
M A N N I N G

Jeremy Wilken

Sample Chapter

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

Angular in Action

by Jeremy Wilken

Chapter 9

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

brief contents
1	 ■	 Angular: a modern web platform  1
2	 ■	 Building your first Angular app  25
3	 ■	 App essentials  54
4	 ■	 Component basics  76
5	 ■	 Advanced components  104
6	 ■	 Services  128
7	 ■	 Routing  159
8	 ■	 Building custom directives and pipes  188
9	 ■	 Forms  208

10	 ■	 Testing your application  242
11	 ■	 Angular in production  275

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

208

9Forms

This chapter covers
¡	Creating forms using Angular’s forms libraries

¡	Deciding between using Reactive or
Template forms

¡	Validating forms with custom logic

¡	Accessing data and watching input changes

¡	Submitting form data and handling errors
gracefully

¡	Creating custom form controls

Just about every application uses forms in some way, if only to do something simple
like log in or manage settings. HTML comes with a number of form elements by
default, such as inputs, selects, and buttons, and Angular provides a way to use these
native elements and add some power to them. We’ve used forms in several previous
examples, but in this chapter we’ll dig into them much more completely.

Angular provides two approaches to building forms: reactive forms and template
forms. I’ll discuss the differences at length shortly, though they’re largely in whether

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 209Setting up the chapter example

you define the form in your controller or in the template. You’re not limited to choos-
ing only one or the other form, but typically applications will try to remain consistent
with one of them.

With template forms, we’ll see how to describe your forms primarily using the
NgModel directive, which is used to define the form structure. With reactive forms, you
declare the form structure yourself in the controller, and the template renders it out.

As complex as forms can become, the basics are fairly standard in all areas. There are
form controls (fields that hold values like inputs, selects, and so on), and there are form
buttons (like Save, Cancel, or Reset). The same holds true when working with forms in
Angular—the basics remain consistent regardless of how complex the form becomes.

There are often situations where a form requires the use of additional third-party
components to help, such as a date picker or range slider. Browsers may implement some
newer form controls, but they’re rarely standard, and other browsers might not support
them at all. Although we’re not going to focus on creating custom components that act
like form controls, there are many great libraries that provide you additional features, or
you can certainly build your own custom form controls by reviewing the documentation.
I personally avoid creating these unless absolutely necessary, which it rarely is.

9.1	 Setting up the chapter example
We’re going to build a new application that helps us manage invoices and customers.
Imagine you’re a freelancer or small business owner and you have customers to man-
age. This application would be a good tool for keeping track of sending invoices and
making sure you get paid (which is pretty important, right?).

The forms themselves are intentionally not complex, but they do demonstrate most
of the needs for forms succinctly. You can take the examples you see in this chapter and
translate them into larger, more complex forms without having to learn additional con-
cepts. The only difference tends to be the scale.

The application is also designed for the mobile form factor, which is a nice little
twist from our previous examples. It uses the Covalent UI library, from Teradata, which
extends the concepts and Angular Material Design library. If you weren’t aware, mobile
browsers tend to have the best support for the latest HTML5 input types, such as search
or number fields, which we will use for our example. I recommend using Chrome for
this chapter.

Chrome has a useful device emulator in the developer tools, as shown in figure 9.1,
and I suggest that you use it while you’re building and using this application. It allows
you to emulate the dimensions of various mobile devices and get a sense of how your
application would look on those sizes. It doesn’t really emulate the device in a true way,
but it does provide an easy way to preview.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

210 Chapter 9  Forms

Click this icon to
enable device tools

Set device sizes
and orientation

Figure 9.1   Use device tools in Chrome developer tools to simulate mobile devices.

Like other examples, this one is available on GitHub, and you can get the source code
by cloning the repo. Make sure to check out the right tag when we start so you can code
along, or look at the latest master for the final version:

git clone https://github.com/angular-in-action/invoice
cd invoice
git checkout start

Otherwise, you can download the archived files from https://github.com/angular-in-action/
invoice/archive/start.zip and unzip the files.

When you start the application, you’ll notice a number of services and components
are there already. I’ve provided the majority of the code ahead of time so we can focus
on the key features for forms. Even the form components are there, with standard
HTML forms in place. They don’t currently do anything when you try to save them,
which is what we’ll be updating and implementing in this chapter.

www.itbook.store/books/9781617293313

https://github.com/angular-in-action/invoice/archive/start.zip
https://github.com/angular-in-action/invoice/archive/start.zip
https://itbook.store/books/9781617293313

	 211Setting up the chapter example

You’ll need npm install for all the dependencies, and then you run ng serve to start
the local development server. That isn’t all, though. This app has a local API server that
we need to run also. You’ll need to open another terminal session and run the following:

npm run api

This will start up a local server that provides our app data. As you save and edit records,
the data will persist into a local file called db.json, which is important for our app.

There may be a few warnings in the browser console when you run the example—
you can safely ignore those. They refer to features that aren’t necessary for the chapter
example.

Now, before we get into the forms, let’s review the rest of the app.

9.1.1	 Review the app before starting

There are six routable views in this application. Let’s talk briefly about some of the
ones that don’t contain forms. We’ll focus only on two of the routes in the chapter;
we’ll build one of the forms with template-driven forms and the other with a reactive
form. Let’s take a look at several of the screens of the application.

Figure 9.2 shows some of the screens for the application, such as the list, detail, and
form views. There are two list views, one for customers and one for invoices. These are
both fairly simple in that they load a list from the API and render it. They also include a
button that will take you to a form to create a new record. You can see these two in the
Invoices and Customers components.

Figure 9.2   Invoicing application screens, emulated in a mobile device size. From left to right: list of
invoices, list of customers, invoice detail view, and customer form.

The two detail views for a customer and invoice are also quite similar in that they sim-
ply show the relevant data for a given record. There is a button that allows you to edit
that record as well. You can preview these in the Invoice and Customer components.

Finally, the two views we’ll work on are the form views. The customer or invoice form
will let you create or edit an existing record, and the form fields needed are already

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

212 Chapter 9  Forms

provided with standard HTML. We’ll be updating these forms and the controllers to
handle the save, delete, and cancel events. These can be found in the InvoiceForm and
CustomerForm components.

Inside of the components you’ll see a few new things. The TdLoading directive is
a feature from the Covalent library to display a loading indicator while data is being
loaded. The MdInput directive will make an input Material Design–compliant. There
are several other elements that start with Md-, which are all from the Material Design
library and are UI components for structure or controls. It’s best to review the Covalent
and Material Design documentation for additional questions you may have about the
use of these tools. Please note the specific version being used in the package.json file
and make sure you’re looking it up correctly.

There are also services for the customers and invoices APIs. You may want to review
them as a way to extend one service to create another. Both the Invoices and Customers
services extend the Rest service, which implements the basic API calls needed. The spe-
cialized instances (Invoices and Customers) provide a single property that’s used by the
Rest service to construct URLs.

All right, let’s create the customer form using the template-driven approach.

9.2	 Template-driven forms
We’ve already used template-driven forms in several of our examples, and the key
marker is when you see the NgModel directive on a form control. AngularJS developers
will be familiar with the patterns described in this section.

Template forms are named primarily because the form controls are defined in the
template of the component. In this case, you can think of the template as having the
final say about what is part of the form or not. For example, if you have an input ele-
ment in the page that is part of the form that is wired up into the form controls, then it
will also be defined in the controller.

The primary goal of a form is to be able to synchronize the data in the view with data
in the controller so it can be submitted to be handled. Secondary goals are to perform
tasks like validation, notify about errors, and handle other events like cancel.

Because the form is primarily defined in the template layer, it also means that vali-
dation errors are managed primarily through the template. We’ll look at how to add
validation and alert the user about invalid fields.

In figure 9.3 you can see the customer form that we’ll be building in this section.
The three fields will be part of the form data and will allow us to capture the input for
processing.

To get started, we need to start working with our form controls and wire them up so
that they bind the model between both the controller and the template using NgModel.

9.2.1	 Binding model data to inputs with NgModel

Let’s take a single form control to begin with and see what it takes to turn it into some-
thing Angular can use. In the CustomerForm component, you should see this input:

<input mdInput placeholder="Customer Name" value="">

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 213Template-driven forms

Right now it’s just a normal form element (with the MdInput to make it Material
Design), but by adding the NgModel directive we can turn it into an Angular form con-
trol. In the process, we can also remove the value attribute, as it’s no longer needed:

<input name="customer" mdInput placeholder="Customer Name"
[(ngModel)]="customer.name">

The NgModel directive is part of the Forms module and will ensure that the value of
the form control is set based on the customer property value from the controller. But
it also sets the value into the controller when it’s changed in the view. If you look at the
controller, there is no such property, and NgModel will create it for you.

You should recall the [()] syntax from earlier chapters, but to refresh your memory,
it’s a way of doing two-way data binding in Angular. That means the controller will now
have a property called customer, and if the view or controller changes that value, the
other will instantly be updated as well. AngularJS developers will know this concept
well, and it exists in Angular as well.

Let’s go ahead and wire up all of the form controls with NgModel. In the Customer-
Form template, we’ll need to modify the existing form controls, as you see bolded in the
following listing. Open src/app/customer-form/customer-form.component.html and
update it.

Listing 9.1   CustomerForm using NgModel

<md-card-content>
 <md-input-container>
 <input name="customer" mdInput placeholder="Customer Name"

[(ngModel)]="customer.name">
 </md-input-container>
 <md-input-container>

Figure 9.3   Customer form with three
fields to bind data to

Form control using NgModel

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

214 Chapter 9  Forms

 <input name="email" mdInput type="email" placeholder="Email"
[(ngModel)]="customer.email">

 </md-input-container>
 <md-input-container>
 <input name="phone" mdInput type="tel" placeholder="Phone"

[(ngModel)]="customer.phone">
 </md-input-container>
{{customer | json}}
</md-card-content>

In these form controls, we now have them wired up to do two-way binding using
NgModel. Notice that we’re also setting the model values as part of the customer prop-
erty, so the data is stored in one object. Except for a form that has only one control,
it’s highly recommended to always use models like this. It will help us later to have all
the customer data stored on the same object instead of on different properties of the
controller.

So far, this won’t change anything significant about our form that you can see, but
it will be adding new properties to the customer model as you change the input values
behind the scenes. If you watch the customer interpolation binding, you will see that as
values are changed in the form inputs, the model is updated.

There are a couple of notes to make about using NgModel. First, you always use it with
the two-way binding syntax—it doesn’t work otherwise. Second, inputs should always
have a name when using NgModel, because it requires that information internally. Last,
you notice the value attribute was omitted because NgModel will overwrite it and it’s
best to just leave it off.

Save these changes and then go to the customer’s list, select one, and click the edit
icon in the bottom right to view the form. You should ensure there are no errors by
looking at the browser console as well, in case you typed something incorrectly.

This is great, because our primary object is largely complete. We simply add NgModel,
and our form elements are now being tracked in both the template and controller as
changes are made. The next step is to start validating these form fields. Using the power of
NgModel, we can track the validity of a form field and report meaningful errors to the user.

9.2.2	 Validating form controls with NgModel

HTML already provides some built-in form validations that can be put onto form ele-
ments, such as required or minlength. Angular works with these attributes and auto-
matically will validate inputs based on them.

Let’s take the example of our customer name input field. All we need to do is add
the additional required attribute to validate the input to force validation for this field:

<input name="customer" mdInput placeholder="Customer Name"
[(ngModel)]="customer.name" required>

When the form control has an invalid value, we can also inspect the state of a field and
render out messages about what is incorrect, as shown in figure 9.4.

Form control using NgModel

Form control using NgModel

Displays the customer content in template temporarily

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 215Template-driven forms

It’s time to set up the validation for all the fields and also to look at how to access the
state of those fields. Update the CustomerForm template snippet as you see bolded in
the following listing.

Listing 9.2   CustomerForm validating fields with NgModel

<md-input-container>
 <input name="customer" mdInput placeholder="Customer Name"

[(ngModel)]="customer.name" required #name="ngModel">
 <md-error *ngIf="name.touched && name.invalid">
 Name is required
 </md-error>
</md-input-container>
<md-input-container>
 <input name="email" mdInput type="email" placeholder="Email"

[(ngModel)]="customer.email" required #email="ngModel">
 <md-error *ngIf="email.touched && email.invalid">
 A valid email is required
 </md-error>
</md-input-container>
<md-input-container>
 <input name="phone" mdInput type="tel" placeholder="Phone"

[(ngModel)]="customer.phone" required #phone="ngModel" minlength="7">
 <md-error *ngIf="phone.touched && phone.errors?.required">
 Phone number is required
 </md-error>
 <md-error *ngIf="phone.touched && phone.errors?.minlength">
 Not a valid phone number
 </md-error>
</md-input-container>

The form controls now each have a required attribute and a local template variable. The
phone number also has a minlength attribute, because we expect a phone number to
be at least seven digits. We’ve used local template variables in the component chapter to
access values from other controllers inside of the template, and that’s precisely the same

Figure 9.4   Customer form with
validation errors

Adds validation
attributes and
template variable
to form control

Uses form control
validation to conditionally
show error message

Form control
exposes what
specific error
is found.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

216 Chapter 9  Forms

thing here. For example, #name="ngModel" is a way to define the template variable name
to be a reference to the NgModel result, which is the form control data. Remember, tem-
plate variables are only valid within the template they’re defined in, so you can’t reach
them from your controller.

This form control data is a FormControl type from Angular, which you can view in
the API docs to see more about what it can do for you. It has a number of properties,
such as valid, invalid, pristine, and dirty. These are Boolean values that you can
easily use to determine whether something is true or false. See table 9.1 for the most
useful form control properties.

Table 9.1   Form control validation properties

Property Meaning

valid The form control is valid for all validations.

invalid The form control has at least one invalid validation.

disabled The form control is disabled and can’t be interacted with.

enabled The form control is enabled and can be clicked or edited.

errors An object that either contains keys with validations that are invalid, or null when
all are valid.

pristine The form control has not yet been changed by the user.

dirty The form control has been changed by the user.

touched The form control has been in focus, and then focus has left the field.

untouched The form control has not been in focus.

The MdError element is from the Material Design library and shows a little validation
error when the NgIf is true. For example, *ngIf="email.touched && email.invalid"
will show the error when the form control is invalid, and the user has left focus on
that field. (As a side note, if the value was loaded from a database but was invalid, the
preceding validation would fail, so you should consider the needs of your application.)
This is nice because the error doesn’t appear immediately, but only when the user tries
to leave the field with an invalid value. You can use different combinations of the prop-
erties in table 9.1 to determine when to show a validation error. When you’re creating
a new item, all the required fields will be invalid, but it won’t show validation errors
until the user has tried to edit them.

Notice how the validation message for the phone number has two different valida-
tions: required and minlength. We’re then able to look at the control’s error object to
determine whether a specific validation failed and show the appropriate message. In
this case, if the user leaves it blank, it will prompt it to say the field is required, but if the
user only inputs four characters, it will show that it expects at least seven digits.

It’s also useful to note that Angular will apply various CSS classes to a form control
based on its validation state. They mirror the properties in table 9.1, but have the

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 217Template-driven forms

ng- prefix. For example, an invalid form control will have the ng-invalid class applied.
This is useful if you want to craft your own styling for valid or invalid controls without
any special work. We’re not doing that here, but you could certainly take advantage of
them. Some Angular UI libraries may come with support for them out of the box.

Though this validation is helpful, it’s still possible to submit the form with invalid
values. We’ll prevent this from happening in a moment, but first I want to wrap up vali-
dation by creating our own validation directive.

9.2.3	 Custom validation with directives

The validation for our phone number is somewhat lacking. We really would want it to
enforce not just the length but also that the content matches a known phone format.
Unfortunately, even the tel input type doesn’t do that for us, so we’ll have to imple-
ment our own custom validation using a directive. Our best effort so far has been to
enforce a minlength validation, but that only cares about the number of characters,
not the actual value.

Although there is the pattern validation attribute in HTML, which allows you to
declare a regular expression to validate the input, it’s not very usable and doesn’t work
in all browsers.

We’ll need to create two things to make this happen: a customer validator function
and a directive that uses the validator function. Start by creating a new directory at src/
app/validators; then create a file inside it named phone.validator.ts, and add the code
from the following listing.

Listing 9.3   Phone validator

import { AbstractControl, ValidatorFn } from '@angular/forms';

const expression = /((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}/;

export function PhoneValidator(): ValidatorFn {
 return (control: AbstractControl): { [key: string]: any } => {
 const valid = expression.test(control.value) && control.value.length <

14;
 return valid ? null : { phone: true };
 };
}

This is a bit terse, so let’s look at it step by step. First, we’re defining a regular expres-
sion that should validate the primary phone number formats. You could select a differ-
ent expression if your needs require. Then we’re exporting a function that will return
a function. The ValidatorFn interface expects that this returned function will accept a
control as a parameter and return either null or an object with validation errors.

Our PhoneValidator function will return the real validation function to use during
the validation. It accepts a single argument, which is the form control. For the most
part, you only care about the control.value property, which holds the current value
of the form control. Then inside of the validation function, it tests the current value

Regular expression to validate typical phone number

Defines a function that
returns a ValidatorFn type

Returns a
function to

handle
validation

Validates the control value
against expression

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

218 Chapter 9  Forms

against the expression and returns either null, to mean it’s valid, or an object if it’s
invalid, with a property explaining what is invalid.

If it returns an object, it expects you to give it a property with a value. Here it’s a Bool-
ean, but it could be any value you want to expose. Normally, I find Boolean is suitable
unless you want to also provide the error message as a string. You can access the value in
the local template control.errors property.

To use this validator we need to create a directive. Using the Angular CLI, generate a
new directive like so:

ng generate directive validators/phone

Now open src/app/validators/phone.directive.ts and add the code found in the fol-
lowing listing to it. This will take the validator function we created a moment ago and
make it possible to apply it to an element as an attribute.

Listing 9.4   Phone validator directive

import { Directive } from '@angular/core';
import { Validator, AbstractControl, NG_VALIDATORS } from '@angular/forms';
import { PhoneValidator } from './phone.validator';

@Directive({
 selector: '[phone][ngModel]',
 providers: [{ provide: NG_VALIDATORS, useExisting: PhoneDirective, multi:

true }]
})
export class PhoneDirective implements Validator {
 private validator = PhoneValidator();

 validate(control: AbstractControl): { [key: string]: any } {
 return this.validator(control);
 }
}

This is also a bit terse, but what we’re doing is implementing the necessary pieces to
wire up the directive to Angular’s list of validators and implement the same interface.
We start by defining the selector to expect to have both phone and NgModel attributes
on the form control. This means if you just put phone as an attribute, it won’t use this
directive for validation, because NgModel is required.

The directive also has a providers array and uses a multiprovider, which allows a
single token (like NG_VALIDATORS) to have multiple dependencies. NG_VALIDATORS con-
tains a list of default validation dependencies, and this extends that list by adding one
more of our own. This isn’t very common, but it’s required in this situation.

Our directive then exports a class, which implements the Validator interface.
This expects that there will be a validate method defined in the class, which we have
done. We also have a property that holds an instance of our validator function that we
imported, and then inside of the validate method we call our custom validator and
pass in the control.

Selector designed to apply to elements
with phone and NgModel attributes

Way to define this directive as part of Angular’s list of validators

Implements the Validator interfaceCreates instance of validation function

Method that form
controls will call to
validate value

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 219Template-driven forms

There’s a bit of juggling of the form control in this custom validation process, but
when you look at these two files together, it should be clearer how they relate to one
another. To implement this new validator directive, we need to update our phone
form control, as you see in the following listing.

Listing 9.5   Updated phone form control

<md-input-container>
 <input name="phone" mdInput type="tel" placeholder="Phone"

[(ngModel)]="customer.phone" required phone #phone="ngModel">
 <md-error *ngIf="phone.touched && phone.errors?.phone">
 Not a valid phone number
 </md-error>
</md-input-container>

The form control removes the minlength attribute and replaces it with the phone
attribute. This makes the form control now aware of the phone validation, and when
the number isn’t a correct phone number we can tell by looking at the errors.phone
property. Recall our validator function returns an object with {phone: true}, so this
is where we see it returned to us. We also removed the additional error message for it
being required, as our new validation covers that scenario as well.

To review, when we add the phone attribute, the NgModel will validate using the
Phone validator directive. Internally, the Phone validator directive registers itself with
the default list of validators that NgModel knows about by declaring the multiprovider (a
special kind of provider that can be registered more than once) for NG_VALIDATORS. It
then implements a validate method, which calls the validator function we created at
the beginning. There are a few steps here, but that’s the price we pay for the flexibility
provided by Angular’s platform.

Congrats! You’ve now got a custom validation directive that you can reuse on any
form control, or you can create additional ones for different scenarios. Now we need to
wrap up this form by handling events to either submit, cancel, or delete.

9.2.4	 Handling submit or cancel events

We’ve got all the data and validation we would like on this form, so now it’s time to
handle the various events that might happen with it. The most important is to handle
the submit event, but also we want to allow the user to cancel from saving the edits or
delete the record if it exists.

The controller already implements all the methods we need to handle these scenar-
ios, so we just need to write up our form to call them properly. You can review the meth-
ods in there and see how they work.

The first thing we should do is update our form element. Angular does another thing
to forms that isn’t visible by default. It automatically implements an NgForm on a form
even if you don’t declare a directive (unlike how you have to declare NgModel). When
it does this, it essentially attaches an NgForm controller that then maintains the form
controls in the form.

Adds the phone directive

Looks for
validation errors
of phone type

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

220 Chapter 9  Forms

NgForm provides a couple of features we’ll need; the first is that it can tell us if the
entire form is valid (not just an individual field) and help us implement an event bind-
ing for submitting the form. Find the form element at the top of the CustomerForm
template and update it to have these additional values shown in bold:

<form *ngIf="customer" #form="ngForm" (ngSubmit)="save()">

First we create another template variable and reference the NgForm controller. This is
the same idea we used for our form controls with NgModel, except this local template
variable will reference the entire form. Then we have an (ngSubmit) event handler to
call the save method.

Now we just need to update our buttons at the bottom to call the correct meth-
ods. The following code in bold contains the pieces to add to the buttons in the card
actions element near the bottom:

<md-card-actions>
 <button type="button" md-button (click)="delete()" *ngIf="customer.

id">Delete</button>
 <button type="button" md-button (click)="cancel()">Cancel</button>
 <button type="submit" md-raised-button color="primary" [disabled]="form.

invalid">Save</button>
</md-card-actions>

The first two buttons are standard buttons, so we just use the click event binding to
call the appropriate method. The delete button is hidden if we’re creating the record
by checking whether there is an ID, which is only set after creation. The submit button
doesn’t have an event binding, because that’s already being handled by ngSubmit. But
we do bind to the disabled property and look at the form.invalid property to deter-
mine if the entire form is invalid.

That about wraps up template-driven forms. Everything about our form was
described in the template, primarily by adding NgModel directives to our form con-
trols. Using local template variables that referenced the NgModel of a control, we could
inspect the validation errors for a field and show appropriate error messages. We also
were able to build a custom validator for phone numbers that works like any default vali-
dation attribute. Finally, we handled the submit event and checked the validation of the
overall form before enabling the submit button. Not too bad for a modest amount of
code! The final version of the customer form can be seen here in the following listing.

Listing 9.6   Final customer form template

<div *tdLoading="'customer'">
 <form *ngIf="customer" #form="ngForm" (ngSubmit)="save()">
 <md-card>
 <md-card-header>Edit Customer</md-card-header>
 <md-card-content>
 <md-input-container>
 <input name="customer" mdInput placeholder="Customer Name"

[(ngModel)]="customer.name" required #name="ngModel">
 <md-error *ngIf="name.touched && name.invalid">
 Name is required

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 221Reactive forms

 </md-error>
 </md-input-container>
 <md-input-container>
 <input name="email" mdInput type="email" placeholder="Email"

[(ngModel)]="customer.email" required #email="ngModel">
 <md-error *ngIf="email.touched && email.invalid">
 A valid email is required
 </md-error>
 </md-input-container>
 <md-input-container>
 <input name="phone" mdInput type="tel" placeholder="Phone"

[(ngModel)]="customer.phone" required phone #phone="ngModel">
 <md-error *ngIf="phone.touched && phone.errors?.required">
 Phone number is required
 </md-error>
 <md-error *ngIf="phone.touched && phone.errors?.phone">
 Not a valid phone number
 </md-error>
 </md-input-container>
 </md-card-content>
 <md-card-actions>
 <button type="button" md-button (click)="delete()" *ngIf="customer.

id">Delete</button>
 <button type="button" md-button (click)="cancel()">Cancel</button>
 <button type="submit" md-raised-button color="primary"

[disabled]="form.invalid">Save</button>
 </md-card-actions>
 </md-card>
 </form>
</div>

Now it’s time to implement the other form for creating or editing an invoice in the
reactive form style. It will approach the form from the controller first and have less
logic in the template to manage.

9.3	 Reactive forms
The alternative to template-driven forms, reactive forms, is the other way to design your
forms in Angular. The name reactive comes from the style of programming known as
reactive, where you have immutable data structures and your views never mutate them
directly. That means no two-way binding is allowed.

The basic idea is that your form has a copy of the original model that it uses while
the user is editing the form, and upon saving, you trigger an action like saving it to the
database and update the original model. Template-driven forms only have one shared
model, and because values are being constantly synced between the two, there may be
timing issues of values changing in multiple places.

One of my favorite aspects of reactive forms is that you can use an observable to watch
a particular form control for changes. I might do this to handle a task like autocom-
plete, for example. It’s been useful for me on several occasions, and template-driven
forms don’t have a good way to do this.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

222 Chapter 9  Forms

Reactive forms still have a template, because you need to define the markup asso-
ciated with the form. The main difference in the template is you won’t use NgForm or
NgModel on any of the form controls; instead we’ll use a different directive to link a
particular form control in the template to the corresponding form control declared in
the controller.

There are a few other differences in the way that reactive forms behave. Because
template-driven forms employ two-way binding concepts, they’re inherently asynchro-
nous in their handling. During the rendering of a template-driven form, the NgModel
directive is building the form up for you behind the scenes. This takes more than one
change detection cycle, though, causing potential race conditions where you expect a
form element to be registered but it hasn’t yet. This doesn’t happen with reactive forms,
because you define the form in your controller, so it’s not dependent on change detec-
tion cycles.

The challenges with timing of template-driven forms tend to only appear when you
try to access form controls or the form itself too early, and require you to wait until the
AfterViewInit lifecycle hook to ensure the view has fully rendered. The Angular doc-
umentation covers some details about the differences and virtues of each approach as
well and is worth reviewing: https://angular.io/guide/forms.

Setting aside some of the internal mechanical differences, let’s focus on what reac-
tive forms look like. In a template-driven form the NgModel builds the form controls,
but with reactive we need to define our form programmatically in the controller. When
you settle on using one form approach, it’s not easy or advisable to mix them in the
same form, though you could in different forms.

In this section, we’ll build the InvoiceForm component form, and you can see the
result in figure 9.5. It has more fields, but visually isn’t all that different from the last form.
Let’s start by building the entire form for our InvoiceForm component. We already
have the markup ready to go, so we need to define it for Angular.

9.3.1	 Defining your form

The first step is to define the form for our invoice, and this is done to ensure that the
controller is aware of all of the aspects of the form. This will define a separate model
that exists just for the form. When we load the invoice data from the API, we’ll load it
into the form, rather than directly bind the form to it like we saw with NgModel.

Angular provides a service called FormBuilder, which is a helpful tool to build a reac-
tive form. We’ll use this to build the description of our form. It lets us define each of the
form controls and any validations we want to apply to them.

We’ll be editing the InvoiceForm component in this section, so start by opening src/
app/invoice-form/invoice-form.component.ts and update the constructor like you see
in listing 9.7. This only includes the top portion of the file—to focus on the changing
pieces, which are in bold.

www.itbook.store/books/9781617293313

https://angular.io/guide/forms
https://itbook.store/books/9781617293313

	 223Reactive forms

Listing 9.7   Using FormBuilder to define the form

export class InvoiceFormComponent implements OnInit {
 invoiceForm: FormGroup;
 invoice: Invoice;
 customer: Customer;
 customers: Customer[];
 total = 0;

 constructor(
 private loadingService: TdLoadingService,
 private invoicesService: InvoicesService,
 private router: Router,
 private dialogService: TdDialogService,
 private customersService: CustomersService,
 private formBuilder: FormBuilder,
 private route: ActivatedRoute) {

 this.invoiceForm = this.formBuilder.group({
 id: [''],
 service: ['', Validators.required],
 customerId: ['', Validators.required],
 rate: ['', Validators.required],
 hours: ['', Validators.required],
 date: ['', Validators.required],
 paid: ['']
 });

 }

Figure 9.5   Invoice form with more controls,
built in reactive style

Creates a property to hold the resulting form

Defines the form
by creating a group

Defines a property
that has a validation

Defines a property
without validation

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

224 Chapter 9  Forms

To begin, we set a property on the controller to hold our form. It’s of the FormGroup
type, which is an object designed to hold various form controls together. Then inside
of the constructor, we’ll use the FormBuilder service to build a group of controls.

It accepts an object that contains properties with the name of the control set to an
array that holds at least one value. The first value is the value it should hold, which we’re
defaulting to empty for all of them. For some properties, we only define the default
value. For other properties, we can add additional items to the array that must be vali-
dator functions. We’ll create a custom one in a little bit, but for now we’re assigning the
required validation to each.

That’s all we need to do to define our form. But it will always be a blank form, so when
we’re editing a record we need to load the data into the form. We do this in the OnInit
lifecycle hook where we load the data. In the following listing, you can see the snippet
for the data loading and add the bolded line that sets the form state based on the data.

Listing 9.8   Setting the form state

this.route.params.map((params: Params) => params.invoiceId).
subscribe(invoiceId => {

 if (invoiceId) {
 this.invoicesService.get<Invoice>(invoiceId).subscribe(invoice => {
 this.invoiceForm.setValue(invoice);
 this.invoice = invoice;
 this.loadingService.resolve('invoice');
 });
 } else {
 this.invoice = new Invoice();
 this.loadingService.resolve('invoice');
 }
});

The invoiceForm has a setValue method, which takes a data model and sets prop-
erties based on that. Otherwise, it’s a new form, and the default values were already
declared earlier in the controller when we defined the form. In the case where we’re
editing and have an existing invoice, it gets set into the form after it’s been loaded
from the API.

Now we need to update our template so the form controls are aware of this form and
its data.

9.3.2	 Implementing the template

The form controls in our template are currently unaware of our reactive form, and this
step is about linking the form controls in the template and form controls defined in
the controller. Form controls in a template exist like a normal HTML form by default.
But for this all to work right, they need to know about the form and its current state so
they can display properly.

The InvoiceForm template has a couple of UI components from Material Design: a
date picker and a slide toggle. These act like normal form elements, and you can learn
more about them in the documentation.

Use setValue to update
the form state.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 225Reactive forms

Much as we used NgModel to link a form control to the form, we’ll use a different
directive called FormControlName. This will indicate which form control should be
bound into that element, based on the name provided when we built the form.

Open src/app/invoice-form/invoice-form.component.html and make the additions
to the form controls, as you see in bold in the following listing, to wire up the controls.

Listing 9.9   InvoiceForm template with form controls

<div *tdLoading="'invoice'">
 <form *ngIf="invoice" [formGroup]="invoiceForm">
 <md-card>
 <md-card-header>Edit Invoice</md-card-header>
 <md-card-content>
 <md-input-container>
 <input name="service" mdInput type="text" placeholder="Service"

formControlName="service">
 </md-input-container>
 <md-input-container>
 <input mdInput [mdDatepicker]="picker" placeholder="Choose a date"

formControlName="date">
 <button type="button" mdSuffix [mdDatepickerToggle]="picker"></

button>
 </md-input-container>
 <md-datepicker #picker></md-datepicker>
 <md-input-container>
 <input name="hours" mdInput type="number" placeholder="Hours"

formControlName="hours">
 </md-input-container>
 <md-input-container>
 <input name="rate" mdInput type="number" placeholder="Rate"

formControlName="rate">
 </md-input-container>
 <div>
 <md-select name="customerId" placeholder="Customer"

formControlName="customerId">
 <md-option [value]="customer.id" *ngFor="let customer of

customers">{{customer?.name}}</md-option>
 </md-select>
 </div>
 <div class="toggler">
 <md-slide-toggle formControlName="paid">Paid</md-slide-toggle>
 </div>
 <div class="total">
 Total: {{total | currency:'USD':true:'.2'}}
 </div>
 </md-card-content>
 <md-card-actions>
 <button type="button" md-button>Delete</button>
 <button type="button" md-button>Cancel</button>
 <button type="submit" md-raised-button color="primary">Save</button>
 </md-card-actions>
 </md-card>
 </form>
</div>

Defines the form group on
the form element

Adds a formControlName that
maps to the control name

Material Design date picker
works with a normal input field.

Slide toggle has a Boolean state.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

226 Chapter 9  Forms

The first step is to use the FormGroup directive to bind the form we declared to the
form element. If you miss this step, the form won’t know about the model you defined.
Then we just linked the form controls with the name used when we built the form, and
at this point the form will now render properly. We’ll have to work out the details of
saving in a little bit, but otherwise it’s a fully functional form.

Now I think it would be nice for us to display the invoice total in the page so users
know the invoice total based on the rate and hours input. We can do this by observing
form controls, so let’s see how we can use that.

9.3.3	 Watching changes

Unlike in template-driven forms, our reactive form controller has the source of truth
for the form state, and it gives us the ability to observe a form or a single control
for changes. This lets us run logic that might be useful, such as validation or saving
progress.

In our case, we want to display the total invoice amount at the bottom, and that
requires multiplying the hours and rate. Each form control exposes an observable that
we can use to subscribe to changes, and we’ll use it to get both hours and rate values.

The template already has a place for the total at the bottom, but it shows 0 all the
time. Although we could try to do math directly in the interpolation binding, it gets a
little bit messy and harder to test. We’d rather handle this in the controller.

Using the form, we can get a specific control using invoiceForm.get('hours'). You
pass a string that’s the name of the form control, and you get the instance of that con-
trol. This instance provides a number of properties and capabilities, one of which is the
valueChanges observable.

Let’s make this work by adding a little bit to the end of the OnInit method. You can
see the snippet to add here in the following listing.

Listing 9.10   Observing state changes in the form

Observable.combineLatest(
 this.invoiceForm.get('rate').valueChanges,
 this.invoiceForm.get('hours').valueChanges
).subscribe(([rate = 0, hours = 0]) => {
 this.total = rate * hours;
});

This snippet might be new to you, but we’re using the combineLatest operator from
RxJS. This operator takes two observables, which are references to the stream of value
changes of the rate and hours controls, and merges them into one. We can then get
the latest values from the stream and multiply them to get the current total.

Imagine you had more complex math here, such as adding in taxes, or perhaps there
was another value to plug in. Doing math in the interpolation binding directly would
quickly get out of hand, and this provides you direct access to run calculations when
values change. This is also a pattern of reactive, because in this case you’re reacting to
changes in the form state and updating the total.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 227Reactive forms

When you use invoiceForm.get('rate'), you’re also able to access the same prop-
erties from table 9.1 (form control status properties). You can check whether the con-
trol is valid, pristine, touched, or what errors exist. This might be helpful for you to
do additional validation or checks.

We can also implement our own validator functions as we did before and see how to
plug them into the form.

9.3.4	 Custom validators with reactive forms

Previously, when we implemented custom validation, we created both a validation func-
tion and a directive. With reactive forms, we only need to create the validation function
and then add it into the form when we create it with FormBuilder.

We’ll update our validation messages as well to use the validation rules we defined, as
you see in figure 9.6.

Imagine our invoicing application had the restriction that hours had to be always
rounded to the quarter hour—like 1 hour, 1.25, 1.5, 1.75, or 2. It should not allow
values like 1.1 or 1.7. This is fairly common when invoicing by time, and the way we
enforce this is to validate the hours input and see if it’s valid by quarter hour.

We’ll build a validator function like we did previously, but we won’t have to wrap it up
in a directive. Start by making a new file at src/app/validators/hours.validator.ts, and
add the code from the following listing to it.

Figure 9.6   Validation rules in the invoice form

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

228 Chapter 9  Forms

Listing 9.11   Hour validator

import { AbstractControl, ValidatorFn } from '@angular/forms';

export function HoursValidator(control: AbstractControl) : { [key: string]:
any } {

 return (Number.isInteger(control.value * 4)) ? null : { hours: true };
}

This is very succinct, but in contrast to the previous validator, we’re directly exporting
the validation function. When we created a custom validator earlier for a directive,
we needed a function to return a validator function, whereas here we export the vali-
dator function directly. When the validator function runs, it multiplies the value by 4
and checks if it is an integer. That means any valid hourly increment will multiply an
integer by 4 and return null for valid. Otherwise, it returns the object with the key and
Boolean.

Now we need to make our form aware of this validation function, and that’s done
when we construct the form using FormBuilder. In the component controller, update
the form definition like you see in the following listing. You’ll need to import the
HoursValidator function into the file.

Listing 9.12   Using HoursValidator

this.invoiceForm = this.formBuilder.group({
 id: [''],
 service: ['', Validators.required],
 customerId: ['', Validators.required],
 rate: ['', Validators.required],
 hours: ['', [Validators.required, HoursValidator]],
 date: ['', Validators.required],
 paid: ['']
});

Because we’re directly constructing the form, we just need to pass the custom valida-
tion function into the control. Notice how the hours control also now has an array for
the second item in the array. That’s because if you have multiple validators, they need
to be grouped here. The form control takes the default value, synchronous validators,
and asynchronous validators as a third array item.

We haven’t looked at async validators, but the only difference is that they might take
a moment to run. Imagine you needed a validator that checked whether a username
was already taken; that probably requires making an API call. The only difference when
you implement an async validator is that you need to return a promise or observable,
and Angular handles it.

We’d also like to show validation errors in the template, so we’ll need to add the same
type of error messages we saw earlier. But the way we access the form elements to check
their validity is slightly different.

Open the template again and update the fields with error messages, as you see in the
following listing.

Directly
exports the

validator
function

Determines if
the number

is a valid
figure and

returns
validation

Adds custom validator
to the control

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 229Reactive forms

Listing 9.13   Validation messages

<md-card-content>
 <md-input-container>
 <input name="service" mdInput type="text" placeholder="Service"

formControlName="service">
 <md-error *ngIf="invoiceForm.get('service').touched && invoiceForm.

get('service').invalid">
 Service is required
 </md-error>
 </md-input-container>
 <md-input-container>
 <input mdInput [mdDatepicker]="picker" placeholder="Choose a date"

formControlName="date">
 <button type="button" mdSuffix [mdDatepickerToggle]="picker"></button>
 <md-error *ngIf="invoiceForm.get('date').touched && invoiceForm.

get('date').invalid">
 Date is required
 </md-error>
 </md-input-container>
 <md-datepicker #picker></md-datepicker>
 <md-input-container>
 <input name="hours" mdInput type="number" placeholder="Hours"

formControlName="hours">
 <md-error *ngIf="invoiceForm.get('hours').touched && invoiceForm.

get('hours').invalid">
 Hours must be in quarter hour increments
 </md-error>
 </md-input-container>
 <md-input-container>
 <input name="rate" mdInput type="number" placeholder="Rate"

formControlName="rate">
 <md-error *ngIf="invoiceForm.get('rate').touched && invoiceForm.

get('rate').invalid">
 Hourly rate is required
 </md-error>
 </md-input-container>
 <div>
 <md-select name="customerId" placeholder="Customer"

formControlName="customerId">
 <md-option [value]="customer.id" *ngFor="let customer of

customers">{{customer?.name}}</md-option>
 </md-select>
 </div>
 <div class="toggler">
 <md-slide-toggle formControlName="paid">Paid</md-slide-toggle>
 </div>
 <div class="total">
 Total: {{total | currency:'USD':true:'.2'}}
 </div>
</md-card-content>

Here we’ve added the same MdError to display errors, except we use invoiceForm.
get('rate') to access the form control. The same properties from the earlier table
are still available to you, but instead of having a local template variable to get a refer-
ence to it, we reference it from the form itself.

Use invoiceForm to get the
form control reference.

At time of writing,
select did not
support validation.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

230 Chapter 9  Forms

Now that we have the form validated as we would like, we need to be able to submit it.
Let’s see how that’s done with reactive forms now.

9.3.5	 Handling submit or cancel events

The final step is to submit the form when it’s ready. The steps are almost identical,
except we manage the data in a different way before we submit it to the service. The
NgSubmit event binding is still available for us to capture submit events to handle, so
we’ll use that again.

Open the InvoiceForm component template again and update the form element
like you see here in bold:

<form *ngIf="invoice" [formGroup]="invoiceForm" (ngSubmit)="save()">

While you have the template open, let’s also wire up the buttons at the bottom. Add
the bolded parts to your buttons:

<md-card-actions>
 <button type="button" md-button (click)="delete()" *ngIf="invoice.

id">Delete</button>
 <button type="button" md-button (click)="cancel()">Cancel</button>
 <button type="submit" md-raised-button color="primary"

[disabled]="invoiceForm.invalid">Save</button>
</md-card-actions>

Here we’re implementing the click handlers on the delete and cancel buttons, and
also disabling the save button unless the form is valid. Notice how we’re using the
InvoiceForm properties to determine the form state, similar to how we used NgForm
with template-driven forms.

The last step is to update the save method in the controller so it gets its data from
the form. Because the data was bound into the form when we loaded the component,
we need to extract it back out before we save. Update the save method as you see here
in bold:

save() {
 if (this.invoice.id) {
 this.invoicesService.update<Invoice>(this.invoice.id, this.invoiceForm.

value).subscribe(response => {
 this.viewInvoice(response.id);
 });
 } else {
 this.invoicesService.create<Invoice>(this.invoiceForm.value).

subscribe(response => {
 this.viewInvoice(response.id);
 });
 }
}

You can see that when we need to get the data back out of the form, we can look at
the invoiceForm.value property. This gives us an object representing the same form
model with the values for each field. We pass this into the service to either create or
update a record and see our values being saved correctly.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 231Reactive forms

We’re now finished with our invoice form, and you can see both the controller and
template in listings 9.14 and 9.15 to ensure you have everything correct.

Listing 9.14   InvoiceForm component controller

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute, Params, Router } from '@angular/router';
import { TdLoadingService, TdDialogService } from '@covalent/core';
import { FormBuilder, FormGroup, Validators } from '@angular/forms';
import { InvoicesService, Invoice, CustomersService, Customer } from '@aia/

services';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/combineLatest';
import { HoursValidator } from '../validators/hours.validator';

@Component({
 selector: 'app-invoice-form',
 templateUrl: './invoice-form.component.html',
 styleUrls: ['./invoice-form.component.css']
})
export class InvoiceFormComponent implements OnInit {
 invoiceForm: FormGroup;
 invoice: Invoice;
 customer: Customer;
 customers: Customer[];
 total = 0;

 constructor(
 private loadingService: TdLoadingService,
 private invoicesService: InvoicesService,
 private router: Router,
 private dialogService: TdDialogService,
 private customersService: CustomersService,
 private formBuilder: FormBuilder,
 private route: ActivatedRoute) {

 this.invoiceForm = this.formBuilder.group({
 id: [''],
 service: ['', Validators.required],
 customerId: ['', Validators.required],
 rate: ['', Validators.required],
 hours: ['', [Validators.required, HoursValidator]],
 date: ['', Validators.required],
 paid: ['']
 });

 }

 ngOnInit() {
 this.loadingService.register('invoice');
 this.loadingService.register('customers');

 this.customersService.query().subscribe(customers => {
 this.customers = customers;

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

232 Chapter 9  Forms

 this.loadingService.resolve('customers');
 });

 this.route.params.map((params: Params) => params.invoiceId).
subscribe(invoiceId => {

 if (invoiceId) {
 this.invoicesService.get<Invoice>(invoiceId).subscribe(invoice => {
 this.invoiceForm.setValue(invoice);
 this.invoice = invoice;
 this.loadingService.resolve('invoice');
 });
 } else {
 this.invoice = new Invoice();
 this.loadingService.resolve('invoice');
 }
 });

 Observable.combineLatest(
 this.invoiceForm.get('rate').valueChanges,
 this.invoiceForm.get('hours').valueChanges
).subscribe(([rate = 0, hours = 0]) => {
 this.total = rate * hours;
 });
 }

 save() {
 if (this.invoice.id) {
 this.invoicesService.update<Invoice>(this.invoice.id, this.invoiceForm.

value).subscribe(response => {
 this.viewInvoice(response.id);
 });
 } else {
 this.invoicesService.create<Invoice>(this.invoiceForm.value).

subscribe(response => {
 this.viewInvoice(response.id);
 });
 }
 }

 delete() {
 this.dialogService.openConfirm({
 message: 'Are you sure you want to delete this invoice?',
 title: 'Confirm',
 acceptButton: 'Delete'
 }).afterClosed().subscribe((accept: boolean) => {
 if (accept) {
 this.loadingService.register('invoice');
 this.invoicesService.delete(this.invoice.id).subscribe(response => {
 this.loadingService.resolve('invoice');
 this.invoice.id = null;
 this.cancel();
 });
 }

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 233Reactive forms

 });
 }

 cancel() {
 if (this.invoice.id) {
 this.router.navigate(['/invoices', this.invoice.id]);
 } else {
 this.router.navigateByUrl('/invoices');
 }
 }

 private viewInvoice(id: number) {
 this.router.navigate(['/invoices', id]);
 }

}

Listing 9.15   InvoiceForm component template

<div *tdLoading="'invoice'">
 <form *ngIf="invoice" [formGroup]="invoiceForm" (ngSubmit)="save()">
 <md-card>
 <md-card-header>Edit Invoice</md-card-header>
 <md-card-content>
 <md-input-container>
 <input name="service" mdInput type="text" placeholder="Service"

formControlName="service">
 <md-error *ngIf="invoiceForm.get('service').touched && invoiceForm.

get('service').invalid">
 Service is required
 </md-error>
 </md-input-container>
 <md-input-container>
 <input mdInput [mdDatepicker]="picker" placeholder="Choose a date"

formControlName="date">
 <button type="button" mdSuffix [mdDatepickerToggle]="picker"></

button>
 <md-error *ngIf="invoiceForm.get('date').touched && invoiceForm.

get('date').invalid">
 Date is required
 </md-error>
 </md-input-container>
 <md-datepicker #picker></md-datepicker>
 <md-input-container>
 <input name="hours" mdInput type="number" placeholder="Hours"

formControlName="hours">
 <md-error *ngIf="invoiceForm.get('hours').touched && invoiceForm.

get('hours').invalid">
 Hours must be in quarter hour increments
 </md-error>
 </md-input-container>
 <md-input-container>

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

234 Chapter 9  Forms

 <input name="rate" mdInput type="number" placeholder="Rate"
formControlName="rate">

 <md-error *ngIf="invoiceForm.get('rate').touched && invoiceForm.
get('rate').invalid">

 Hourly rate is required
 </md-error>
 </md-input-container>
 <div>
 <md-select name="customerId" placeholder="Customer"

formControlName="customerId">
 <md-option [value]="customer.id" *ngFor="let customer of

customers">{{customer?.name}}</md-option>
 </md-select>
 </div>
 <div class="toggler">
 <md-slide-toggle formControlName="paid">Paid</md-slide-toggle>
 </div>
 <div class="total">
 Total: {{total | currency:'USD':true:'.2'}}
 </div>
 </md-card-content>
 <md-card-actions>
 <button type="button" md-button (click)="delete()" *ngIf="invoice.

id">Delete</button>
 <button type="button" md-button (click)="cancel()">Cancel</button>
 <button type="submit" md-raised-button color="primary"

[disabled]="invoiceForm.invalid">Save</button>
 </md-card-actions>
 </md-card>
 </form>
</div>

That covers the majority of what you need to know about both reactive and template-driven
forms. There are certainly more minor features that exist for additional cases, but this
foundation should get you building forms, and you can learn about other features as
you go.

9.3.6	 Which form approach is better?

That is a trick question, to my mind, though you probably want a bit more of an expla-
nation. Rather than tell you to use one and never the other, I’ll share from my experi-
ence why I use both.

Excluding the mechanical differences of the two form libraries, I find the most
important aspect is how they approach defining the form. The patterns they employ
can work in most situations.

Most of the time I suggest reactive forms. I like the guarantees reactive provides and
the way you define the model and let the template react. I prefer my templates to reflect
state, not create state. By that I mean how NgModel creates the controls for you behind

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 235Custom form controls

the scenes and binds data up to the controller. If you need an answer, I would recom-
mend reactive forms, if you really pinned me down.

But you may have noticed this is the first time we’ve seen reactive forms in the book.
Sometimes it’s simpler to use NgModel, especially when it’s a single form field. In simple
scenarios, I find template-driven forms to be more approachable with low overhead,
but when a form becomes more complex, then I recommend reactive forms.

I think the most important thing is to be consistent in your applications. Although
you can mix and match as much as you like, there’s a mental drawback to that when you
write and test them.

Before I close out the chapter, let’s see how to implement your own form controls
in cases where your application needs controls that don’t exist out of the box or in
libraries.

9.4	 Custom form controls
There are scenarios where your application requires a different form control that
isn’t defined in HTML or in a third-party library. All form controls have a few basic
requirements, and Angular already implements them for the built-in HTML form
elements.

Regardless of whether you use reactive or template-driven forms, there has to be
some logic to write up the native HTML element (or custom component) with the
forms library. There are essentially two places to track the current value of a form
control: in the form and the control. Angular provides the ControlValueAccessor
interface as a way to implement a custom control that works with forms, which we’ll
use in conjunction with the Angular Material library components to create our own
custom control.

In our application, there are several candidates for creating custom form controls,
but we’ll be transforming the current hours input field from the invoice form into a cus-
tom form control. We’ll implement some basic features that make it easier to use, but
also encapsulate the internal logic of the control.

As you see in figure 9.7, the hours form field now has several buttons underneath
that help you dial in the value by smaller increments. As you change the values, the
form element will continue to validate and update the total invoice value at the bottom,
as you would expect.

Our first step is to create a new component to house our custom control. To do this,
use the CLI as you see here:

ng generate component hours-control

Once the component is created, open the src/app/hours-control/hours-control.
component.ts file and replace the contents with what you see in listing 9.16. There’s a
lot happening in this file, so we’ll look at the various pieces closely.

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

236 Chapter 9  Forms

Listing 9.16   HoursControl controller

import { Component, forwardRef } from '@angular/core';
import { ControlValueAccessor, NG_VALIDATORS, NG_VALUE_ACCESSOR, FormControl

} from '@angular/forms';
import { HoursValidator } from '../validators/hours.validator';

@Component({
 selector: 'app-hours-control',
 templateUrl: './hours-control.component.html',
 styleUrls: ['./hours-control.component.css'],
 providers: [{
 provide: NG_VALUE_ACCESSOR,
 useExisting: forwardRef(() => HoursControlComponent),
 multi: true
 }, {
 provide: NG_VALIDATORS,
 useExisting: forwardRef(() => HoursControlComponent),
 multi: true
 }]
})
export class HoursControlComponent implements ControlValueAccessor {

 hours = 0;
 validateFn = HoursValidator;
 onChange = (v: any) => {};

Figure 9.7   New hours custom control that connects
with Angular forms

Declares
providers

ControlValueAccessor
interface is used by all

form controls

Properties to house the value, validation
function, and change event

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 237Custom form controls

 update() {
 this.onChange(this.hours);
 }

 keypress($event) {
 if ($event.key === 'ArrowUp') {
 this.setValue(.25);
 } else if ($event.key === 'ArrowDown') {
 this.setValue(-.25);
 }
 }

 setValue(change: number) {
 this.hours += change;
 this.update();
 }

 validate(control: FormControl) {
 return this.validateFn(control);
 }

 writeValue(value: any) {
 if (value !== undefined) {
 this.hours = value;
 }
 }

 registerOnChange(fn) {
 this.onChange = fn;
 }

 registerOnTouched() {}
}

There’s a lot happening here in a short amount of space, so let’s break things down.
The HoursControl component implements the ControlValueAccessor interface, which
ensures that your form control is designed to work correctly with Angular forms. It
requires that a control implements the three methods found at the end of the con-
troller: writeValue, registerOnChange, and registerOnTouched.

The writeValue method is used by Angular to pass a value into the form control
from the form itself. This is similar to binding a value into the component, though it
works with the form controls like NgModel, and it passes the value from the form into
the control.

The registerOnChange method accepts a function that the form library will pass in
that your control needs to call whenever the value changes. It stores this function on
the onChange property of the controller, and the default noop function is defined so the
component compiles correctly. In other words, it gives you a method to call that passes
the current form value up to the form.

The registerOnTouch method isn’t implemented here, but it allows you to accept a
method to handle touch events. This might be useful on controls that have some kind

Changes binding to
update the form control

Event handler for
key press

Method to set value
from button clicks

Validation handler

Handles writing a value
into the control

Wires up change handler

Empty method to satisfy interface

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

238 Chapter 9  Forms

of touch impact, such as a toggle switch. But there isn’t much for us to implement for a
form control that takes a number input.

In the component metadata, we see some providers are declared. Recall that we did
something similar when we created our directive for validation. Here we have to declare
two providers—the first is to register this component with NG_VALUE_ACCESSOR. This
marks this component as a form control and registers it with dependency injection so
Angular can access it later. The second is to register the component with NG_VALIDATORS.
This control has validation internally, so we need to register the control on the valida-
tors provider for Angular to access later.

Because the control has a validate method, Angular can call this method to determine
whether the control is valid or not. This is the same as with creating a Validator directive as
we did earlier in listing 9.4. In this case, though, we import the HoursValidator func-
tion and reuse it inside the component.

The rest of the methods are there to handle the internal actions of the control. The
update method is responsible for calling the change event handler, which will alert the
form that the control’s internal state value has changed. The keypress method is just a
nice feature that allows us to bind to the keyup event, and if the user pressed up or down
arrows, it will increment or decrement the current value by 0.25. Finally, the setValue
method is called by the row of buttons to add or subtract from the current value.

In summary, this component really has three roles. First, it implements an internal
model to track the current value of the control (the number of hours) and allows that
value to be manipulated by buttons or keypresses. Second, it provides validation and
ensures the number provided is to a quarter of an hour. Third, it wires up the necessary
methods for Angular forms to be made aware of the current state of the control.

Next we need to look at the template, so let’s go ahead and implement it so we can
see everything together. Open src/app/hours-control/hours-control.component.html
and replace its contents with the code from the following listing.

Listing 9.17   HoursControl template

<md-input-container>
 <input name="hours" mdInput type="number" placeholder="Hours"
 [(ngModel)]="hours" hours (keyup)="keypress($event)"
 #control="ngModel" (change)="update()">
 <md-error *ngIf="control.touched && control.invalid">
 Hours must be a number in increments of .25
 </md-error>
</md-input-container>
<div layout="row">
 <button type="button" md-button flex (click)="setValue(1)">+ 1</button>
 <button type="button" md-button flex (click)="setValue(.25)">+ .25</button>
 <button type="button" md-button flex (click)="setValue(-.25)">- .25</

button>
 <button type="button" md-button flex (click)="setValue(-1)">- 1</button>

</div>

Binds hours using
NgModel, adds

directive to validate,
and event bindings

Shows or hides
error messages

Buttons in a
row to add or

subtract hours

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 239Custom form controls

In our template, we encapsulate the entire form control that we want to provide, which
includes the buttons and the original input box. Because we’re still accepting text
input, we use a standard input element. But we’re also setting up the NgModel, a valida-
tion directive (which we’ll create next), and two event bindings for keyup and change.

This control has built-in error validation and uses the same Angular Material pat-
terns we saw earlier in the chapter. It shows a message if the control is invalid, and if the
control has been focused on. It’s nice that the validation messaging is built in, because it
doesn’t need to be implemented later. If you have the same controls in many places with
the same validation, this might be useful. If you want to ensure that this control is more
reusable, with different validation types, this might not be ideal.

The last set of elements is the buttons that add or subtract from the current state.
When they’re clicked, the internal hours model is updated, and the form is alerted to
the change as well.

There’s a bit of CSS that we need to add for the control to look correct, so open src/
app/hours-control/hours-control.css and add the code from the following listing.

Listing 9.18   HoursControl stylings

:host {
 width: 100%;
 display: block;
}
md-input-container {
 width: 100%;
}
button {
 padding: 0;
 min-width: 25%;
}

This makes sure that a few pieces of the control play nicely with the UI library, since
we’ve changed the way it usually expects elements to be laid out.

You probably noticed that we have a validation directive for hours on the input, but
we haven’t created a directive version of this validator yet. That’s simple to do, and we
need to do so before we use this control. Create a new directive by running the follow-
ing command:

ng generate directive validators/hours

Then open the directive file at src/app/validators/hours.directive.ts and replace its
contents with the code in the following listing.

Listing 9.19   Hours validation directive

import { Directive } from '@angular/core';
import { Validator, AbstractControl, NG_VALIDATORS } from '@angular/forms';
import { HoursValidator } from './hours.validator';

@Directive({

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

240 Chapter 9  Forms

 selector: '[hours][ngModel]',
 providers: [{ provide: NG_VALIDATORS, useExisting: HoursDirective, multi:

true }]
})
export class HoursDirective implements Validator {
 private validator = HoursValidator;

 validate(control: AbstractControl): { [key: string]: any } {
 return this.validator(control);
 }
}

This directive looks almost identical to the one we created earlier, except it references
the HoursValidator function. I recommend reviewing the details from listing 9.3 for
specifics if you have any questions.

Now we have everything we need to use our new control. This control is meant to be used
in the InvoiceForm component, so open the template found at src/app/invoice-form/
invoice-form.component.html and replace the existing hours input element with our
newly created form control, as you see here in bold in the snippet of the whole template:

<md-datepicker #picker></md-datepicker>
<app-hours-control formControlName="hours"></app-hours-control>
<md-input-container>
 <input name="rate" mdInput type="number" placeholder="Rate"

formControlName="rate">
</md-input-container>

Because this is a custom form control, we can use it with reactive forms or
template-driven forms without issue. Congratulations! You’ve created your own con-
trol and can now make as many as you want.

But wait—there are a couple of caveats to building your own controls, and to this
particular example. Custom controls seem like a great idea, but they can also be a lot
of work to build properly. For example, does your custom control work well on mobile
or touch devices? Does it have proper support for screen readers and other accessibility
requirements? Does it work in multiple applications or is it too custom for your appli-
cation? These are important questions to ask, and also to verify whether your controls
work for the largest set of users. One of the major reasons I advocate using an existing
UI library is that the good libraries will have solved these issues ahead of time for you.

Before going off to build a custom control, see if you can think clearly about the user
experience and determine whether an existing control could be used instead of a new
one. Users tend to struggle more with custom form elements that they haven’t seen
before, so it can be very practical to adjust the application slightly so it can use already
existing controls before you make a new one.

Because this chapter is using a specific UI library, I’ve implemented the form con-
trols in a way that fits with that library. Therefore, it’s limited to being used only with
Angular Material, which may limit the use of your control. On the other hand, if you
can expect to always use Angular Material (or the UI library of choice), then the custom
control may be saving you a lot of repetition.

Ensures selector applies to elements
with the hour and NgModel attributes

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	 241Summary

At the time of writing, the Angular Material library doesn’t support creating your
own form controls that work nicely with the input container. (See https://github.com/
angular/material2/issues/4672.) This is why I ultimately encapsulated the entire form
control and surrounding markup. It makes the example more verbose than you might
need, so you should consider how to simplify your form controls if possible.

This example uses a standard input element inside, which is why NgModel was used,
but in many custom form controls you may not have an input, so you wouldn’t use
NgModel. In those cases, you simply make sure that as the control state changes (such as
a toggler that goes from true to false), you call the change handler so the form knows
the state changes.

That wraps up forms, both reactive and template-driven, as well as creating your own
controls. Forms are very important to most applications, and you should now have the
tools to craft feature-rich and usable forms.

Summary
We’ve built two forms, in both the reactive and template-driven styles in this chapter.
Along the way we also managed to learn about most of what forms have to offer. Here’s
a brief summary of the key takeaways:

¡	Template-driven forms define the form using NgModel on form controls.
¡	You can apply normal HTML validation attributes, and NgModel will automatically

try to validate based on those rules.
¡	Custom validation is possible through a custom validator function and directive,

which gets registered with the built-in list of validators.
¡	The NgForm directive, though it can be transparent, exposes features to help

manage submit events and overall form validation inspection.
¡	Reactive forms are different in that you define the form model in the controller

and link form controls using FormControlName.
¡	You can observe the changes of a form control with reactive forms and run logic

every time a new value is emitted.
¡	Reactive forms declare validation in the controller form definition, and creating

custom validations is easier because they don’t require a directive.
¡	Ultimately, both form patterns are available to you. I tend to use reactive forms,

especially as the form gets more complex.
¡	Creating a new form control requires implementing the ControlValueAccessor

methods and registering it with the controls provider.

www.itbook.store/books/9781617293313

https://github.com/angular/material2/issues/4672
https://github.com/angular/material2/issues/4672
https://itbook.store/books/9781617293313

For ordering information go to www.manning.com

Angular Development with Typescript,
Second Edition
by Yakov Fain and Anton Moiseev

ISBN: 9781617295348
475 pages, $49.99
June 2018

Testing Angular Applications
by Jesse Palmer, Corinna Cohn, Michael

Giambalvo, Craig Nishina

ISBN: 9781617293641
235 pages, $44.99
April 2018

React Quickly
Painless web apps with React, JSX, Redux,
and GraphQL
by Azat Mardan

ISBN: 9781617293344
528 pages, $49.99
August 2017

React in Action
by Mark Tielens Thomas

ISBN: 9781617293856
300 pages, $44.99
March 2018

RELATED MANNING TITLES

www.itbook.store/books/9781617293313

https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-in-action
https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-in-action
https://itbook.store/books/9781617293313

Jeremy Wilken

A
ngular makes it easy to deliver amazing web apps. This
powerful JavaScript platform provides the tooling to man-
age your project, libraries to help handle most common

tasks, and a rich ecosystem full of third-party capabilities to
add as needed. Built with developer productivity in mind,
Angular boosts your effi ciency with a modern component
architecture, well-constructed APIs, and a rich community.

Angular in Action teaches you everything you need to build
production-ready Angular applications. You’ll start coding im-
mediately, as you move from the basics to advanced techniques
like testing, dependency injection, and performance tuning.
Along the way, you’ll take advantage of TypeScript and ES2015
features to write clear, well-architected code. Thoroughly prac-
tical and packed with tricks and tips, this hands-on tutorial is
perfect for web devs ready to build web applications that can
handle whatever you throw at them.

What’s Inside
● Spinning up your fi rst Angular application
● A complete tour of Angular’s features
● Comprehensive example projects
● Testing and debugging
● Managing large applications

Written for web developers comfortable with JavaScript,
HTML, and CSS.

Jeremy Wilken is a Google Developer Expert in Angular,
Web Technologies, and Google Assistant. He has many years
of experience building web applications and libraries for eBay,
Teradata, and VMware.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/angular-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Angular IN ACTION

JAVASCRIPT

M A N N I N G

“A comprehensive
introduction to the world

 of Angular with great
code samples to help
readers get started.”
—Tanya Wilke, Sanlam

“Detailed and clear
explanations; lots of useful

 real-world examples.”
—Harsh Raval, Zymr Systems

“You can never have enough
Angular references ... this one

will fl oat to the top.”—Michael A. Angelo
US Department of Agriculture

Forestry Services

“The bible for Angular!”
—Phily Austria
Faraday Future

See first page

www.itbook.store/books/9781617293313

https://itbook.store/books/9781617293313

	Angular in Action
	9 Forms
	9.1	Setting up the chapter example
	9.1.1	Review the app before starting

	9.2	Template-driven forms
	9.2.1	Binding model data to inputs with NgModel
	9.2.2	Validating form controls with NgModel
	9.2.3	Custom validation with directives
	9.2.4	Handling submit or cancel events

	9.3	Reactive forms
	9.3.1	Defining your form
	9.3.2	Implementing the template
	9.3.3	Watching changes
	9.3.4	Custom validators with reactive forms
	9.3.5	Handling submit or cancel events
	9.3.6	Which form approach is better?

	9.4	Custom form controls

