 6.7).
The function handles possible null values.

Figure 6.7 Extensions for nullable types can
be accessed without a safe call.

The function isNullOrBlank checks explicitly for null, returning true in this case,
and then calls isBlank, which can be called on a non-null String only:

fun String?.isNullOrBlank(): Boolean =
this == null || this.isBlank()

When you declare an extension function for a nullable type (ending with ?), that
means you can call this function on nullable values; and this in a function body can
be null, so you have to check for that explicitly. In Java, this is always not-null,
because it references the instance of a class you’re in. In Kotlin, that’s no longer the
case: in an extension function for a nullable type, this can be null.

Listing 6.12 Calling an extension function with a nullable receiver

No safe call is needed.

No exception happens when
you call isNullOrBlank with
“null” as a receiver.

Extension for
nullable type

No safe call!

input.isNullOrBlank()

Value of
nullable type

Extension for a
nullable String

A smart cast is applied
to the second “this”.
ore/books/9781617293290

https://itbook.store/books/9781617293290

148 CHAPTER 6 The Kotlin type system

www.itbook
 Note that the let function we discussed earlier can be called on a nullable
receiver as well, but it doesn’t check the value for null. If you invoke it on a nullable
type without using the safe-call operator, the lambda argument will also be nullable:

>>> val person: Person? = ...
>>> person.let { sendEmailTo(it) }
ERROR: Type mismatch: inferred type is Person? but Person was expected

Therefore, if you want to check the arguments for being non-null with let, you have
to use the safe-call operator ?., as you saw earlier: person?.let { send-
EmailTo(it) }.

NOTE When you define your own extension function, you need to consider
whether you should define it as an extension for a nullable type. By default,
define it as an extension for a non-null type. You can safely change it later
(no code will be broken) if it turns out it’s used mostly on nullable values, and
the null value can be reasonably handled.

This section showed you something unexpected. If you dereference a variable without
an extra check, as in s.isNullOrBlank(), it doesn’t immediately mean the variable
is non-null: the function can be an extension for a nullable type. Next, let’s discuss
another case that may surprise you: a type parameter can be nullable even without a
question mark at the end.

6.1.10 Nullability of type parameters

By default, all type parameters of functions and classes in Kotlin are nullable. Any type,
including a nullable type, can be substituted for a type parameter; in this case, declara-
tions using the type parameter as a type are allowed to be null, even though the type
parameter T doesn’t end with a question mark. Consider the following example.

fun <T> printHashCode(t: T) {
println(t?.hashCode())

}
>>> printHashCode(null)
null

In the printHashCode call, the inferred type for the type parameter T is a nullable
type, Any?. Therefore, the parameter t is allowed to hold null, even without a ques-
tion mark after T.

 To make the type parameter non-null, you need to specify a non-null upper
bound for it. That will reject a nullable value as an argument.

Listing 6.13 Dealing with a nullable type parameter

No safe call, so “it”
has a nullable type.

You have to use a safe call
because “t” might be null.

“T” is inferred
as “Any?”.
.store/books/9781617293290

https://itbook.store/books/9781617293290

149Nullability

www.itbook.st

fun <T: Any> printHashCode(t: T) {
println(t.hashCode())

}
>>> printHashCode(null)
Error: Type parameter bound for `T` is not satisfied
>>> printHashCode(42)
42

Chapter 9 will cover generics in Kotlin, and section 9.1.4 will cover this topic in more
detail.

 Note that type parameters are the only exception to the rule that a question mark
at the end is required to mark a type as nullable, and types without a question mark
are non-null. The next section shows another special case of nullability: types that
come from the Java code.

6.1.11 Nullability and Java

The previous discussion covered the tools for working with nulls in the Kotlin world.
But Kotlin prides itself on its Java interoperability, and you know that Java doesn’t sup-
port nullability in its type system. So what happens when you combine Kotlin and
Java? Do you lose all safety, or do you have to check every value for null? Or is there a
better solution? Let’s find out.

 First, as we mentioned, sometimes Java
code contains information about nullability,
expressed using annotations. When this
information is present in the code, Kotlin
uses it. Thus @Nullable String in Java is
seen as String? by Kotlin, and @NotNull
String is just String (see figure 6.8)

 Kotlin recognizes many different flavors
of nullability annotations, including those
from the JSR-305 standard (in the javax
.annotation package), the Android ones (android.support.annotation), and
those supported by JetBrains tools (org.jetbrains.annotations). The interest-
ing question is what happens when the annotations aren’t present. In that case, the
Java type becomes a platform type in Kotlin.

PLATFORM TYPES

A platform type is essentially a type for which
Kotlin doesn’t have nullability information; you
can work with it as either a nullable or a non-
null type (see figure 6.9). This means, just as in
Java, you have full responsibility for the opera-
tions you perform with that type. The compiler
will allow all operations. It also won’t highlight

Listing 6.14 Declaring a non-null upper bound for a type parameter

Now “T” can’t
be nullable.

This code doesn’t compile:
you can’t pass null because a
non-null value is expected.

@Nullable Type Type?+ =

@NotNull Type Type+ =

Java Kotlin

Figure 6.8 Annotated Java types are
represented as nullable and non-null types
in Kotlin, according to the annotations.

Type?Type Type= or

Java Kotlin

Figure 6.9 Java types are represented
in Kotlin as platform types, which you
can use either as a nullable type or as a
non-null type.
ore/books/9781617293290

https://itbook.store/books/9781617293290

150 CHAPTER 6 The Kotlin type system

www.itbook
as redundant any null-safe operations on such values, which it normally does when
you perform a null-safe operation on a value of a non-null type. If you know the
value can be null, you can compare it with null before use. If you know it’s not
null, you can use it directly. Just as in Java, you’ll get a NullPointerException at
the usage site if you get this wrong.

 Let’s say the class Person is declared in Java.

/* Java */
public class Person {

private final String name;

public Person(String name) {
this.name = name;

}

public String getName() {
return name;

}
}

Can getName return null or not? The Kotlin compiler knows nothing about nulla-
bility of the String type in this case, so you have to deal with it yourself. If you’re sure
the name isn’t null, you can dereference it in a usual way, as in Java, without addi-
tional checks. But be ready to get an exception in this case.

fun yellAt(person: Person) {
println(person.name.toUpperCase() + "!!!")

}

>>> yellAt(Person(null))
java.lang.IllegalArgumentException: Parameter specified as non-null
is null: method toUpperCase, parameter $receiver

Note that instead of a plain NullPointerException, you get a more detailed error
message that the method toUpperCase can’t be called on a null receiver.

 In fact, for public Kotlin functions, the compiler generates checks for every param-
eter (and a receiver as well) that has a non-null type, so that attempts to call such a
function with incorrect arguments are immediately reported as exceptions. Note that
the value-checking is performed right away when the function is called, not when the
parameter is used. This ensures that incorrect calls are detected early and won’t cause
hard-to-understand exceptions if the null value is accessed after being passed around
between multiple functions in different layers of the codebase.

 Your other option is to interpret the return type of getName() as nullable and
access it safely.

Listing 6.15 A Java class without nullability annotations

Listing 6.16 Accessing a Java class without null checks

The receiver person.name of
the toUpperCase() call is null,
so an exception is thrown.
.store/books/9781617293290

https://itbook.store/books/9781617293290

151Nullability

www.itbook.st

fun yellAtSafe(person: Person) {
println((person.name ?: "Anyone").toUpperCase() + "!!!")

}

>>> yellAtSafe(Person(null))
ANYONE!!!

In this example, null values are handled properly, and no runtime exception is thrown.
 Be careful while working with Java APIs. Most of the libraries aren’t annotated, so

you may interpret all the types as non-null, but that can lead to errors. To avoid
errors, you should check the documentation (and, if needed, the implementation) of
the Java methods you’re using to find out when they can return null, and add checks
for those methods.

You can’t declare a variable of a platform type in Kotlin; these types can only come
from Java code. But you may see them in error messages and in the IDE:

>>> val i: Int = person.name
ERROR: Type mismatch: inferred type is String! but Int was expected

The String! notation is how the Kotlin compiler denotes platform types coming
from Java code. You can’t use this syntax in your own code, and usually this exclama-
tion mark isn’t connected with the source of a problem, so you can usually ignore it. It
just emphasizes that the nullability of the type is unknown.

 As we said already, you may interpret platform types any way you like—as nullable
or as non-null—so both of the following declarations are valid:

>>> val s: String? = person.name
>>> val s1: String = person.name

Listing 6.17 Accessing a Java class with null checks

Why platform types?
Wouldn’t it be safer for Kotlin to treat all values coming from Java as nullable? Such
a design would be possible, but it would require a large number of redundant null
checks for values that can never be null, because the Kotlin compiler wouldn’t be
able to see that information.

The situation would be especially bad with generics—for example, every Array-
List<String> coming from Java would be an ArrayList<String?>? in Kotlin,
and you’d need to check values for null on every access or use a cast, which would
defeat the safety benefits. Writing such checks is extremely annoying, so the design-
ers of Kotlin went with the pragmatic option and allowed the developers to take
responsibility for correctly handling values coming from Java.

Java’s property can
be seen as nullable …

… or non-null.
ore/books/9781617293290

https://itbook.store/books/9781617293290

152 CHAPTER 6 The Kotlin type system

www.itbook
In this case, just as with the method calls, you need to make sure you get the nullability
right. If you try to assign a null value coming from Java to a non-null Kotlin variable,
you’ll get an exception at the point of assignment.

 We’ve discussed how Java types are seen from Kotlin. Let’s now talk about some pit-
falls of creating mixed Kotlin and Java hierarchies.

INHERITANCE

When overriding a Java method in Kotlin, you have a choice whether to declare the
parameters and the return type as nullable or non-null. For example, let’s look at a
StringProcessor interface in Java.

/* Java */
interface StringProcessor {

void process(String value);
}

In Kotlin, both of the following implementations will be accepted by the compiler.

class StringPrinter : StringProcessor {
override fun process(value: String) {

println(value)
}

}

class NullableStringPrinter : StringProcessor {
override fun process(value: String?) {

if (value != null) {
println(value)

}
}

}

Note that it’s important to get nullability right when implementing methods from Java
classes or interfaces. Because the implementation methods can be called from non-
Kotlin code, the Kotlin compiler will generate non-null assertions for every parame-
ter that you declare with a non-null type. If the Java code does pass a null value to
the method, the assertion will trigger, and you’ll get an exception, even if you never
access the parameter value in your implementation.

 Let’s summarize our discussion of nullability. We’ve discussed nullable and non-
null types and the means of working with them: operators for safe operations (safe
call ?., Elvis operator ?:, and safe cast as?), as well as the operator for unsafe deref-
erence (the not-null assertion !!). You’ve seen how the library function let can
help you accomplish concise non-null checks and how extensions for nullable types
can help move a not-null check into a function. We’ve also discussed platform types
that represent Java types in Kotlin.

Listing 6.18 A Java interface with a String parameter

Listing 6.19 Implementing the Java interface with different parameter nullability
.store/books/9781617293290

https://itbook.store/books/9781617293290

153Primitive and other basic types

www.itbook.st
 Now that we’ve covered the topic of nullability, let’s talk about how the primitive
types are represented in Kotlin. This knowledge of nullability will be important for
understanding how Kotlin handles Java’s boxed types.

6.2 Primitive and other basic types
This section describes the basic types used in programs, such as Int, Boolean, and
Any. Unlike Java, Kotlin doesn’t differentiate primitive types and wrappers. You’ll
shortly learn why, and how it works under the hood. You’ll see the correspondence
between Kotlin types and such Java types as Object and Void, as well.

6.2.1 Primitive types: Int, Boolean, and more

As you know, Java makes a distinction between primitive types and reference types. A
variable of a primitive type (such as int) holds its value directly. A variable of a reference
type (such as String) holds a reference to the memory location containing the object.

 Values of primitive types can be stored and passed around more efficiently, but you
can’t call methods on such values or store them in collections. Java provides special
wrapper types (such as java.lang.Integer) that encapsulate primitive types in situ-
ations when an object is needed. Thus, to define a collection of integers, you can’t say
Collection<int>; you have to use Collection<Integer> instead.

 Kotlin doesn’t distinguish between primitive types and wrapper types. You always
use the same type (for example, Int):

val i: Int = 1
val list: List<Int> = listOf(1, 2, 3)

That’s convenient. What’s more, you can call methods on values of a number type. For
example, consider this snippet, which uses the coerceIn standard library function to
restrict the value to the specified range:

fun showProgress(progress: Int) {
val percent = progress.coerceIn(0, 100)
println("We're ${percent}% done!")

}

>>> showProgress(146)
We're 100% done!

If primitive and reference types are the same, does that mean Kotlin represents all
numbers as objects? Wouldn’t that be terribly inefficient? Indeed it would, so Kotlin
doesn’t do that.

 At runtime, the number types are represented in the most efficient way possible. In
most cases—for variables, properties, parameters, and return types—Kotlin’s Int type
is compiled to the Java primitive type int. The only case in which this isn’t possible is
generic classes, such as collections. A primitive type used as a type argument of a
generic class is compiled to the corresponding Java wrapper type. For example, if the
Int type is used as a type argument of the collection, then the collection will store
instances of java.lang.Integer, the corresponding wrapper type.
ore/books/9781617293290

https://itbook.store/books/9781617293290

154 CHAPTER 6 The Kotlin type system

www.itbook
 The full list of types that correspond to Java primitive types is:

 Integer types—Byte, Short, Int, Long
 Floating-point number types—Float, Double
 Character type—Char

 Boolean type—Boolean

A Kotlin type such as Int can be easily compiled under the hood to the correspond-
ing Java primitive type, because the values of both types can’t store the null refer-
ence. The other direction works in a similar way: When you use Java declarations from
Kotlin, Java primitive types become non-null types (not platform types), because they
can’t hold null values. Now let’s discuss the nullable versions of the same types.

6.2.2 Nullable primitive types: Int?, Boolean?, and more

Nullable types in Kotlin can’t be represented by Java primitive types, because null
can only be stored in a variable of a Java reference type. That means whenever you use
a nullable version of a primitive type in Kotlin, it’s compiled to the corresponding
wrapper type.

 To see the nullable types in use, let’s go back to the opening example of the book
and recall the Person class declared there. The class represents a person whose name
is always known and whose age can be either known or unspecified. Let’s add a func-
tion that checks whether one person is older than another.

data class Person(val name: String,
val age: Int? = null) {

fun isOlderThan(other: Person): Boolean? {
if (age == null || other.age == null)

return null
return age > other.age

}
}

>>> println(Person("Sam", 35).isOlderThan(Person("Amy", 42)))
false
>>> println(Person("Sam", 35).isOlderThan(Person("Jane")))
null

Note how the regular nullability rules apply here. You can’t just compare two values of
type Int?, because one of them may be null. Instead, you have to check that both
values aren’t null. After that, the compiler allows you to work with them normally.

 The value of the age property declared in the class Person is stored as a
java.lang.Integer. But this detail only matters if you’re working with the class
from Java. To choose the right type in Kotlin, you only need to consider whether null
is a possible value for the variable or property.

 As mentioned earlier, generic classes are another case when wrapper types come
into play. If you use a primitive type as a type argument of a class, Kotlin uses the

Listing 6.20 Using nullable primitive types
.store/books/9781617293290

https://itbook.store/books/9781617293290

155Primitive and other basic types

www.itbook.st
boxed representation of the type. For example, this creates a list of boxed Integer
values, even though you’ve never specified a nullable type or used a null value:

val listOfInts = listOf(1, 2, 3)

This happens because of the way generics are implemented on the Java virtual
machine. The JVM doesn’t support using a primitive type as a type argument, so a
generic class (both in Java and in Kotlin) must always use a boxed representation of
the type. As a consequence, if you need to efficiently store large collections of primi-
tive types, you need to either use a third-party library (such as Trove4J, http://
trove.starlight-systems.com) that provides support for such collections or store them
in arrays. We’ll discuss arrays in detail at the end of this chapter.

 Now let’s look at how you can convert values between different primitive types.

6.2.3 Number conversions

One important difference between Kotlin and Java is the way they handle numeric con-
versions. Kotlin doesn’t automatically convert numbers from one type to the other, even
when the other type is larger. For example, the following code won’t compile in Kotlin:

val i = 1
val l: Long = i

Instead, you need to apply the conversion explicitly:

val i = 1
val l: Long = i.toLong()

Conversion functions are defined for every primitive type (except Boolean):
toByte(), toShort(), toChar() and so on. The functions support converting in
both directions: extending a smaller type to a larger one, like Int.toLong(), and
truncating a larger type to a smaller one, like Long.toInt().

 Kotlin makes the conversion explicit in order to avoid surprises, especially when
comparing boxed values. The equals method for two boxed values checks the box
type, not just the value stored in it. Thus, in Java, new Integer(42).equals(new
Long(42)) returns false. If Kotlin supported implicit conversions, you could write
something like this:

val x = 1
val list = listOf(1L, 2L, 3L)
x in list

This would evaluate to false, contrary to everyone’s expectations. Thus the line x in
list from this example doesn’t compile. Kotlin requires you to convert the types
explicitly so that only values of the same type are compared:

>>> val x = 1
>>> println(x.toLong() in listOf(1L, 2L, 3L))
true

Error: type mismatch

Int variable List of Long
values

False if Kotlin supported
implicit conversions
ore/books/9781617293290

http://trove.starlight-systems.com
http://trove.starlight-systems.com
https://itbook.store/books/9781617293290

156 CHAPTER 6 The Kotlin type system

www.itbook
If you use different number types in your code at the same time, you have to convert
variables explicitly to avoid unexpected behavior.

Note that when you’re writing a number literal, you usually don’t need to use conver-
sion functions. One possibility is to use the special syntax to mark the type of the con-
stant explicitly, such as 42L or 42.0f. And even if you don’t use it, the necessary
conversion is applied automatically if you use a number literal to initialize a variable of
a known type or pass it as an argument to a function. In addition, arithmetic operators
are overloaded to accept all appropriate numeric types. For example, the following
code works correctly without any explicit conversions:

fun foo(l: Long) = println(l)

>>> val b: Byte = 1
>>> val l = b + 1L
>>> foo(42)
42

Note that the behavior of Kotlin arithmetic operators with regard to number-range
overflow is exactly the same in Java; Kotlin doesn’t introduce any overhead for over-
flow checks.

Primitive type literals
Kotlin supports the following ways to write number literals in source code, in addition
to simple decimal numbers:

 Literals of type Long use the L suffix: 123L.
 Literals of type Double use the standard representation of floating-point

numbers: 0.12, 2.0, 1.2e10, 1.2e-10.
 Literals of type Float use the f or F suffix: 123.4f, .456F, 1e3f.
 Hexadecimal literals use the 0x or 0X prefix (such as 0xCAFEBABE or

0xbcdL).
 Binary literals use the 0b or 0B prefix (such as 0b000000101).

Note that underscores in number literals are only supported starting with Kotlin 1.1.

For character literals, you use mostly the same syntax as in Java. You write the char-
acter in single quotes, and you can also use escape sequences if you need to. The
following are examples of valid Kotlin character literals: '1', '\t' (the tab charac-
ter), '\u0009' (the tab character represented using a Unicode escape sequence).

Conversion from String
The Kotlin standard library provides a similar set of extension functions to convert a
string into a primitive type (toInt, toByte, toBoolean, and so on):

>>> println("42".toInt())
42

Constant value gets
the correct type

+ works with Byte
and Long arguments.The compiler interprets

42 as a Long value.
.store/books/9781617293290

https://itbook.store/books/9781617293290

157Primitive and other basic types

www.itbook.st
Before we move on to other types, there are three more special types we need to men-
tion: Any, Unit, and Nothing.

6.2.4 “Any” and “Any?”: the root types

Similar to how Object is the root of the class hierarchy in Java, the Any type is the
supertype of all non-nullable types in Kotlin. But in Java, Object is a supertype of all
reference types only, and primitive types aren’t part of the hierarchy. That means you
have to use wrapper types such as java.lang.Integer to represent a primitive type
value when Object is required. In Kotlin, Any is a supertype of all types, including the
primitive types such as Int.

 Just as in Java, assigning a value of a primitive type to a variable of type Any per-
forms automatic boxing:

val answer: Any = 42

Note that Any is a non-nullable type, so a variable of the type Any can’t hold the value
null. If you need a variable that can hold any possible value in Kotlin, including
null, you must use the Any? type.

 Under the hood, the Any type corresponds to java.lang.Object. The Object
type used in parameters and return types of Java methods is seen as Any in Kotlin.
(More specifically, it’s viewed as a platform type, because its nullability is unknown.)
When a Kotlin function uses Any, it’s compiled to Object in the Java bytecode.

 As you saw in chapter 4, all Kotlin classes have the following three methods:
toString, equals, and hashCode. These methods are inherited from Any. Other
methods defined on java.lang.Object (such as wait and notify) aren’t available
on Any, but you can call them if you manually cast the value to java.lang.Object.

6.2.5 The Unit type: Kotlin’s “void”

The Unit type in Kotlin fulfills the same function as void in Java. It can be used as a
return type of a function that has nothing interesting to return:

fun f(): Unit { ... }

Syntactically, it’s the same as writing a function with a block body without a type decla-
ration:

fun f() { ... }

In most cases, you won’t notice the difference between void and Unit. If your Kotlin
function has the Unit return type and doesn’t override a generic function, it’s com-
piled to a good-old void function under the hood. If you override it from Java, the
Java function just needs to return void.

Each of these functions tries to parse the contents of the string as the corresponding
type and throws a NumberFormatException if the parsing fails.

The value 42 is boxed, because
Any is a reference type.

Explicit Unit declaration
is omitted
ore/books/9781617293290

https://itbook.store/books/9781617293290

158 CHAPTER 6 The Kotlin type system

www.itbook
 What distinguishes Kotlin’s Unit from Java’s void, then? Unit is a full-fledged
type, and, unlike void, it can be used as a type argument. Only one value of this type
exists; it’s also called Unit and is returned implicitly. This is useful when you override a
function that returns a generic parameter and make it return a value of the Unit type:

interface Processor<T> {
fun process(): T

}

class NoResultProcessor : Processor<Unit> {
override fun process() {

// do stuff
}

}

The signature of the interface requires the process function to return a value; and,
because the Unit type does have a value, it’s no problem to return it from the
method. But you don’t need to write an explicit return statement in NoResult-
Processor.process, because return Unit is added implicitly by the compiler.

 Contrast this with Java, where neither of the possibilities for solving the problem of
using “no value” as a type argument is as nice as the Kotlin solution. One option is to
use separate interfaces (such as Callable and Runnable) to represent interfaces
that don’t and do return a value. The other is to use the special java.lang.Void
type as the type parameter. If you use the second option, you still need to put in an
explicit return null; to return the only possible value matching that type, because
if the return type isn’t void, you must always have an explicit return statement.

 You may wonder why we chose a different name for Unit and didn’t call it Void.
The name Unit is used traditionally in functional languages to mean “only one
instance,” and that’s exactly what distinguishes Kotlin’s Unit from Java’s void. We
could have used the customary Void name, but Kotlin has a type called Nothing that
performs an entirely different function. Having two types called Void and Nothing
would be confusing because the meanings are so close. So what’s this Nothing type
about? Let’s find out.

6.2.6 The Nothing type: “This function never returns”

For some functions in Kotlin, the concept of a “return value” doesn’t make sense
because they never complete successfully. For example, many testing libraries have a
function called fail that fails the current test by throwing an exception with a speci-
fied message. A function that has an infinite loop in it will also never complete suc-
cessfully.

 When analyzing code that calls such a function, it’s useful to know that the func-
tion will never terminate normally. To express that, Kotlin uses a special return type
called Nothing:

fun fail(message: String): Nothing {
throw IllegalStateException(message)

}

Returns Unit, but you
omit the type specification

You don’t need an
explicit return here.
.store/books/9781617293290

https://itbook.store/books/9781617293290

159Collections and arrays

www.itbook.st
>>> fail("Error occurred")
java.lang.IllegalStateException: Error occurred

The Nothing type doesn’t have any values, so it only makes sense to use it as a func-
tion return type or as a type argument for a type parameter that’s used as a generic
function return type. In all other cases, declaring a variable where you can’t store any
value doesn’t make sense.

 Note that functions returning Nothing can be used on the right side of the Elvis
operator to perform precondition checking:

val address = company.address ?: fail("No address")
println(address.city)

This example shows why having Nothing in the type system is extremely useful. The
compiler knows that a function with this return type never terminates normally and
uses that information when analyzing the code calling the function. In the previous
example, the compiler infers that the type of address is non-null, because the
branch handling the case when it’s null always throws an exception.

 We’ve finished our discussion of the basic types in Kotlin: primitive types, Any,
Unit, and Nothing. Now let’s look at the collection types and how they differ from
their Java counterparts.

6.3 Collections and arrays
You’ve already seen many examples of code that uses various collection APIs, and you
know that Kotlin builds on the Java collections library and augments it with features
added through extension functions. There’s more to the story of the collection sup-
port in Kotlin and the correspondence between Java and Kotlin collections, and now
is a good time to look at the details.

6.3.1 Nullability and collections

Earlier in this chapter, we discussed the concept of nullable types, but we only briefly
touched on nullability of type arguments. But this is essential for a consistent type sys-
tem: it’s no less important to know whether a collection can hold null values than to
know whether the value of a variable can be null. The good news is that Kotlin fully
supports nullability for type arguments. Just as the type of a variable can have a ? char-
acter appended to indicate that the variable can hold null, a type used as a type argu-
ment can be marked in the same way. To see how this works, let’s look at an example of
a function that reads a list of lines from a file and tries to parse each line as a number.

fun readNumbers(reader: BufferedReader): List<Int?> {
val result = ArrayList<Int?>()
for (line in reader.lineSequence()) {

try {
val number = line.toInt()

Listing 6.21 Building a collection of nullable values

Creates a list of
nullable Int values
ore/books/9781617293290

https://itbook.store/books/9781617293290

160 CHAPTER 6 The Kotlin type system

www.itbook
result.add(number)
}
catch(e: NumberFormatException) {

result.add(null)
}

}
return result

}

List<Int?> is a list that can hold values of type Int?: in other words, Int or null.
You add an integer to the result list if the line can be parsed, or null otherwise.
Note that since Kotlin 1.1, you can shrink this example by using the function
String.toIntOrNull, which returns null if the string value can’t be parsed.

 Note how the nullability of the type of the variable itself is distinct from the nul-
lability of the type used as a type argument. The difference between a list of nullable
Ints and a nullable list of Ints is illustrated in figure 6.10.

In the first case, the list itself is always not null, but each value in the list can be null.
A variable of the second type may contain a null reference instead of a list instance,
but the elements in the list are guaranteed to be non-null.

 In another context, you may want to declare a variable that holds a nullable list of
nullable numbers. The Kotlin way to write this is List<Int?>?, with two question
marks. You need to apply null checks both when using the value of the variable and
when using the value of every element in the list.

 To see how you can work with a list of nullable values, let’s write a function to add
all the valid numbers together and count the invalid numbers separately.

fun addValidNumbers(numbers: List<Int?>) {
var sumOfValidNumbers = 0
var invalidNumbers = 0
for (number in numbers) {

Listing 6.22 Working with a collection of nullable values

Adds an integer (a non-null
value) to the list

Adds null to the list, because
the current line can’t be
parsed to an integer

Int

Individual values are
nullable within the list.

Entire list
is nullable.

null

null

null

Int

Int

Int

List<Int?> List<Int>?

Int

Int

null
Figure 6.10 Be careful what you make
nullable: the elements of the collection
or the collection itself?

Reads a nullable
value from the list
.store/books/9781617293290

https://itbook.store/books/9781617293290

161Collections and arrays

www.itbook.st
if (number != null) {
sumOfValidNumbers += number

} else {
invalidNumbers++

}
}
println("Sum of valid numbers: $sumOfValidNumbers")
println("Invalid numbers: $invalidNumbers")

}

>>> val reader = BufferedReader(StringReader("1\nabc\n42"))
>>> val numbers = readNumbers(reader)
>>> addValidNumbers(numbers)
Sum of valid numbers: 43
Invalid numbers: 1

There isn’t much special going on here. When you access an element of the list, you
get back a value of type Int?, and you need to check it for null before you can use it
in arithmetical operations.

 Taking a collection of nullable values and filtering out null is such a common
operation that Kotlin provides a standard library function filterNotNull to per-
form it. Here’s how you can use it to greatly simplify the previous example.

fun addValidNumbers(numbers: List<Int?>) {
val validNumbers = numbers.filterNotNull()
println("Sum of valid numbers: ${validNumbers.sum()}")
println("Invalid numbers: ${numbers.size - validNumbers.size}")

}

Of course, the filtering also affects the type of the collection. The type of valid-
Numbers is List<Int>, because the filtering ensures that the collection doesn’t con-
tain any null elements.

 Now that you understand how Kotlin distinguishes between collections that hold
nullable and non-null elements, let’s look at another major distinction introduced by
Kotlin: read-only versus mutable collections.

6.3.2 Read-only and mutable collections

An important trait that sets apart Kotlin’s collection design from Java’s is that it sepa-
rates interfaces for accessing the data in a collection and for modifying the data. This
distinction exists starting with the most basic interface for working with collections,
kotlin.collections.Collection. Using this interface, you can iterate over the ele-
ments in a collection, obtain its size, check whether it contains a certain element, and
perform other operations that read data from the collection. But this interface
doesn’t have any methods for adding or removing elements.

 To modify the data in the collection, use the kotlin.collections.Mutable-
Collection interface. It extends the regular kotlin.collections.Collection and

Listing 6.23 Using filterNotNull with a collection of nullable values

Checks the
value for null
ore/books/9781617293290

https://itbook.store/books/9781617293290

162 CHAPTER 6 The Kotlin type system

www.itbook
provides methods for adding and removing the elements, clearing the collection, and
so on. Figure 6.11 shows the key methods defined in the two interfaces.

 As a general rule, you should use read-only interfaces everywhere in your code.
Use the mutable variants only if the code will modify the collection.

 Just like the separation between val and var, the separation between read-only and
mutable interfaces for collections makes it much easier to understand what’s happen-
ing with data in your program. If a function takes a parameter that is a Collection but
not a MutableCollection, you know it’s not going to modify the collection, but only
read data from it. And if a function requires you to pass a MutableCollection, you
can assume that it’s going to modify the data. If you have a collection that’s part of the
internal state of your component, you may need to make a copy of that collection
before passing it to such a function. (This pattern is usually called a defensive copy.)

 For example, you can clearly see that the following copyElements function will
modify the target collection but not the source collection.

fun <T> copyElements(source: Collection<T>,
target: MutableCollection<T>) {

for (item in source) {
target.add(item)

}
}

>>> val source: Collection<Int> = arrayListOf(3, 5, 7)
>>> val target: MutableCollection<Int> = arrayListOf(1)
>>> copyElements(source, target)
>>> println(target)
[1, 3, 5, 7]

You can’t pass a variable of a read-only collection type as the target argument, even
if its value is a mutable collection:

>>> val source: Collection<Int> = arrayListOf(3, 5, 7)
>>> val target: Collection<Int> = arrayListOf(1)
>>> copyElements(source, target)
Error: Type mismatch: inferred type is Collection<Int>

but MutableCollection<Int> was expected

A key thing to keep in mind when working with collection interfaces is that read-only
collections aren’t necessarily immutable.1 If you’re working with a variable that has a

Listing 6.24 Using read-only and mutable collection interfaces

1 Immutable collections are planned to be added to the Kotlin standard library later.

Collection

size
iterator()
contains()

MutableCollection

add()
remove()
clear()

Figure 6.11 MutableCollection extends
Collection and adds methods to modify a
collection’s contents.

Loops over all items
in the source collection

Adds items to the mutable
target collection

Error on the
“target” argument
.store/books/9781617293290

https://itbook.store/books/9781617293290

163Collections and arrays

www.itbook.st
read-only interface type, this can be just one of the many references to the same collec-
tion. Other references can have a mutable interface type, as illustrated in figure 6.12.

 If you call the code holding the other reference to your collection or run it in par-
allel, you can still come across situations where the collection is modified by other
code while you’re working with it, which leads to ConcurrentModification-
Exception errors and other problems. Therefore, it’s essential to understand that
read-only collections aren’t always thread-safe. If you’re working with data in a multi-
threaded environment, you need to ensure that your code properly synchronizes
access to the data or uses data structures that support concurrent access.

 How does the separation between read-only and mutable collections work? Didn’t
we say earlier that Kotlin collections are the same as Java collections? Isn’t there a con-
tradiction? Let’s see what really happens here.

6.3.3 Kotlin collections and Java

It’s true that every Kotlin collection is an instance of the corresponding Java collection
interface. No conversion is involved when moving between Kotlin and Java; there’s no
need for wrappers or copying data. But every Java collection interface has two represen-
tations in Kotlin: a read-only one and a mutable one, as you can see in figure 6.13.

Figure 6.13 The hierarchy of the Kotlin collection interfaces. The Java classes ArrayList and
HashSet extend Kotlin mutable interfaces.

list:
List<String>

mutableList:
MutableList<String>

a b c

Figure 6.12 Two different references,
one read-only and one mutable, pointing
to the same collection object

Iterable MutableIterable

Read-only interfacesCollection MutableCollection

List MutableList

ArrayList

Set MutableSet

HashSet

Mutable interfaces

Java classes
ore/books/9781617293290

https://itbook.store/books/9781617293290

164 CHAPTER 6 The Kotlin type system

www.itbook
All collection interfaces shown in figure 6.13 are declared in Kotlin. The basic struc-
ture of the Kotlin read-only and mutable interfaces is parallel to the structure of the
Java collection interfaces in the java.util package. In addition, each mutable inter-
face extends the corresponding read-only interface. Mutable interfaces correspond
directly to the interfaces in the java.util package, whereas the read-only versions
lack all the mutating methods.

 Figure 6.13 also contains the Java classes java.util.ArrayList and
java.util.HashSet to show how Java standard classes are treated in Kotlin. Kotlin
sees them as if they inherited from the Kotlin’s MutableList and MutableSet inter-
faces, respectively. Other implementations from the Java collection library
(LinkedList, SortedSet, and so on) aren’t presented here, but from the Kotlin
perspective they have similar supertypes. This way, you get both compatibility and
clear separation of mutable and read-only interfaces.

 In addition to the collections, the Map class (which doesn’t extend Collection or
Iterable) is also represented in Kotlin as two distinct versions: Map and Mutable-
Map. Table 6.1 shows the functions you can use to create collections of different types.

Note that setOf() and mapOf() return instances of classes from the Java standard
library (at least in Kotlin 1.0), which are all mutable under the hood.2 But you
shouldn’t rely on that: it’s possible that a future version of Kotlin will use truly immu-
table implementation classes as return values of setOf and mapOf.

 When you need to call a Java method and pass a collection as an argument, you
can do so directly without any extra steps. For example, if you have a Java method that
takes a java.util.Collection as a parameter, you can pass any Collection or
MutableCollection value as an argument to that parameter.

 This has important consequences with regard to mutability of collections. Because
Java doesn’t distinguish between read-only and mutable collections, Java code can mod-
ify the collection even if it’s declared as a read-only Collection on the Kotlin side. The
Kotlin compiler can’t fully analyze what’s being done to the collection in the Java
code, and therefore there’s no way for Kotlin to reject a call passing a read-only
Collection to Java code that modifies it. For example, the following two snippets of
code form a compilable cross-language Kotlin/Java program:

Table 6.1 Collection-creation functions

Collection type Read-only Mutable

List listOf mutableListOf, arrayListOf

Set setOf mutableSetOf, hashSetOf, linkedSetOf, sortedSetOf

Map mapOf mutableMapOf, hashMapOf, linkedMapOf, sortedMapOf

2 Wrapping things into Collection.unmodifiable introduces indirection overhead, so it’s not done.
.store/books/9781617293290

https://itbook.store/books/9781617293290

165Collections and arrays

www.itbook.st
/* Java */
// CollectionUtils.java
public class CollectionUtils {

public static List<String> uppercaseAll(List<String> items) {
for (int i = 0; i < items.size(); i++) {

items.set(i, items.get(i).toUpperCase());
}
return items;

}
}

// Kotlin
// collections.kt
fun printInUppercase(list: List<String>) {

println(CollectionUtils.uppercaseAll(list))
println(list.first())

}

>>> val list = listOf("a", "b", "c")
>>> printInUppercase(list)
[A, B, C]
A

Therefore, if you’re writing a Kotlin function that takes a collection and passes it to
Java, it’s your responsibility to use the correct type for the parameter, depending on whether
the Java code you’re calling will modify the collection.

 Note that this caveat also applies to collections with non-null element types. If you
pass such a collection to a Java method, the method can put a null value into it;
there’s no way for Kotlin to forbid that or even to detect that it has happened without
compromising performance. Because of that, you need to take special precautions
when you pass collections to Java code that can modify them, to make sure the Kotlin
types correctly reflect all the possible modifications to the collection.

 Now, let’s take a closer look at how Kotlin deals with collections declared in Java
code.

6.3.4 Collections as platform types

If you recall the discussion of nullability earlier in this chapter, you’ll remember that
types defined in Java code are seen as platform types in Kotlin. For platform types, Kot-
lin doesn’t have the nullability information, so the compiler allows Kotlin code to
treat them as either nullable or non-null. In the same way, variables of collection
types declared in Java are also seen as platform types. A collection with a platform type
is essentially a collection of unknown mutability—the Kotlin code can treat it as either
read-only or mutable. Usually this doesn’t matter, because, in effect, all the operations
you may want to perform just work.

 The difference becomes important when you’re overriding or implementing a Java
method that has a collection type in its signature. Here, as with platform types for nul-
lability, you need to decide which Kotlin type you’re going to use to represent a Java
type coming from the method you’re overriding or implementing.

Declares a
read-only

parameter
Calls a Java function that
modifies the collection

Shows that the collection
has been modified
ore/books/9781617293290

https://itbook.store/books/9781617293290

166 CHAPTER 6 The Kotlin type system

www.itbook
 You need to make multiple choices in this situation, all of which will be reflected in
the resulting parameter type in Kotlin:

 Is the collection nullable?
 Are the elements in the collection nullable?
 Will your method modify the collection?

To see the difference, consider the following cases. In the first example, a Java inter-
face represents an object that processes text in a file.

/* Java */
interface FileContentProcessor {

void processContents(File path,
byte[] binaryContents,
List<String> textContents);

}

A Kotlin implementation of this interface needs to make the following choices:

 The list will be nullable, because some files are binary and their contents can’t
be represented as text.

 The elements in the list will be non-null, because lines in a file are never null.
 The list will be read-only, because it represents the contents of a file, and those

contents aren’t going to be modified.

Here’s how this implementation looks.

class FileIndexer : FileContentProcessor {
override fun processContents(path: File,

binaryContents: ByteArray?,
textContents: List<String>?) {

// ...
}

}

Contrast this with another interface. Here the implementations of the interface parse
some data from a text form into a list of objects, append those objects to the output
list, and report errors detected when parsing by adding the messages to a separate list.

/* Java */
interface DataParser<T> {

void parseData(String input,
List<T> output,
List<String> errors);

}

Listing 6.25 A Java interface with a collection parameter

Listing 6.26 Kotlin implementation of FileContentProcessor

Listing 6.27 Another Java interface with a collection parameter
.store/books/9781617293290

https://itbook.store/books/9781617293290

167Collections and arrays

www.itbook.st
The choices in this case are different:

 List<String> will be non-null, because the callers always need to receive
error messages.

 The elements in the list will be nullable, because not every item in the output
list will have an associated error message.

 List<String> will be mutable, because the implementing code needs to add
elements to it.

Here’s how you can implement that interface in Kotlin.

class PersonParser : DataParser<Person> {
override fun parseData(input: String,

output: MutableList<Person>,
errors: MutableList<String?>) {

// ...
}

}

Note how the same Java type—List<String>—is represented by two different Kot-
lin types: a List<String>? (nullable list of strings) in one case and a Mutable-
List<String?> (mutable list of nullable strings) in the other. To make these
choices correctly, you must know the exact contract the Java interface or class needs
to follow. This is usually easy to understand based on what your implementation
needs to do.

 Now that we’ve discussed collections, it’s time to look at arrays. As we’ve men-
tioned before, you should prefer using collections to arrays by default. But because
many Java APIs still use arrays, we’ll cover how to work with them in Kotlin.

6.3.5 Arrays of objects and primitive types

The syntax of Kotlin arrays appears in every example, because an array is part of the
standard signature of the Java main function. Here’s a reminder of how it looks:

fun main(args: Array<String>) {
for (i in args.indices) {

println("Argument $i is: ${args[i]}")
}

}

An array in Kotlin is a class with a type parameter, and the element type is specified as
the corresponding type argument.

Listing 6.28 Kotlin implementation of DataParser

Listing 6.29 Using arrays

Uses the array.indices
extension property to iterate
over the range of indices

Accesses elements by
index with array[index]
ore/books/9781617293290

https://itbook.store/books/9781617293290

168 CHAPTER 6 The Kotlin type system

is
en

ected.

www.itbook
 To create an array in Kotlin, you have the following possibilities:

 The arrayOf function creates an array containing the elements specified as
arguments to this function.

 The arrayOfNulls function creates an array of a given size containing null
elements. Of course, it can only be used to create arrays where the element type
is nullable.

 The Array constructor takes the size of the array and a lambda, and initializes
each array element by calling the lambda. This is how you can initialize an
array with a non-null element type without passing each element explicitly.

As a simple example, here’s how you can use the Array function to create an array of
strings from "a" to "z".

>>> val letters = Array<String>(26) { i -> ('a' + i).toString() }
>>> println(letters.joinToString(""))
abcdefghijklmnopqrstuvwxyz

The lambda takes the index of the array element and returns the value to be placed in
the array at that index. Here you calculate the value by adding the index to the 'a'
character and converting the result to a string. The array element type is shown for
clarity; you can omit it in real code because the compiler can infer it.

 Having said that, one of the most common cases for creating an array in Kotlin
code is when you need to call a Java method that takes an array, or a Kotlin function
with a vararg parameter. In those situations, you often have the data already stored
in a collection, and you just need to convert it into an array. You can do this using the
toTypedArray method.

>>> val strings = listOf("a", "b", "c")
>>> println("%s/%s/%s".format(*strings.toTypedArray()))
a/b/c

As with other types, type arguments of array types always become object types. Therefore, if
you declare something like an Array<Int>, it will become an array of boxed integers
(its Java type will be java.lang.Integer[]). If you need to create an array of values
of a primitive type without boxing, you must use one of the specialized classes for
arrays of primitive types.

 To represent arrays of primitive types, Kotlin provides a number of separate
classes, one for each primitive type. For example, an array of values of type Int is
called IntArray. For other types, Kotlin provides ByteArray, CharArray,

Listing 6.30 Creating an array of characters

Listing 6.31 Passing a collection to a vararg method

The spread operator (*)
used to pass an array wh
vararg parameter is exp
.store/books/9781617293290

https://itbook.store/books/9781617293290

169Collections and arrays

www.itbook.st
BooleanArray, and so on. All of these types are compiled to regular Java primitive
type arrays, such as int[], byte[], char[], and so on. Therefore, values in such an
array are stored without boxing, in the most efficient manner possible.

 To create an array of a primitive type, you have the following options:

 The constructor of the type takes a size parameter and returns an array initial-
ized with default values for the corresponding primitive type (usually zeros).

 The factory function (intArrayOf for IntArray, and so on for other array
types) takes a variable number of values as arguments and creates an array hold-
ing those values.

 Another constructor takes a size and a lambda used to initialize each element.

Here’s how the first two options work for creating an integer array holding five zeros:

val fiveZeros = IntArray(5)
val fiveZerosToo = intArrayOf(0, 0, 0, 0, 0)

Here’s how you can use the constructor accepting a lambda:

>>> val squares = IntArray(5) { i -> (i+1) * (i+1) }
>>> println(squares.joinToString())
1, 4, 9, 16, 25

Alternatively, if you have an array or a collection holding boxed values of a primitive
type, you can convert them to an array of that primitive type using the corresponding
conversion function, such as toIntArray.

 Next, let’s look at some of the things you can do with arrays. In addition to the
basic operations (getting the array’s length and getting and setting elements), the
Kotlin standard library supports the same set of extension functions for arrays as for
collections. All the functions you saw in chapter 5 (filter, map, and so on) work for
arrays as well, including the arrays of primitive types. (Note that the return values of
these functions are lists, not arrays.)

 Let’s see how to rewrite listing 6.30 using the forEachIndexed function and a
lambda. The lambda passed to that function is called for each element of the array
and receives two arguments, the index of the element and the element itself.

fun main(args: Array<String>) {
args.forEachIndexed { index, element ->

println("Argument $index is: $element")
}

}

Now you know how to use arrays in your code. Working with them is as simple as work-
ing with collections in Kotlin.

Listing 6.32 Using forEachIndexed with an array
ore/books/9781617293290

https://itbook.store/books/9781617293290

170 CHAPTER 6 The Kotlin type system

www.itbook
6.4 Summary
 Kotlin’s support of nullable types detects possible NullPointerException

errors at compile time.
 Kotlin provides tools such as safe calls (?.), the Elvis operator (?:), not-null

assertions (!!), and the let function for dealing with nullable types concisely.
 The as? operator provides an easy way to cast a value to a type and to handle

the case when it has a different type.
 Types coming from Java are interpreted as platform types in Kotlin, allowing

the developer to treat them as either nullable or non-null.
 Types representing basic numbers (such as Int) look and function like regular

classes but are usually compiled to Java primitive types.
 Nullable primitive types (such as Int?) correspond to boxed primitive types in

Java (such as java.lang.Integer).
 The Any type is a supertype of all other types and is analogous to Java’s Object.

Unit is an analogue of void.
 The Nothing type is used as a return type of functions that don’t terminate

normally.
 Kotlin uses the standard Java classes for collections and enhances them with a

distinction between read-only and mutable collections.
 You need to carefully consider nullability and mutability of parameters when

you extend Java classes or implement Java interfaces in Kotlin.
 Kotlin’s Array class looks like a regular generic class, but it’s compiled to a Java

array.
 Arrays of primitive types are represented by special classes such as IntArray.
.store/books/9781617293290

https://itbook.store/books/9781617293290

Jemerov ● Isakova

D
evelopers want to get work done—and the less hassle, the
better. Coding with Kotlin means less hassle. The Kotlin
programming language offers an expressive syntax, a

strong intuitive type system, and great tooling support along
with seamless interoperability with existing Java code, librar-
ies, and frameworks. Kotlin can be compiled to Java bytecode,
so you can use it everywhere Java is used, including Android.
And with an effi cient compiler and a small standard library,
Kotlin imposes virtually no runtime overhead.

Kotlin in Action teaches you to use the Kotlin language for
production-quality applications. Written for experienced Java
developers, this example-rich book goes further than most
language books, covering interesting topics like building
DSLs with natural language syntax. The authors are core
Kotlin developers, so you can trust that even the gnarly
details are dead accurate.

What’s Inside
● Functional programming on the JVM
● Writing clean and idiomatic code
● Combining Kotlin and Java
● Domain-specifi c languages

This book is for experienced Java developers.

Dmitry Jemerov and Svetlana Isakova are core Kotlin developers
at JetBrains.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/kotlin-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Kotlin IN ACTION

JAVA/PROGRAMMING LANGUAGES

M A N N I N G

“Explains high-level
concepts and provides all the
necessary details as well.”

—From the Foreword by
Andrey Breslav

Lead Designer of Kotlin

“Like all the other great
in Action titles from

Manning, this book gives
you everything you need to

become productive quickly.”
—Kevin Orr, Sumus Solutions

“Kotlin is fun and easy to
learn when you have this
 book to guide you!”—Filip Pravica, Info.nl

“Thorough, well written,
 and easily accessible.”

—Jason Lee, NetSuite

SEE INSERT

www.itbook.store/books/9781617293290

https://itbook.store/books/9781617293290

	Jemerov-Kotlin-SC
	SampleChapterPages6
	SCh-06
	Jemerov-Kotlin-ebook-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

