
M A N N I N G

Jeremy Wilken

Sample Chapter

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

Angular in Action

by Jeremy Wilken

Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

brief contents
1	 ■	 Angular: a modern web platform  1
2	 ■	 Building your first Angular app  25
3	 ■	 App essentials  54
4	 ■	 Component basics  76
5	 ■	 Advanced components  104
6	 ■	 Services  128
7	 ■	 Routing  159
8	 ■	 Building custom directives and pipes  188
9	 ■	 Forms  208

10	 ■	 Testing your application  242
11	 ■	 Angular in production  275

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

1

1Angular: a modern
web platform

This chapter covers
¡	Angular as a platform for modern applications

¡	Key reasons for choosing Angular

¡	Angular’s architecture and how components
form the basis of it

¡	How AngularJS differs from Angular

¡	ES2015 and TypeScript and how Angular
uses them

Angular is a modern web application platform that promises to provide developers
with a comprehensive set of tools and capabilities to build large, robust applications.
The core value proposition of Angular is to make it possible to build applications
that work for nearly any platform—whether mobile, web, or desktop. The Angular
team has focused on building much more than a robust application framework;
they’ve also built an entire ecosystem.

All that’s a bit of a mouthful, which is partly what makes Angular such an exciting
technology to work with. Let’s start by taking a closer look at why you would choose
Angular for your next project.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

2 Chapter 1  Angular: a modern web platform

1.1	 Why choose Angular?
Building web applications that can meet the needs of users is not a trivial task. The
quality and complexity of applications is ever increasing, and so are users’ expectations
for quality and capabilities. Angular exists to help developers deliver applications to
meet these demands.

If you haven’t settled on Angular as a tool of choice yet, let’s quickly cover some of
the top reasons that you should seriously consider Angular. Some items are covered
more in section 1.3, but here are the top highlights in my experience:

¡	Inspired by web standards, enhanced by modern capabilities —Anyone building web
applications today knows there are many different ways and ideas about how
to design applications. Angular tries to design its framework and the develop-
ment process around common standards (like leveraging the latest JavaScript
language features), using modern capabilities (such as embracing TypeScript for
type enforcement).

¡	Development tooling included, customizations available —Angular provides a common
developer experience through its CLI tooling (for generating, building, testing,
and deploying apps), while making those same tools available to be easily inte-
grated into custom solutions (such as a custom build toolchain) and third-party
tools (like different editors or IDEs).

¡	Powerful ecosystem with a large community —There is an ever-growing number of
third-party libraries, UI libraries, blog posts, and events. Angular’s large and
active community provides a great foundation on which to learn and should
instill confidence that it will remain a valuable technology.

¡	Sponsored by Google, open source community driven —Google has a team of engineers,
managers, and evangelists solely dedicated to bringing Angular to the rest of
Google and the entire web community. With thousands of “internal customers”
who rely on Angular inside Google, the Angular team uses those experiences to
inform future development and receives large volumes of external contributions
that together shape Angular’s future (you can join in too!).

Angular is much more than just a JavaScript library that powers some of the top web-
sites in the world. I’m passionate about open source communities, and I’m an advocate
for people to get engaged in a project as part of their regular routine. Projects in the
Angular community are where I put a lot of my energy and contributions, and I invite
you to join me. Although I do engage with the Angular project itself, I primarily con-
tribute to projects in the Angular ecosystem, such as Clarity, a UI component library
and design language.

You may be a developer trying to figure out whether Angular will meet your needs, or
you may be a manager trying to understand the role of the technology, or trying to fig-
ure out how to improve your current applications. Regardless of where you’re starting
from, the Angular ecosystem has a lot to offer.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 3What you’ll learn

1.2	 What you’ll learn
This book is designed to be a comprehensive walk through Angular, but it’s also meant
to get you informed about various aspects of the ecosystem. The approach is always
experiential, where you’ll learn about a topic and build it yourself to see the concepts
come to life. At the end of this book you should be able to make high-quality Angular
applications and have the foundational knowledge and experience on which to build a
career and applications.

The key takeaways in this book include the following:

¡	How Angular works —We’ll look at some of the key internal concepts that make it
such a compelling platform for building your applications. You’ll learn the con-
cepts and build examples to illustrate them as part of a functional application.

¡	How to build applications —In most chapters, we’ll walk step-by-step through a
number of real-life examples. The code examples are comprehensive and focus
on a certain set of goals for each chapter.

¡	Learn about the ecosystem —Each example uses some third-party libraries and capa-
bilities. This helps you see more of a realistic development experience and gain a
foundation for building your own applications.

¡	Get practical insights from my experiences —In many of the examples and notes about
them, I share practical advice from my experience, including suggestions on
things to avoid (even if it's perfectly legitimate code) and how to choose between
different approaches when they’re provided.

You should be equipped to design and build web applications with Angular by the end
of the book. If you’re not as interested in the technical aspects (perhaps as a manager),
you’ll still glean a lot of the same lessons to get a solid frame of reference for how
Angular works and what it provides for your project.

There are a few things I won’t be able to cover in this book, but just because these
items aren’t specifically discussed, it doesn’t mean you can’t learn many things related
to them. The following are not core topics covered in this book:

¡	How to write libraries —This book focuses on how to build applications with Angu-
lar, and in many ways building a library has different guidelines and recommen-
dations. That would be another book. But building a library is also difficult if you
don’t know how to build an application first.

¡	Every available API and features —Many APIs and features aren’t covered in this
book, mostly because they’re rarely used. I believe this book will empower you to
build your skills to the level that you can quickly learn these additional features as
your project needs require.

¡	How to design your app and UX principles —This is such a large topic that I can’t
cover it fully. I’ve tried to show several different ideas and patterns in the chapter
examples to give you some ideas, but it’s often opinion-based. I hope you’ll take
time to compare the design of each and know that there can be limitations as well
due to these being examples and not actual projects.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

4 Chapter 1  Angular: a modern web platform

Angular is an evolving project, with new features and sometimes deprecation of existing
ones. I’ve taken great care to ensure that the concepts taught are the core ideas that are
unlikely to change (though they may be enhanced). If there are any changes that break
some of the example code or concepts, please check the GitHub project for each chap-
ter or the book’s forums, which should have a list of known changes and errata.

To better understand the impact of Angular in today’s web, let’s go back a few years
to look at the history that brought us here.

1.3	 The journey from AngularJS to Angular
Web applications came of age around 2009–2010, when the Web 2.0 fad finally gave
way to better application approaches and frameworks. The term web application also
became refined, due perhaps in large part to the standardization of HTML5 and
EcmaScript 5 (the basis of JavaScript), and focused primarily on the ability to build
robust applications that run almost entirely in the browser.

In 2009, Miško Hevery announced AngularJS, which became one of the most pop-
ular frameworks (if not the most) for building web applications. The AngularJS proj-
ect was brought into Google, and version 1.0 was officially launched in October 2010.
There were many other viable frameworks, but AngularJS struck a chord with a wide
audience of developers.

Angular vs. AngularJS
There has been some confusion about Angular versions. The Angular team has decided
to provide guidance and call the first version AngularJS. That’s the name it was given ini-
tially, and it separates it architecturally from later versions. Any release from 1.0 through
2.0 is known as AngularJS.

For versions 2.0 and greater, it’s known as just Angular. Version 2.0 was a complete
rewrite, and all versions after it are planned as incremental changes upon it.

Angular version 2, officially announced in September 2014, was developed over the
course of two years (plus some time prior to its announcement). It was released as
Angular version 2 in September 2016, with Angular 4 being released in March 2017.
The Angular team will continue to provide major releases on a six-month schedule,
with a focus on easy upgrades. Depending on when you read this, Angular 6, or even
10, could be the most current release.

But you aren’t looking at this book to learn about the past—you’re interested in
building modern web applications. Perhaps you’ve built Angular 1 applications, or even
started with some of the Angular 2 guides. The focus of this book is on building modern
web applications, and Angular provides the platform to elegantly accomplish that.

Throughout the book, I’ll mention AngularJS occasionally to draw connections for
readers who have experience with it, but when I use Angular without a number, I’m always
referring to Angular version 2 or greater. Check out https://angular.io (figure 1.1) for
more info.

www.itbook.store/books/9781617293313

https://angular.io
https://itbook.store/books/9781617293313

	 5Angular: a platform, not a framework

Figure 1.1   The Angular website is a great resource for documentation, events, and everything
about Angular.

1.4	 Angular: a platform, not a framework
There are a few important distinctions between a framework and a platform. A frame-
work is usually just the code library used to build an application, whereas a platform is
more holistic and includes tooling and support beyond a framework. AngularJS was
focused solely on building web applications in the browser and was clearly a frame-
work. It had a large ecosystem of third-party modules that could be easily used to add
features to your application, but at the heart of it all, it simply built web applications in
the browser.

Angular comes with a leaner core library and makes additional features available as
separate packages that can be used as needed. It also has many tools that push it beyond
a simple framework, including the following:

¡	Dedicated CLI for application development, testing, and deployment
¡	Offline rendering capabilities on many back-end server platforms
¡	Desktop-, mobile-, and browser-based application execution environments

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

6 Chapter 1  Angular: a modern web platform

¡	Comprehensive UI component libraries, such as Material Design

Some of these things existed in some shape with AngularJS, but most were community
solutions and were bolted into AngularJS after the fact. In contrast, Angular was devel-
oped with these platform features in mind.

These parts are still in refinement and will continue to evolve into more robust
options.

1.4.1	 Angular CLI

Modern development typically requires setting up many tools in order to start a proj-
ect, which has given rise to more tools to help manage those tools. A typical project needs
to manage handling a build process (asset optimization), testing (unit and end-to-end
testing), and local development support (local server).

The CLI is always improving
The Angular CLI is a wonderful tool that has an ever-growing list of capabilities. Over time,
it will likely do many more things than I mention here, and perhaps the capabilities may
change as well.

The Angular CLI (often just referred to as the CLI) is the official toolchain for building
Angular applications that provide these features and more. This book uses the CLI for
all examples, and you’re encouraged to use it for your projects as well. You could roll
your own build tooling, but that’s suggested only if the CLI doesn’t meet your needs.

You can install the CLI using npm. It does require that you have a recent version of
NodeJS installed to run properly:

npm install -g @angular/cli

The CLI has a number of features that aid in the development of Angular apps. Here
are the primary features:

¡	Generates new project scaffolding —Instead of having to create a new project from an
existing project or creating all the files yourself, the CLI will generate a full proj-
ect with a basic app already started for you.

¡	Generates new application pieces —Need a new component? Easy; it can generate
the files for you. It can generate components, services, routes, and pipes, and it
also will automatically ensure they are fully wired up in the build process.

¡	Manages the entire build toolchain —Because files need to be processed before
being served to the client (such as TypeScript compilation), the CLI will process
your source files and build them into an optimized version for development or
production.

¡	Serves a localhost development server —The CLI handles the build flow and then starts
a server listening on localhost so you can see the results, with a live reload feature.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 7Angular: a platform, not a framework

¡	Incorporates code linting and formatting code —Helps enforce quality code by using
the CLI to lint your code for style and semantic errors, and it can also help format
your code automatically to the style rules.

¡	Supports running unit and e2e tests —Tests are vital, so the CLI sets up Karma for
running your unit tests and works with Protractor to execute your e2e tests. It will
automatically pick up and execute new tests as they’re generated.

You can add other features and capabilities to the CLI. To see the full list of features, you
can run ng help to output the current help documentation. You can also read more
about the CLI at https://cli.angular.io.

1.4.2	 Server rendering and the compiler

Compiling output in Angular is decoupled from the browser in a way that allows Angu-
lar applications to be rendered in different environments, such as a server or desktop
app. There are many great side effects of this design pattern, because Angular is much
more versatile by being able to render on the client and server, and it opens many dif-
ferent opportunities.

There are two things in play here—first, the decoupled compiler of Angular, and
then optional support for universal rendering. It takes a decoupled compiler to enable
the universal rendering, because you can implement different rendering patterns
depending on the environment.

The compiler in Angular is a very important piece of the puzzle. It’s responsible for
resolving data bindings, registering event handlers, and rendering out the resulting
HTML for components.

The term server rendering is about the notion that it shouldn’t matter where you run
the JavaScript engine that executes Angular code. It should be possible to run Angu-
lar universally, such as with browser JavaScript engines, NodeJS, or even less common
engines like Java’s Nashorn engine. This greatly increases the ways in which Angular
can be used.

Why does this matter? Let’s explore a few primary use cases:

¡	Server rendering for faster loading —Mobile devices are the primary way to access the
internet these days, and mobile connections are frequently slow and unreliable.
A server-side rendering option allows you to resolve data bindings and render
components on the server so the initial payload sent to the user is pre-initialized.
It can also optimize and send the necessary bytes for a quick initial load time and
lazy load the other assets as needed.

¡	Performance in the browser —One of the major pain points of JavaScript is that it’s
single threaded, which means that JavaScript can only handle one instruction at
a time. In modern browsers, a newer technology known as web workers allows
Angular to push some of the execution of the compiler into another process.
This means that a lot more processing can occur, and it allows things like anima-
tions and user interactions to be smoother.

www.itbook.store/books/9781617293313

https://cli.angular.io
https://itbook.store/books/9781617293313

8 Chapter 1  Angular: a modern web platform

¡	SEO —There’s a major concern about how heavy JavaScript applications are
crawled by search engines. Universal rendering means we can detect crawlers
and render the site for them so that content is ready without having to worry
if the crawler executes JavaScript (some do, some don’t). This will certainly
enhance SEO efforts for Angular applications.

¡	Multiple platforms —Many developers want to use other platforms for their back
ends, such as .NET or PHP. Angular can be compiled in the platform of choice,
assuming there’s a supported renderer. Angular will provide support for NodeJS,
but the community is actively building and maintaining rendering support for
other platforms such as Java and Go.

All of these have been issues for years in building web applications, and Angular pro-
vides a comprehensive solution. The great thing is you don’t have to do a lot of work to
enable these features in your application.

This is an area of evolution at the time of writing, and setting it up correctly is an
advanced topic that I can’t cover in depth. But the Angular documentation and CLI are
being constantly improved to show you how to incorporate these types of benefits easily.

1.4.3	 Mobile and desktop capabilities

The rendering capabilities enable Angular to work with native mobile and desktop
applications. Tools like Cordova have been around for a while; they let you create
hybrid applications—web applications wrapped up inside some type of native shell. But
Angular’s rendering design makes it possible to support rendering out to different
native platforms entirely.

The major value is that you can share a lot of code between your Angular applica-
tions, even if some are designed to build mobile apps and others are web applications.
This is particularly valuable in large teams.

The mobile and desktop capabilities of Angular are extensions of the design of the
compiler. The following tools are all outside of Angular’s core but use the design of
Angular to power some powerful design patterns:

¡	Ionic (mobile) —This fantastic and popular hybrid app framework (figure 1.2) for
Angular JS has been updated to work with Angular. Millions of mobile apps have
been created with Ionic, and it’s primarily focused on building hybrid apps. The
UI components are all created to run in the browser, but look and feel like native
UI components.

¡	NativeScript (mobile) —This is another popular mobile framework that creates
native mobile apps. NativeScript implements the native UI components but
allows you to write Angular components to describe your application.

¡	React Native (mobile, desktop) —By the name, you’d be correct to assume that React
Native is really part of the React framework ecosystem. But with a custom render,
it’s possible to use the React Native tool to generate native mobile apps.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 9Angular: a platform, not a framework

Figure 1.2   Ionic is a popular and powerful mobile framework for Angular.

¡	Windows Universal (desktop) —Windows has support for building native Windows
applications using JavaScript. It’s possible to use Angular as your application
layer but still have to build out a native Windows application.

¡	Electron (desktop) —Based on NodeJS, Electron is a very popular cross-platform
application framework. It implements a set of APIs to hook into the native OS,
and you can leverage Angular to power the internal logic of your app.

¡	Progressive Web Apps (mobile, desktop) —The capabilities of Progressive Web Apps
(PWAs) aren’t limited to Angular. They’re fundamentally about blurring the line
between the web and native. As of this writing, they’re in experimental support.
This is an exciting potential avenue for building applications of tomorrow.

These different options support the power of the decoupled compiler in Angular. It
also means that there will likely be many, many more examples and use cases that allow
you to build Angular applications that can run nearly anywhere.

1.4.4	 UI libraries

There’s an ever-growing catalog of UI libraries built for Angular. They bring different
sets of UI components to developers for easy consumption. Rather than having to build
your own charts or tabs components, you can use one of the many prebuilt options.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

10 Chapter 1  Angular: a modern web platform

Depending on your team’s size and skill sets, implementing your own UI compo-
nents may be challenging. Making truly reusable and hardened UI components is dif-
ficult. These components are rarely what make your application really unique, so it’s
hard to spend the time (and money) to build them.

These libraries are plentiful. There are so many that I can’t cover all the options.
You’ll notice there’s a lot of overlap in the functionalities that each of them provides, so
comparing them can be difficult. We’ll take a look at some of the most popular options,
but I recommend doing additional research before selecting an option:

¡	Angular Material (https://github.com/angular/material2) —Material Design is the
official design specification created by Google. It has strong roots in concepts of
real-world objects, hence Material in the name. Angular Material is the official UI
component library provided by the Angular team and it implements a number
of UI components according to the design specification. It has an open source
license.

¡	Covalent (https://teradata.github.io/covalent) —This library extends the Angular
Material project with a number of additional components and capabilities, but
still retains the principles of Material Design. It’s a result of work done at Tera-
data. It has an open source license.

¡	Clarity (https://vmware.github.io/clarity) —This library, shown in figure 1.3, comes
from VMware. It’s designed as both a library and a design specification for web
applications. It contains many components that are specific to Angular but also
has some icons and a general CSS framework. It has an open source license.

¡	ng-bootstrap (https://ng-bootstrap.github.io) —Based on the very popular Bootstrap
CSS framework, ng-bootstrap implements the components based on the design
of Bootstrap. It’s built by the same team that created the very popular AngularJS
UI Bootstrap project. It has an open source license.

¡	Kendo UI (https://www.telerik.com/kendo-angular-ui/) —From the same company as
NativeScript, Kendo UI is a UI library that’s been integrated into many different
frameworks, but the company is building a set of native Angular UI components
that are custom for Angular. It has a commercial license.

¡	PrimeNG (www.primefaces.org/primeng/) —A rich collection of UI components,
PrimeNG is developed by PrimeTek and has more than 60 components. It comes
with many themes and is designed for mobile and desktops. It has an open source
license.

¡	Wijmo (http://wijmo.com/angular2/) —Containing some very complex data grid
components, Wijmo implements this set of Angular components without sup-
port from other libraries like jQuery. The UI library has a commercial license.

www.itbook.store/books/9781617293313

https://github.com/angular/material2
https://teradata.github.io/covalent
https://vmware.github.io/clarity
https://ng-bootstrap.github.io
https://www.telerik.com/kendo-angular-ui/
www.primefaces.org/primeng/
http://wijmo.com/angular2/
https://itbook.store/books/9781617293313

	 11Component architecture

Figure 1.3   Clarity Design System is one of the most popular Angular UI libraries.

¡	Ionic (http://ionic.io) —Primarily for mobile, Ionic is a comprehensive library of
components with easy theming, native device integrations, practical services, and
its own CLI for app development workflows. The company also provides commer-
cial services for mobile app development. It has an open source license.

¡	Fuel-UI (http://fuelinteractive.github.io/fuel-ui/) —Another Bootstrap CSS framework
based set of components, directives, and pipes by Fuel Travel. It has an open
source license.

You’re certainly not required to use a UI library, but most developers will find them to
be useful. Any reasonable UI library should be fairly well tested, allowing you to focus
more on what makes your application unique.

1.5	 Component architecture
Many modern applications have adopted a component-based approach to developing
applications. The intention is to design each piece of your application in a standalone
manner that limits the amount of coupling and duplication across various parts of the
program. In many ways, a component is a way to create custom HTML elements in your
application.

www.itbook.store/books/9781617293313

http://ionic.io
http://fuelinteractive.github.io/fuel-ui/
https://itbook.store/books/9781617293313

12 Chapter 1  Angular: a modern web platform

The easiest way to think about a component architecture is to look at an example of
a page with a large number of discrete parts and inspect how the various parts relate
to one another. Figure 1.4 shows an example from a future chapter and visually breaks
down the various component parts.

Button component: it’s nested deep
inside a component tree that includes
a Datagrid component, like HTML
elements are nested to create more
complex documents.

Stocks
component

Datagrid
component

Datagrid Row
component

Datagrid Cell
component

Figure 1.4   Component architecture illustrated by showing how components are nested and combined
to create more complex layouts

The figure shows an isolated section from one of the book chapter examples, illustrat-
ing that several components combine to create this display. You can see that various
parts are independent from the others, but they also work together to create the list of
items. There’s clearly a hierarchy between them. The list of components on the right
shows the parent-to-child relationship each of the components has with the others,
and this is essentially how HTML elements work together on the page.

HTML itself is a language of components. Each element has a certain role and func-
tionality, and they’re all easily nested to create more complex functionality. They’re
isolated but still easily manipulated to do whatever is needed at the moment. Some

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 13Component architecture

elements work in tandem. For example, INPUTs are used inside of a FORM to describe a
set of input controls. Many elements can also emit events when things happen; a FORM
can emit an event when the form is submitted, for example. This allows you to wire up
additional logic to manipulate HTML elements based on the events that fire—the fun-
damentals of front-end application development.

Hopefully a component architecture seems fairly approachable and consistent with
your current understanding of the web. The intention is to focus on breaking down
individual parts of the application (particularly the visual UI elements) into discrete,
modular components.

There are many ways to implement a component architecture, as evidenced by the
many web application libraries such as React and Ember. Angular has a very obvious
component-based architecture (all Angular applications are components). React and
Ember also have first-class support for components in their applications. Those with
jQuery experience can also imagine that jQuery plugins can be conceptually similar to
components, though they’re not as consistent or regulated. Even the basic concepts of
the Web 2.0 days (think widgets!) are based around building components.

1.5.1	 Components’ key characteristics

Components have some concepts that drive their design and architecture. This section
will explore these concepts in more detail, but also keep an eye open for how Angular
applies these concepts to practice throughout the book:

¡	Encapsulation —Keeping component logic in a single place
¡	Isolation —Keeping component internals hidden from external actors
¡	Reusability —Allowing component reuse with minimal effort
¡	Evented —Emitting events during the lifecycle of the component
¡	Customizable —Making it possible to style and extend the component
¡	Declarative —Using a component with simple declarative markup

When we build components, the preceding are the tenets we should consider when
designing the best components possible. These concepts have existed in various forms
before, but rarely have they all been clearly implemented and standardized into the
web platform.

The World Wide Web Consortium (W3C), the primary standards body for the web, is
developing an official Web Component specification. Several standards are required in
order to implement the full vision of web components:

¡	Custom elements (encapsulation, declarative, reusability, evented)
¡	Shadow DOM (isolation, encapsulation, customizable)
¡	Templates (encapsulation, isolation)
¡	JavaScript modules (encapsulation, isolation, reusability)

As of this writing, the specification isn’t fully adopted in all browsers and possibly never
will be. Standards are also subject to change, but it’s not crucial that we dive into the

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

14 Chapter 1  Angular: a modern web platform

specifics of the specification here. The important thing is that these four concepts are
central to the idea of components. Let’s explore them a little more in detail and see
how they enable a component architecture.

Custom Elements

HTML is the language of the web because it describes the content of a page in a fairly
concise set of elements. As a markup language, it’s a declarative way to describe your
content. Custom elements mean being able to extend HTML with our own additional
elements, adding to the vocabulary of what is possible. You can read about the official
specification at www.w3.org/TR/custom-elements/.

The official specification for custom elements is intended to allow developers to cre-
ate new HTML elements that essentially blend naturally and natively into the DOM.
In other words, using a custom element should be no different from using any other
HTML element. For example, imagine you want to create a custom element that imple-
ments a tabbing interface. You would likely want to create custom elements like the
following code and in figure 1.5:

<tabs>
 <tab title="About">
 <h1>This is the about tab</h1>
 </tab>
 <tab title="Profile">
 <h2>This is the profile tab</h2>
 </tab>
 <tab title="Contact Us">
 <form>
 <textarea name="message"></textarea>
 <input type="submit" value="Send">
 </tab>
</tabs>

This looks and feels like natural HTML because these would be two custom elements:
tabs and tab elements. The real value here is how easy it is to implement tabs. Using
jQuery, you would end up creating a lot of div elements, applying a number of custom
IDs or classes, and sprinkling some JavaScript on top.

These tabs could also emit events. For example, anytime the active tab changes
there could be a tabChange event. Anything in your application could then listen for
this event and act accordingly. Each custom element could implement any number of
events that seem practical to the lifecycle of the component.

A custom element can also implement its own styling, so the tabs can come by default
with a particular look and feel. Anyone using the tabs could write their own CSS to mod-
ify it to their particular use case, but custom elements can have a default appearance
much like many HTML elements.

Custom elements have a lot of the stuff necessary for building components. In fact, we
could stop with custom elements and be fairly happy. It gives us a declarative way to create
a reusable component, which encapsulates the internal mechanics of the component away
from the rest of the application, but can emit events to enable other components to hook
into the lifecycle. Angular uses these concepts in its implementation of components.

www.itbook.store/books/9781617293313

http://www.w3.org/TR/custom-elements/
https://itbook.store/books/9781617293313

	 15Component architecture

Tabs element

Tab element

H2 element

Tab element

Form element

Tab element

H1 element

Text area element Input button element

Key:

Custom elements
HTML elements

Figure 1.5   Custom elements fit into a normal HTML hierarchy but can
implement new behaviors.

Angular provides its own mechanics to create a custom element, which is just an Angu-
lar component. Every Angular component is a custom element and fulfills the four
tenets (and more) that we expect to get from a custom element.

1.5.2	 Shadow DOM

Despite the rather ominous-sounding name, the Shadow DOM is really your best friend
when it comes to trying to isolate styling behaviors inside of a component. The Shadow
DOM is an isolated Document Object Model (DOM) tree that’s detached from the typ-
ical CSS inheritance, allowing you to create a barrier between markup inside and out-
side of the Shadow DOM. For example, if you have a button inside of a Shadow DOM
and a button outside, any CSS for the button written outside the Shadow DOM won’t
affect the button inside it. This is important for Angular because it allows us to have
better control over how CSS affects the way the components display.

CSS is a powerful language, but most web developers have run into issues where CSS
styles have accidentally modified elements other than the intended ones, particularly
when adding CSS from external sources. Shadow DOM provides a way to truly encapsulate
your component HTML and CSS from other parts of the page, which is known as Light
DOM. You can read about the official specification at www.w3.org/TR/shadow-dom.

Developers should be familiar with the standard Light DOM, defining the standard
DOM behaviors with regard to element styling and visibility. When you write a CSS rule,
the CSS selector is the only way to limit which elements receive that particular styling.
Outside of some fairly small, hand-crafted web pages, most CSS is written with some
kind of systematic approach to set clear rules about how CSS styles get applied. This
gave rise to many of the great CSS grid and component frameworks, such as Bootstrap
and Foundation. It also gave us a selection of CSS selector nomenclatures, such as Scalable
Modular Architecture for CSS (SMACSS) and Block Element Modifier (BEM). Although
we’ve found ways to manage the Light DOM with these systems, it doesn’t change the

www.itbook.store/books/9781617293313

www.w3.org/TR/shadow-dom
https://itbook.store/books/9781617293313

16 Chapter 1  Angular: a modern web platform

underlying behavior that someone could still manage to break your whole application
by adding a single rule that doesn’t adhere to the guidelines.

There’s always been pain associated with scaling page styling with CSS due to the
greedy nature of CSS selectors always trying to match as many things as possible. In con-
trast with the Light DOM, the Shadow DOM gives us the ability to denote that a fragment
of the DOM be shifted into a new realm that doesn’t play with the Light DOM styles.

In many science fiction stories, characters may get caught somehow in a new dimen-
sion of reality that is separated from normal reality, and they’re usually unable to interact
between these realities except through some “bridge” between the realities. Similarly, I
like to think of using Shadow DOM as like shifting the current context to a new dimen-
sion that has very limited connection to the Light DOM and therefore allows us to write
CSS and HTML that gets rendered without having the ability to modify other styles.

Developers can create a new Shadow DOM (known as a shadow root) that will carve out
an isolated DOM tree that has limited interaction with the Light DOM. You still attach
this root inside the DOM tree as a node. The shadow boundary is the line between the
Light and Shadow DOMs. There are many nuances and features that enable certain
forms of styles to target inside or outside of the boundary, but I’ll leave those details for
you to dive into if they become needed.

In figure 1.6, you can see a simple example where the first line of text output in the
middle of the image has the black background and white text, whereas the second line
of text (which is inside the shadow root) doesn’t.

HTML markup for
the Light DOM

JavaScript to create a new element
that uses the Shadow DOM and has
the .lightdom class inside

CSS rules for the
.lightdom class

First line of text
adopts the CSS
rules for .lightdom

Second line of text
(in the Shadow
DOM) doesn’t

Console shows the HTML elements,
but wraps the HTML inside the
Shadow DOM with #shadow-root

Figure 1.6   Shadow DOM example where the styles from outside the shadow root don’t cross the
boundary and apply to inner elements

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 17Component architecture

Shadow DOM enables the best form of encapsulation available in the browser for styles
and templates. It’s able to isolate the internals of a component in such a way that out-
side styles and scripts won’t accidentally attach and modify it. It does provide some cus-
tomization features that allow you to communicate across the shadow boundary. These
are particularly important features when we want to build out complex and reusable
components that can be entirely self-contained with styling.

Unfortunately, Shadow DOM support may not be available in all browsers and may
require a polyfill. Chapter 4 explores this in more detail, but Angular lets us write com-
ponents that use either the Shadow DOM, an emulated version of the Shadow DOM, or
just the Light DOM.

1.5.3	 Templates

Templates are a powerful feature that allow us to create isolated fragments of the DOM
to use in our components. Our custom elements need to have some kind of internal
structure, and often we’ll need to be able to reuse this markup. Ideally this shouldn’t
clutter the main document, and HTML5 introduces a new template tag to help us out.
You can read the spec at https://www.w3.org/TR/html5/semantics-scripting.html#the-
template-element.

Any markup written inside a template is just a fragment that’s not part of the current
page unless it’s explicitly initialized. In other words, if you were to look at the DOM tree,
the content in templates doesn’t appear. If your markup has CSS, inline scripts, image
elements, or other elements that typically trigger a browser action, those actions won’t
run until the template is used.

Templates are often used with the Shadow DOM because it allows you to define the
template and then inject it into the shadow root. Without templates, the Shadow DOM
APIs would require us to inject content node by node. They’re also used by Angular as
part of the lifecycle of components and the compilation process, allowing Angular to
keep isolated, inert copies of the template as data changes and needs to be recompiled.

The role of templates folds in nicely with the overall component architecture and
works in tandem with the Shadow DOM and custom elements. They provide a layer of
encapsulation that lets you define a template that remains inactive until it’s needed and
therefore isolates the template from the rest of the application.

1.5.4	 JavaScript modules

Neither HTML nor JavaScript has traditionally had a native means to load additional
files or assets during the lifecycle of the application. You had to ensure that all the
needed files were loaded on page load, or use some workaround that usually relied
on making an XHR request or adding a new script tag to the page. Though these
approaches worked, they weren’t particularly elegant or always easy to use.

Today we have modules and module loaders in JavaScript, which give a native way to
load and execute code throughout the entire lifecycle of the app, not just on page load.
Previously, developers had to build a bundle of all the assets for the web application
ahead of time and deliver the whole package to the user. Modules (figure 1.7) give us a
lot of interesting capabilities, many of which are familiar to developers who have worked
with other languages with package or module capabilities, like Java, Python, or Go.

www.itbook.store/books/9781617293313

https://www.w3.org/TR/html5/semantics-scripting.html#the-template-element
https://www.w3.org/TR/html5/semantics-scripting.html#the-template-element
https://itbook.store/books/9781617293313

18 Chapter 1  Angular: a modern web platform

Angular API docs have a list of
modules and the various items
that each module includes.

Figure 1.7   Angular provides modules (like animation) that contain all the services and objects you’ll
need to build your applications, but first you’ll have to import them.

Inherently, modules aren’t strictly a component technology. Modules are an isolated
piece of JavaScript that can be used to generate a component, create a reusable service,
or do anything else JavaScript can do. They’re fundamentally a way to encapsulate appli-
cation code and choose what’s available for the other parts of the application to use.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 19Component architecture

.../services/
account.service

AccountService

@angular/core

Component,
DoCheck

Module aliases
or paths

Imported
objects

This file imports the Component,
DoCheck, and AccountService
objects from external modules.

Figure 1.8   Loading objects into a file from different modules using imports

In JavaScript, a module is any file of JavaScript code that contains the export keyword.
Modules export values that they want to expose to the application and can keep other
parts of the internal logic private. Then, in order to use an exported value, you have to
first import it from another module (figure 1.8).

In figure 1.8 (a snippet from a later chapter), we're first importing some things from
external modules that the rest of the code in this file depends on. The Component and
DoCheck objects are being imported from the @angular/core package (which is part of
our node modules directory), and AccountService is being imported based on the file
path provided.

These modules are powerful because they encapsulate the contents of a single Java
Script file into a single coherent whole. They isolate the code and allow the developer to
conditionally export values to share. They also support reusability by defining common
mechanics for sharing values in a JavaScript application that previously could only be
done by putting values directly on the global scope or by crafting some non-standard
service to manage dependency injection, as Angular 1 did.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

20 Chapter 1  Angular: a modern web platform

HTML imports are a similar concept that has been proposed as part of the HTML
spec, which would provide similar capabilities. But it’s likely that HTML imports won’t
be adopted, and instead JavaScript modules are used. There are libraries that use HTML
imports, such as Polymer, by using a polyfill library.

Angular itself is built entirely around the notion of modules. The source code uses
them extensively. When you write your own applications, it’s recommended that you
also use them. Executing an Angular application is fundamentally loading a module
that contains the application bootstrapping logic, which in turn starts to load and trig-
ger additional modules. It’s possible to write your Angular applications without mod-
ules using ES5 syntax, which is not recommended but discussed next.

1.6	 Modern JavaScript and Angular
Angular is designed to take advantage of many features that are fairly recent to the
web platform. Most of these became part of the JavaScript specification in 2015 with
the release of ES2015 (also known as ES6, but I’ll refer to its official name ES2015);
other features are still in development as of this writing but are likely to be adopted in
a future version.

These features are well covered in many places, so I won’t go into detail. Though
they could be used with AngularJS, Angular was designed to work using these capabili-
ties. I’ll cover some of the most important aspects quickly, namely the following:

¡	Classes
¡	Decorators
¡	Modules
¡	Template literals

Let’s look at an example with all these features working together and then review how
they’re put together. The following listing is a functional but simple Angular compo-
nent, and you’ll get to see many more examples that use the same concepts in more
complex ways in this book.

Listing 1.1   Modern JavaScript Syntax

import {Component} from '@angular/core';

@Component({
 selector: 'my-component',
 template: `
<div>
 <h4>{{title}}</h4>
</div>
`
})
export class MyComponent {
 constructor() {
 this.title = 'My Component';
 }
}

Imports the Component object
from another module

Uses a decorator to add metadata
to the MyComponent object

Uses a template literal string
to write inline HTML

Exports the MyComponent object, which
was defined as a class

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 21Modern JavaScript and Angular

Let’s start from the bottom and go from there. In ES2015, classes were introduced as a
new way to define an object, which is in fact a function. Classes are used to create com-
ponents, directives, pipes, and services, though they can be used in other ways as well.
Using the class keyword, the class MyComponent is created and is an object that has a
property called title.

Classes are syntactic sugar for creating objects in JavaScript. They don’t introduce
a new type of inheritance to JavaScript, which is important to remember. Developers
familiar with class objects in other languages may accidentally carry over concepts into
JavaScript, but in this case the concept of a class doesn’t change the way prototypical
inheritance works with JavaScript.

Inside of the class there’s a special method called constructor(). It’s executed
immediately when a new copy of the object is created. As long as you name a method
constructor(), it will be used during creation.

Classes are also useful because they help ensure that the keyword this references
the object itself. The keyword this is a common barrier in JavaScript, and classes help
ensure that it behaves more consistently.

The export keyword denotes the file as a module. Any module is isolated into a
private space, and unless a value is exported, it won’t be available for another file or
module to use. This breaks away from the global scope that JavaScript has for values
and provides a proper separation between modules. Because the MyComponent class is
exported, it can be imported into another module (not shown here).

At the top of the file, the import statement imports the Component value from the
angular/core module, which allows it to be used in this module.

Then in the middle we use the @Component decorator, which is a way to add metadata
to the class. Decorators always start with the @ symbol, and Angular uses these decora-
tors to understand what type of class has been declared. In this case, it’s a component,
and Angular will know how to render a component based on this decorator. There are
several other ones, such as Injectable and Pipe, and we’ll see those in action later.

Finally, the decorator accepts an object that contains the metadata associated with
the component itself. In this example, it has two properties for the selector and an
inline HTML template. The decorators define what properties can be passed here, but
they allow you to customize the way the class is handled by Angular.

1.6.1	 Observables

In addition to new syntax, observables are a newer pattern for JavaScript applications to
manage asynchronous activities. They’re also a draft for a feature to be natively imple-
mented in the JavaScript language so it has weight behind the pattern. RxJS is the
library we’ll use to help us implement observables in our applications.

Promises are another construct to help deal with asynchronous calls, which are useful
for making API requests, for example. Promises have a major limitation in that they’re
only useful for one call cycle. For example, if you wanted to have a promise return a
value on an event like a user click, that promise would resolve on the first click. But you

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

22 Chapter 1  Angular: a modern web platform

might be interested in handling every user click action. Normally, you’d use an event
listener for this, and that allows you to handle events over time. This is an important dis-
tinction: Observables are like event handlers in that they continue to process data over
time and allow you to continuously handle that stream of data.

Reactive programming is the higher-level name for what observables provide, which
is a pattern for dealing with asynchronous data streams. Many things in a web applica-
tion are asynchronous data streams, if you think about it. A user typing keystrokes into
a form input is really a stream of individual characters. Timers and intervals generate a
stream of activity over time. Websockets pass data as a stream over time. It’s that simple,
but the challenge can be wrapping your mind around it all.

Angular uses observable patterns often, and having a grasp of the fundamentals is
useful. During the course of this book, you’ll see observables in a number of places, and
they all work in the same basic way. We’re not going to worry about constructing observ-
ables here. Instead we’ll just focus on how to use them when they’re given to you.

To use observables, you subscribe to the stream of data and pass a function that will
run every time there’s a new piece of data. We’ll see this in action in chapter 2 when we
make an HTTP request, but let’s look at a quick sample just to see some syntax:

this.http.get('/api/user').subscribe(user => {
 // Do something with the user record
}, (error) => {
 // Handle the error
})

This snippet is using the HTTP library to make a get request, which returns an observ-
able. Then we subscribe to that observable, and our callback function fires when the
data is returned or the error is handled. It’s not very different from a promise, except
that an observable could continue to send data. Let’s take a different example:

this.keyboardService.keypress().subscribe(key => {
 // Do something with the key record
}, (error) => {
 // Handle the error
})

In this example, imagine keyboardService.keypress() returns an observable, and
it emits details about what key was pressed. This is like an event listener, except that it
comes in a stream.

Another interesting capability of observables is that they are composable into many
combinations. Observables can be combined, flattened into one, filtered, and more.
We’ll see one example in chapter 9, where we’ll combine two observable streams and
handle the data they emit in one place. We’ll not use many of the more complex fea-
tures in this book, but you’ll likely be interested in how they work, so I recommend the
book RxJS in Action (www.manning.com/books/rxjs-in-action).

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 23TypeScript and Angular

1.7	 TypeScript and Angular
Angular itself it written with TypeScript, which is a superset of JavaScript that intro-
duces the ability to enforce typing information. It can be used with any version of
JavaScript, so you can use it with anything ES3 (that’s not a typo) or newer.

The basic value proposition of TypeScript is it can force restrictions on what types of
values variables hold. For example, a variable may only hold a number or it may hold an
array of strings. JavaScript has types (don’t let anyone tell you otherwise!), but variables
aren’t typed, so you can store any type of value in any variable. This also gave birth to
the many types of comparison operators, such as == for loose equality or === for strict
equality.

TypeScript can help catch many simple syntax errors before they affect your applica-
tion. Sometimes you can write valid JavaScript, but the real world shows that valid syntax
doesn’t always mean valid behavior. Take this example:

var bill = 20;
var tip = document.getElementById('tip').value; // Contains '5'
console.log(bill + tip); // 205

This snippet shows a simple tip calculator example where you take the value from an
input element and add it to the bill to get the total payment amount. The problem
here is that the tip variable is actually a string (because it’s text input). Adding a num-
ber and a string together is perhaps one of the most common pitfalls for new JavaScript
developers, though it can happen to anyone. If you used TypeScript to enforce types,
this code could be written to alert about this common error:

var bill: number = 20;
var tip: number = document.getElementById('tip').value; // 5, error!
var total: number = bill + tip; // error!

Here we’re using TypeScript to declare that all these variables must each hold a num-
ber value by using :number. This is a simple syntax that sits inside of JavaScript to tell
TypeScript what type of value the variable should hold. The tip value will error because
it’s being assigned a string, and then the total value will error because it attempts to
add a number and a string type, which results in a string.

This may seem like an obvious error to a seasoned JavaScript developer, but how
often do you have new developers work on your code base? How often do you refactor
your code? Can you still ensure that your application is passing around the same value
types as you continue to maintain the application? Without TypeScript, you’re responsi-
ble for doing a strict comparator check of every value before it’s used.

Many developers wonder why they should bother learning and using TypeScript.
Here are the primary reasons to use TypeScript, in my humble opinion:

¡	Adds clarity to your code —Variables that have types are easier to understand,
because other developers (or yourself in six months) don’t have to think very
hard about what the variable should be.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

24 Chapter 1  Angular: a modern web platform

¡	Enables a smarter editor —When you use TypeScript with a supported editor, you’ll
get automatic IntelliSense support for your code. As you write, the editor can
suggest known variables or functions and tell you what type of value it expects.

¡	Catches errors before you run code —TypeScript will catch syntax errors before you
run the code in the browser, helping to reduce the feedback loop when you write
invalid code.

¡	Entirely optional —You can use types when you want, and optionally leave them out
where it doesn’t matter.

I hope you’re sold on the value of TypeScript. If not, I hope you’ll give it a closer look
during the course of the book. This book uses it in examples to help provide more
clarity and to help further demonstrate the power of TypeScript. I’ll try to provide
additional insight into TypeScript features and functionality as we use features in the
examples, but you can always learn all there is to know at www.typescriptlang.org/
docs/tutorial.html.

Even if you choose not to use TypeScript for type enforcement in your application,
you can use TypeScript to compile your application. Because the Angular CLI already
uses TypeScript internally, you may be using it without even knowing. If you decide to
build your own build tooling, TypeScript is still a worthwhile compiler option.

If you’re wondering whether using TypeScript in your Angular application is
required, the answer is technically no. There are ways to write your application in vanilla
JavaScript and avoid TypeScript, to a certain degree. But it’s intentionally not docu-
mented because there are simply too many features of Angular that don’t work unless
you use TypeScript. If you’re afraid it will be hard to learn, don’t be. It’s straightforward,
and in several places throughout the book I’ll explain some nuances of TypeScript that
you may not have seen before.

Summary
This chapter introduced you to Angular as a development platform, not just an appli-
cation framework. There are so many features and capabilities with Angular. Here’s a
quick summary:

¡	Angular is a platform, with many key elements such as tooling, UI libraries, and
testing built in or easily incorporated into your application projects.

¡	Applications are essentially combinations of components. These components
build upon the core principles of encapsulation, isolation, and reusability, which
should have events, be customizable, and be declarative.

¡	ES6 and TypeScript provide a lot of the underpinnings for Angular’s architecture
and syntax, making it a powerful framework without having to build a lot of cus-
tom language capabilities.

www.itbook.store/books/9781617293313

www.typescriptlang.org/docs/tutorial.html
www.typescriptlang.org/docs/tutorial.html
https://itbook.store/books/9781617293313

For ordering information go to www.manning.com

Angular Development with Typescript,
Second Edition
by Yakov Fain and Anton Moiseev

ISBN: 9781617295348
475 pages, $49.99
June 2018

Testing Angular Applications
by Jesse Palmer, Corinna Cohn, Michael

Giambalvo, Craig Nishina

ISBN: 9781617293641
235 pages, $44.99
April 2018

React Quickly
Painless web apps with React, JSX, Redux,
and GraphQL
by Azat Mardan

ISBN: 9781617293344
528 pages, $49.99
August 2017

React in Action
by Mark Tielens Thomas

ISBN: 9781617293856
300 pages, $44.99
March 2018

RELATED MANNING TITLES

www.itbook.store/books/9781617293313

https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-in-action
https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-in-action
https://itbook.store/books/9781617293313

Jeremy Wilken

A
ngular makes it easy to deliver amazing web apps. This
powerful JavaScript platform provides the tooling to man-
age your project, libraries to help handle most common

tasks, and a rich ecosystem full of third-party capabilities to
add as needed. Built with developer productivity in mind,
Angular boosts your effi ciency with a modern component
architecture, well-constructed APIs, and a rich community.

Angular in Action teaches you everything you need to build
production-ready Angular applications. You’ll start coding im-
mediately, as you move from the basics to advanced techniques
like testing, dependency injection, and performance tuning.
Along the way, you’ll take advantage of TypeScript and ES2015
features to write clear, well-architected code. Thoroughly prac-
tical and packed with tricks and tips, this hands-on tutorial is
perfect for web devs ready to build web applications that can
handle whatever you throw at them.

What’s Inside
● Spinning up your fi rst Angular application
● A complete tour of Angular’s features
● Comprehensive example projects
● Testing and debugging
● Managing large applications

Written for web developers comfortable with JavaScript,
HTML, and CSS.

Jeremy Wilken is a Google Developer Expert in Angular,
Web Technologies, and Google Assistant. He has many years
of experience building web applications and libraries for eBay,
Teradata, and VMware.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/angular-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Angular IN ACTION

JAVASCRIPT

M A N N I N G

“A comprehensive
introduction to the world

 of Angular with great
code samples to help
readers get started.”
—Tanya Wilke, Sanlam

“Detailed and clear
explanations; lots of useful

 real-world examples.”
—Harsh Raval, Zymr Systems

“You can never have enough
Angular references ... this one

will fl oat to the top.”—Michael A. Angelo
US Department of Agriculture

Forestry Services

“The bible for Angular!”
—Phily Austria
Faraday Future

See first page

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	Angular in Action Sample Chapter
	1 Angular: a modern
	1.1	Why choose Angular?
	1.2	What you’ll learn
	1.3	The journey from AngularJS to Angular
	1.4	Angular: a platform, not a framework
	1.4.1	Angular CLI
	1.4.2	Server rendering and the compiler
	1.4.3	Mobile and desktop capabilities
	1.4.4	UI libraries

	1.5	Component architecture
	1.5.1	Components’ key characteristics
	1.5.2	Shadow DOM
	1.5.3	Templates
	1.5.4	JavaScript modules

	1.6	Modern JavaScript and Angular
	1.6.1	Observables

	1.7	TypeScript and Angular

