
M A N N I N G

Designs that scale

SAMPLE CHAPTER

Jeff Smith
Foreword by Sean Owen

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

Machine Learning Systems

by Jeff Smith

Chapter 1

Copyright 2018 Manning Publications

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

brief contents

PART 1 FUNDAMENTALS OF REACTIVE MACHINE LEARNING...................1

1 ■ Learning reactive machine learning 3

2 ■ Using reactive tools 23

PART 2 BUILDING A REACTIVE MACHINE LEARNING SYSTEM................41

3 ■ Collecting data 43

4 ■ Generating features 69

5 ■ Learning models 93

6 ■ Evaluating models 117

7 ■ Publishing models 135

8 ■ Responding 149

PART 3 OPERATING A MACHINE LEARNING SYSTEM.........................165

9 ■ Delivering 167

10 ■ Evolving intelligence 177

iii

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

Part 1

Fundamentals of reactive
machine learning

R eactive machine learning brings together several different areas of tech
nology, and this part of the book is all about making sure you’re sufficiently ori
ented in all of them. Throughout this book, you’ll be looking at and building
machine learning systems, starting with chapter 1. If you don’t have experience
with machine learning, it’s important to be familiar with some of the basics of
how it works. You’ll also get a flavor for all of the problems with how machine
learning systems are often built in the real world. With this knowledge in hand,
you’ll be ready for another big topic: reactive systems design. Applying the tech
niques of reactive systems design to the challenges of building machine learning
systems is the core topic of this book.

 After you’ve had an overview of what you’re going to do in this book, chap
ter 2 focuses on how you’ll do it. The chapter introduces three technologies that
you’ll use throughout the book: the Scala programming language, the Akka
toolkit, and the Spark data-processing library. These are powerful technologies
that you can only begin to learn in a single chapter. The rest of the book will go
deeper into how to use them to solve real problems.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

Learning reactive
 machine learning

This chapter covers
 Introducing the components of machine learning

systems

 Understanding the reactive systems design
paradigm

 The reactive approach to building machine
learning systems

This book is all about how to build machine learning systems, which are sets of soft
ware components capable of learning from data and making predictions about the
future. This chapter discusses the challenges of building machine learning systems
and offers some approaches to overcoming those challenges. The example we’ll
look at is of a startup that tries to build a machine learning system from the ground
up and finds it very, very hard.

 If you’ve never built a machine learning system before, you may find it challenging
and a bit confusing. My goal is to take some of the pain and mystery out of this process.
I won’t be able to teach you everything there is to know about the techniques of

3

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

4 CHAPTER 1 Learning reactive machine learning

machine learning; that would take a mountain of books. Instead, we’ll focus on how to
build a system that can put the power of machine learning to use.

 I’ll introduce you to a fundamentally new and better way of building machine
learning systems called reactive machine learning. Reactive machine learning represents
the marriage of ideas from reactive systems and the unique challenges of machine
learning. By understanding the principles that govern these systems, you’ll see how to
build systems that are more capable, both as software and as predictive systems. This
chapter will introduce you to the motivating ideas behind this approach, laying a
foundation for the techniques you’ll learn in the rest of the book.

1.1 An example machine learning system
Consider the following scenario. Sniffable is “Facebook for dogs.” It’s a startup based
out of a dog-filled loft in New York. Using the Sniffable app, dog owners post pictures
of their dogs, and other dog owners like, share, and comment on those pictures. The
network was growing well, and the team felt there might be a meteoric opportunity
here. But if Sniffable was really going to take off, it was clear that they’d have to build
more than just the standard social-networking features.

1.1.1 Building a prototype system

Sniffable users, called sniffers, are all about promoting their specific dog. Many sniffers
hope that their dog will achieve canine celebrity status. The team had an idea that what
sniffers really wanted were tools to help make their posts, called pupdates, more viral.
Their initial concept for the new feature was a sort of competitive intelligence tool for
the canine equivalent of stage moms, internally known as den mothers. The belief was that
den mothers were taking many pictures of their dogs and were trying to figure out which
picture would get the biggest response on Sniffable. The team intended the new tool to
predict the number of likes a given pupdate might get, based on the hashtags used. They
named the tool Pooch Predictor. It was their hope that it would engage the den mothers,
help them create viral content, and grow the Sniffable network as a whole.

 The team turned to their lone data scientist to get this product off the ground.
The initial spec for the minimal viable product was pretty fuzzy, and the data scientist
was already a pretty busy guy—he was the entire data science department, after all.
Over the course of several weeks, he stitched together a system that looked something
like figure 1.1.

Figure 1.1
Pooch
Predictor 1.0
architecture

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

5 An example machine learning system

The app already sent all raw user-interaction data to the application’s relational data
base, so the data scientist decided to start building his model with that data. He wrote
a simple script that dumped the data he wanted to flat files. Then he processed that
interaction data using a different script to produce derived representations of the
data, the features, and the concepts. This script produced a structured representation
of a pupdate, the number of likes it got, and other relevant data such as the hashtags
associated with the post. Again, this script just dumped its output to flat files. Then he
ran his model-learning algorithm over his files to produce a model that predicted
likes on posts, given the hashtags and other data about the post.

 The team was thoroughly amazed by this prototype of a predictive product, and
they pushed it through the engineering roadmap to get it out the door as soon as pos
sible. They assigned a junior engineer the job of taking the data scientist’s prototype
and getting it running as a part of the overall system. The engineer decided to embed
the data scientist’s model directly into the app’s post-creation code. That made it easy
to display the predicted number of likes in the app.

 A few weeks after Pooch Predictor went live, the data scientist happened to notice
that the predictions weren’t changing much, so he asked the engineer about the
retraining frequency of the modeling pipeline. The engineer had no idea what the
data scientist was talking about. They eventually figured out that the data scientist had
intended his scripts to be run on a daily basis over the latest data from the system.
Every day there should be a new model in the system to replace the old one. These
new requirements changed how the system needed to be constructed, resulting in the
architecture shown in figure 1.2.

 In this version of Pooch Predictor, the scripts were run on a nightly basis,
scheduled by cron. They still dumped their intermediate results to files, but now
they needed to insert their models into the application’s database. And now the
backend server was responsible for producing the predictions displayed in the app.
It would pull the model out of the database and use it to provide predictions to the
app’s users.

Figure 1.2 Pooch
Predictor 1.1 architecture

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

6 CHAPTER 1 Learning reactive machine learning

This new system was definitely better than the initial version, but in its first several
months of operation, the team discovered several pain points with it. First of all,
Pooch Predictor wasn’t very reliable. Often something would change in the data
base, and one of the queries would fail. Other times there would be high load on
the server, and the modeling job would fail. This was happening more and more as
both the size of the social network and the size of the dataset used by the modeling
system increased. One time, the server that was supposed to be running the data-
processing job failed, and all the relevant data was lost. These sorts of failures were
hard to detect without building up a more sophisticated monitoring and alerting
infrastructure. But even if someone did detect a failure in the system, there wasn’t
much that could be done other than kick off the job again and hope it succeeded
this time.

 Besides these big system-level failures, the data scientist started to find other prob
lems in Pooch Predictor. Once he got at the data, he realized that some of the features
weren’t being correctly extracted from the raw data. It was also really hard to under
stand how a change to the features that were being extracted would impact modeling
performance, so he felt a little blocked from making improvements to the system.

 There was also a major issue that ended up involving the entire team. For a period
of a couple of weeks, the team saw their interaction rates steadily trend down with no
real explanation. Then someone noticed a problem with Pooch Predictor while test
ing on the live version of the app. For the pupdates of users who were based outside
the United States, Pooch Predictor would always predict a negative number of likes. In
forums around the internet, disgruntled users were voicing their rage at having the
adorableness of their particular dog insulted by the Pooch Predictor feature. Once
the Sniffable team detected the issue, they were able to quickly figure out that it was a
problem with the modeling system’s location-based features. The data scientist and
engineer came up with a fix, and the issue went away, but only after having their cred
ibility seriously damaged among sniffers located abroad.

 Shortly after that, Pooch Predictor ran into more problems. It started with the data
scientist implementing more feature-extraction functionality in an attempt to improve
modeling performance. To do that, he got the engineer’s help to send more data
from the user app back to the application database. On the day the new functionality
rolled out, the team saw immediate issues. For one thing, the app slowed down dra
matically. Posting was now a very laborious process—each button tap seemed to take
several seconds to register. Sniffers became seriously irritated with these issues. Things
went from bad to worse when Pooch Predictor began to cause yet more problems with
posting. It turned out that the new functionality caused exceptions to be thrown on
the server, which led to pupdates being dropped.

 At this point, it was all hands on deck in a furious effort to put out this fire. They
realized that there were two major issues with the new functionality:

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

7 Reactive machine learning

 Sending the data from the app back to the server required a transaction. When
the data scientist and engineer added more data to the total amount of data
being collected for modeling, this transaction took way too long to maintain
reasonable responsiveness within the app.

 The prediction functionality within the server that supported the app didn’t
handle the new features properly. The server would throw an exception every
time the prediction functionality saw any of the new features that had been
added in another part of the application.

After understanding where things had gone wrong, the team quickly rolled back all of
the new functionality and restored the app to a normal operational state.

1.1.2 Building a better system

Everyone on the team agreed that something was wrong with the way they were build
ing their machine learning system. They held a retrospective to figure out what went
wrong and determine how they were going to do better in the future. The outcome
was the following vision for what a Pooch Predictor replacement needed to look like:

 The Sniffable app must remain responsive, regardless of any other problems
with the predictive system.

 The predictive system must be considerably less tightly coupled to the rest of
the systems.

 The predictive system must behave predictably regardless of high load or errors
in the system itself.

 It should be easier for different developers to make changes to the predictive
system without breaking things.

 The code must use different programming idioms that ensure better perfor
mance when used consistently.

 The predictive system must measure its modeling performance better.
 The predictive system should support evolution and change.
 The predictive system should support online experimentation.
 It should be easy for humans to supervise the predictive system and rapidly cor

rect any rogue behavior.

1.2 Reactive machine learning
In the previous example, it seems like the Sniffable team missed something big, right?
They built what initially looked like a useful machine learning system that added value
to their core product. But all the issues they experienced in getting there obviously
had a cost. Production issues with their machine learning system frequently pulled the
team away from work on improvements to the capability of the system. Even though
they had a bunch of smart people in the room thinking hard about how to predict the
dynamics of dog-based social networking, their system repeatedly failed at its mission.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

8 CHAPTER 1 Learning reactive machine learning

1.2.1 Machine learning

Building machine learning systems that do what they’re supposed to do is hard, but
not impossible. In our example story, the data scientist knew how to do machine learn
ing. Pooch Predictor totally worked on his laptop; it made predictions from data. But
the data scientist wasn’t thinking of machine learning as an application—he only
understood machine learning as a technique. Pooch Predictor didn’t consistently pro
duce trustable, accurate predictions. It was a failure both as a predictive system and as
a piece of software.

 This book will show you how to build machine learning systems that are just as awe
some as the best web and mobile applications. But understanding how to build these
systems will require you to think of machine learning as an application, and not
merely as a technique. The systems that we’ll build won’t fail at their missions.

 In the next section, we’ll get into the reactive approach to building machine learning
systems. But first I want to clarify what a machine learning system is and how it differs
from merely using machine learning as a technique. To do so, I’ll have to introduce
some terminology. If you have experience with machine learning, some of this might
seem basic, but bear with me. Terms related to machine learning can be pretty incon
sistently defined and used, so I want to be explicit about what we’re talking about.

Functionality vs. implementation
This brief introduction is only focused on ensuring that you’re sufficiently oriented in
terms of the functionality of a machine learning system. This book is focused on the
implementation of machine learning systems, not on the fundamentals of machine
learning itself. Should you find yourself needing a better introduction to the techniques
and algorithms used in machine learning, I recommend reading Real-World Machine
Learning by Henrik Brink, Joseph W. Richards, and Mark Fetherolf (Manning, 2016).

At its simplest, machine learning is a technique for learning from and making predic
tions on data. At a minimum, to do machine learning, you must take some data, learn
a model, and use that model to make predictions. Using this definition, we can imag
ine an even cruder form of the Pooch Predictor example. It could be a program that
queries the application database for the most popular breed of dog (French Bulldogs,
it turns out) and tells the app to say that all posts containing a French Bulldog will get
a lot of likes.

 That minimal definition of machine learning leaves out a lot of relevant detail.
Most real-world machine learning systems need to do a lot more than just that. They
usually need to have all the components, or phases, shown in figure 1.3.

 Starting at the beginning, a machine learning system must collect data from the
outside world. In the Pooch Predictor example, the team was trying to skip this con
cern by using the data that their application already had. No doubt about it, that
approach was quick, but it tightly coupled the Sniffable application data model to the

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

9 Reactive machine learning

Figure 1.3 Phases of machine learning

Pooch Predictor data model. How to collect and persist data for a machine learning
system is a large and important topic, so I’ll spend all of chapter 3 showing you how to
set up your system for success.

 Once the system has data in it, that data is rarely ready to send off to a machine
learning algorithm. Most machine learning algorithms are applied to derived repre
sentations of the raw data, called instances. Fig
ure 1.4 shows the parts of an instance in a
common syntax (LIBSVM).

 Many different syntaxes can be used to
express instances, so we’re not going to worry
too much about the specifics of any particular
syntax. However they’re expressed, instances
are always made up of the same components.

Features are meaningful data points derived
from raw data related to the entity being pre
dicted on, at the time you’re trying to make a prediction. A Sniffable example of a fea
ture would be the number of friends a given dog has. In figure 1.4, features are
expressed using a unique ID field and feature value. Feature number 978, which might
represent the sniffer’s proportion of friends that are male dogs, has a value of 0.24. Typ
ically, a machine learning system will extract many features from the raw data available
to it. The feature values for a given instance are collectively called a feature vector.

 A concept is the thing that the system is trying to predict. In the context of Pooch
Predictor, a concept would be the number of likes a given post receives. When a con
cept is discrete (not continuous), it can be called a class label, and you’ll often see just
the word label used in the relevant parts of machine learning libraries, such as MLlib,
which we’ll use in this book.

 Only some sorts of machine learning problems involve having concepts available
in the form of class labels. This sort of machine learning context is known as supervised
learning, and most of the material in this book is focused on this type of machine
learning problem, although reactive machine learning could be applied to unsuper
vised learning problems as well.

Figure 1.4 The structure of an instance

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

10 CHAPTER 1 Learning reactive machine learning

 Defining and implementing the best features and concepts to represent the prob
lem you’re trying to solve make up an enormous portion of the work of real-world
machine learning. From an application perspective, these tasks are the beginning of
your data pipeline. Constructing pipelines that do this job reliably, consistently, and
scalably requires a principled approach to application architecture and programming
style. Chapter 4 is devoted to discussing the reactive approach to this part of machine
learning systems under the banner of feature generation.

Using the data prepared as just described, you’re now ready to learn a model. You
can think of a model as a program that maps from features to predicted concepts, as
shown in the simple Scala implementation in the following listing.

Listing 1.1 A simple model

def genericModel(f: FeatureVector[RawData]): Prediction[Concept] = ???

Learning models occurs during the latter half of the data pipeline. A model produced
by Pooch Predictor would be a program that takes as input the feature representation
of the hashtag data and returns the predicted number of likes that a given pupdate
might receive, as shown in the following listing.

Listing 1.2 A Pooch Predictor model

def poochPredictorModel(f: FeatureVector[Hashtag]): Prediction[Like] = ???

During this same phase of the pipeline, you’ll need to begin to address several different
types of uncertainty that crop up in model building. As a result, the model-learning
phase of the pipeline is concerned with more than just learning models. In chapter 5,
I discuss the various concerns that you’ll need to consider in the model-learning sub
system of a machine learning system.

Next, you’ll need to take this model and make it useful by publishing it. Model pub
lishing means making the model program available outside of the context it was
learned in, so that it can make predictions on data it hasn’t seen before. It’s easy to
gloss over the difficulties that come up in this part of a machine learning system, and
the Sniffable team largely skipped it in their original implementation. They didn’t
even set up their system to retrain the model on a regular basis. Their next approach
at implementing model retraining also ran into difficulty, causing their models to be
out of sync with their feature extractors. There are better ways of doing this (hint:
think immutability), and I discuss them in chapter 6.

 Finally, you’ll need to implement functionality for your learned model to be used in
predicting concepts from new instances, which I call responding later in the book. This
is ultimately where the rubber meets the road in a machine learning system, and in the
Pooch Predictor system it was frequently where the car burst into flames. Given that
team Sniffable had never really built a machine learning system like this before, it’s not

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

11 Reactive machine learning

surprising that there were some pain points where their ideas met harsh reality. Some
of their problems stemmed from treating their predictive system like a transaction busi
ness application that needed to record a purchase. An approach that relies on strong
consistency guarantees doesn’t work for modern distributed systems, and it’s out of sync
with the pervasive and intrinsic uncertainty in a machine learning system. Other prob
lems the Sniffable team experienced had to do with not thinking about their system in
dynamic terms. machine learning systems must evolve, and they must support parallel
tracks for that evolution through experimentation capabilities. Finally, there wasn’t
much functionality to support handling requests for predictions.

 The Sniffable team wasn’t unusual in their haphazard approach to architecture.
Many machine learning systems look a lot like the architecture in figure 1.5.

Figure 1.5 A simplistic machine learning system

There’s nothing wrong with starting with something so simple. But this approach
lacks many system components that will eventually be needed, and the ones that are
implemented have poor component boundaries. Moreover, not a lot of thought was
given to the various properties this system must have, should it ever serve more than a
few users. It is, in a word, naive.

 This book introduces an approach to building machine learning systems that is
anything but naive. The approach is based on a lot of real-world experiences with the
challenges of machine learning systems. The sorts of systems that we’ll look at in this
book are non-trivial and often have complex architectures. At a general level, they will
conform to the approach shown in figure 1.6.

 It may not be obvious why we need to build machine learning systems using such a
complex architecture, but I beg your patience. In each chapter, I’ll show you what
challenges this portion of the system must address and how a more reactive approach
to machine learning will work better. To do that, I should probably give you more
background on what reactive systems are.

1.2.2 Reactive systems

Now that you understand a bit more about what machine learning systems are, I want
to give you an overview of some of the ideas and approaches that we’ll use to build
successful ones. We’ll begin with the reactive systems paradigm. Reactive systems are
defined by four traits and three strategies. The paradigm as a whole is a way of codify
ing an approach to building systems that can serve modern user expectations for
things like interactivity and availability.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

12 CHAPTER 1 Learning reactive machine learning

Figure 1.6 A reactive machine learning system

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

13 Reactive machine learning

TRAITS OF REACTIVE SYSTEMS

Reactive systems privilege four traits (see figure 1.7).

Figure 1.7 The traits
of reactive systems

First and most importantly, reactive systems are responsive, meaning they consistently
return timely responses to users. Responsiveness is the crucial foundation upon which
all future development efforts will be built. If a system doesn’t respond to its users,
then it’s useless. Think of the Sniffable team causing a massive slowdown in the Sniffa
ble app due to the poor responsiveness of their machine learning system.

 Supporting that goal of responsiveness, reactive systems must be resilient; they need
to maintain responsiveness in the face of failure. Whether the cause is failed hard
ware, human error, or design flaws, software always breaks, as the Sniffable team has
discovered. Providing some sort of acceptable response even when things don’t go as
planned is a key part of ensuring that users view a system as being responsive. It
doesn’t matter that an app is very fast when it’s not broken if it’s broken half the time.

 Reactive systems must also be elastic; they need to remain responsive despite vary
ing loads. The idea of elasticity isn’t exactly the same as scalability, although the two
are similar. Elastic systems should respond to increases or decreases in load. The Snif
fable team saw this when their traffic ramped up and the Pooch Predictor system
couldn’t keep up with the load. That’s exactly what a lack of elasticity looks like.

 Finally, reactive systems are message-driven; they communicate via asynchronous,
non-blocking message passing. The message-passing approach is in contrast with direct
intraprocess communication or other forms of tight coupling. It’s easy to understand
how a more explicit approach to ensuring loose coupling might solve some of the
issues in the Sniffable example. A loosely coupled system organized around message
passing can make it easier to detect failure or issues with load. Moreover, a design with
this trait helps contain any of the effects of errors to just messages about bad news,

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

14 CHAPTER 1 Learning reactive machine learning

rather than flaming production issues that need to be immediately addressed, as they
were in Pooch Predictor.

 The reactive approach could certainly be applied to the problems the Sniffable
team were having with their machine learning system. The four principles represent a
coherent and complete approach to system design that makes for fundamentally bet
ter systems. Such systems fulfill their requirements better than naively designed sys
tems, and they’re more fun to work on. After all, who wants to fight fires when you
could be shipping awesome new machine learning functionality to loyal sniffers?

 These traits certainly sound nice, but they’re not much of a plan. How do you
build a system that actually has these traits? Message passing is part of the answer, but
it’s not the whole story. machine learning systems, as you’ve seen, can be difficult to
get right. They have unique challenges that will likely need unique solutions that
don’t appear in traditional business applications.

REACTIVE STRATEGIES

A key part of how we’ll build a reactive
machine learning system in this book
is by using the three reactive strategies
illustrated in figure 1.8.

 First, reactive systems use replication.
They have the same component exe
cuting in more than one place at the Figure 1.8 Reactive strategies
same time. More generally, this means

that data, whether at rest or in motion, should be redundantly stored or processed.

 In the Sniffable example, there was a time when the server that ran the model-
learning job failed, and no model was learned. Clearly, replication could have helped
here. Had there been two or more model-learning jobs, the failure of one job would
have had less impact. Replication may sound wasteful, but it’s the beginning of a solu
tion. As you’ll see in chapters 4 and 5, you can build replication into your modeling
pipelines using Spark. Rather than requiring you to always have two pipelines execut
ing, Spark gives you automatic, fine-grained replication so that the system can recover
from failure. This book focuses on the use of higher-level tools like Spark to manage
the challenges of distributed systems. By relying on these tools, you can easily use rep
lication in every component of your machine learning system.

 Next, reactive systems use containment to prevent the failure of any single compo
nent of the system from affecting any other component. The term containment might
get you thinking about specific technologies like Docker and rkt, but this strategy isn’t
about any one implementation. Containment can be implemented using many differ
ent systems, including homegrown ones. The point is to prevent the sort of cascading
failure we saw in Pooch Predictor, and to do so at a structural level.

 Consider the issue with Pooch Predictor where the model and the features were
out of sync, resulting in exceptions during model serving. This was only a problem
because the model-serving functionality wasn’t sufficiently contained. Had the model

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

15 Reactive machine learning

been deployed as a contained service
communicating with the Sniffable appli
cation server via message passing, there
would have been no way for this failure
to propagate as it did. Figure 1.9 shows
an example of this architecture.

 Lastly, reactive systems rely on the
strategy of supervision to organize com
ponents. When implementing systems
using this strategy, you explicitly identify

Figure 1.9 A contained model-serving
architecture

the components that could fail and make sure that some other component is responsi
ble for their lifecycles. The strategy of supervision gives you a point of control, where
you can ensure that the reactive traits are being achieved by the true runtime behavior
of your system.

The Pooch Predictor system had no system-level supervision. This unfortunate
omission left the Sniffable team scrambling whenever something went wrong with the
system. A better approach would have been to build supervision directly into the sys
tem itself, along the lines of figure 1.10.

Figure 1.10 A supervisory
architecture

In this structure, the published models are observed by the model supervisor. Should
their behavior deviate from acceptable bounds, the supervisor would stop sending
them messages requesting predictions. In fact, the model supervisor could even com
pletely destroy a model it knows to be bad, making the system potentially self-healing.
I’ll begin discussing how you can implement model supervision in chapters 6 and 7,
and we’ll continue exploring powerful applications of the strategy of supervision
throughout the remainder of the book.

1.2.3 Making machine learning systems reactive

With some understanding about reactive systems, I can begin discussing how we can
apply these ideas to machine learning systems. In a reactive machine learning system,
we still want our system to have all the same traits as a reactive system, and we can use
all the same strategies. But we can do more to address the unique characteristics of a

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

16 CHAPTER 1 Learning reactive machine learning

machine learning system. So far, I’ve explained a lot of infrastructural concerns, but I
haven’t yet shown you how this enables new predictive capabilities. Ultimately, a reactive
machine learning system gives you the ability to deliver value through ever better pre
dictions. That’s why reactive machine learning is worth understanding and applying.

 The reactive machine learning approach is based on two key insights into the char
acteristics of data in a machine learning system: it is uncertain, and it is effectively
infinite. From those two insights, four strategies emerge, shown in figure 1.11, that
will help us build a reactive machine learning system.

 To begin, let’s think about how much data the Pooch Predictor system might need
to process. Ideally, with its new machine learning capabilities, Sniffable will take off
and see tons of traffic. But even if that doesn’t happen, there’s still no way of knowing
how many possible pupdates users might want to consider and thus send to the Pooch
Predictor system. Imagine having to predict every possible post that a sniffer might
make on Sniffable. Some posts would have big dogs; others, small ones. Some posts
would use filters, and others would be more natural. Some would be rich in hashtags,
and some wouldn’t have any annotations. Once you consider the impact of arbitrary
parameters on feature values, the range of possible data representations becomes lit
erally infinite.

 It doesn’t matter precisely how much raw data Pooch Predictor ingests. We’ll
always assume that the amount of data is too much for one thread or one server. But
rather than give up in the face of this unbounded scope, reactive machine learning
employs two strategies to manage infinite data.

 First, it relies on laziness, also known as delay of execution, to separate the composi
tion of functions to execute from their actual execution. Rather than being a bad
habit, laziness is a powerful evaluation strategy that can greatly improve the design of
data-intensive applications.

 By using laziness in the implementation of your machine learning system, you’ll
find that it’s much easier to conceive of the data flow in terms of infinite streams than
finite batches. This switch can have huge benefits for the responsiveness and utility of
your system. I show how laziness can be used to build machine learning pipelines in
chapter 4.

Figure 1.11 Reactive machine
learning data and strategies

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

17 Reactive machine learning

Similarly, reactive machine learning systems deal with infinite data by expressing
transformations as pure functions. What does it mean for a function to be pure? First,
evaluating the function must not result in some sort of side effect, such as changing
the state of a variable or performing I/O. Additionally, the function must always
return the same value when given the same arguments. This latter property is referred
to as referential transparency. Writing machine learning code that maintains this prop
erty can make implementations of mathematical transformations look and behave
quite similarly to their expression in math.

 Pure functions are a foundational concept in a style of programming known as
functional programming, which we’ll use throughout this book. At its heart, functional
programming is all about computing with functions. In functional code, functions can
be passed to other functions as arguments. Such functions are called higher-order func
tions, and we’ll use this idiom throughout the code examples in this book. Functional
programming idioms like higher-order functions are a key part of what makes reactive
tools like Scala and Spark so powerful.

 The emphasis on the use of functional programming in this book isn’t merely sty
listic. Functional programming is one of the most powerful tools for taming compli
cated systems that need to reason about data, especially infinite data. The recent
increase in the popularity of functional programming has been largely driven by its
application to building big data infrastructure. Using the techniques of functional
programming, we’ll be able to get our system right and scale it to the next level. As I
discuss in chapters 4 and 6, pure functions can offer real solutions to the problems of
implementing feature extraction and prediction functionality.

Next, let’s consider what Pooch Predictor knew about what was going on with Snif
fable and its users. It had records of sniffers creating, viewing, and liking pupdates.
This knowledge came from the main application database. As we saw, the app would
sometimes lose sniffers’ efforts to like a particular pupdate, due to operational issues,
and this loss of data changed the concept that Pooch Predictor was built to learn. Sim
ilarly, Pooch Predictor’s view of what feature values were seen at a given time was often
impeded by bugs in its code or in the main app’s code. This is all because uncertainty is
intrinsic and pervasive in a machine learning system.

 Machine learning models and the predictions they make are always approximate and
only useful in the aggregate. It wasn’t like Pooch Predictor knew exactly how many likes
a given pupdate might get. Even before making a prediction, a machine learning system
must deal with the uncertainty of the real world outside of the machine learning system.
For example, do sniffers using the hashtag #adorabull mean the same thing as sniffers
using the hashtag #adorable, or should those be viewed as different features?

 A truly reactive machine learning system incorporates this uncertainty into the
design of the system and uses two strategies to manage it: immutable facts and possible
worlds. It may sound strange to use facts to manage uncertainty, but that’s exactly what
we’re going to do. Consider the location that a sniffer is posting a pupdate from. One

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

18 CHAPTER 1 Learning reactive machine learning

way of recording this location data for later use in geographic features is to record the
exact location reported by the app, as in table 1.1.

Table 1.1 Pupdate location data model

pupdate_id Location

123 Washington Square Park

But the location determined by the app at the time of the pupdate was uncertain; it
was just the result of a sensor reading on a phone, which has a very coarse level of pre
cision. The sniffer may or may not have been in Washington Square Park. Moreover, if
a future feature tries to capture the distinct differences between East and West Green
wich Village, this data model will give a precise but potentially inaccurate view of how
far to the east or west this pupdate came from.

 A richer, more accurate way of recording this data is to use the raw location read
ing and the expected radius of uncertainty, as shown in table 1.2.

Table 1.2 Revised pupdate location data model

pupdate_id Latitude Longitude Radius

123 40.730811 -73.997472 1.0

This revised data model can now represent immutable facts. This data can be written
once and never modified; it is written in stone. The use of immutable facts allows us to
reason about uncertain views of the world at specific points in time. This is crucial for
creating accurate instances and many other important data transformations in a
machine learning system. Having a complete record of all facts that occur over the
lifetime of the system also enables important machine learning, like model experi
mentation and automatic model validation.

 To understand the other strategy for dealing with uncertainty, let’s consider a fairly
simple question: how many likes will pupdates about French Bulldogs get in the next
hour? To answer this question, let’s break it down into pieces.

 First, how many pupdates will be submitted in the next hour? There are multiple ways
of answering this question. We could just take the historical average rate—say, 6,500. But
the number of pupdates submitted varies over time, so we could also fit a line to the data
that looks something like figure 1.12. Using this model, we might expect 7,250 pupdates
in the next hour.

 Beyond that, we need to know how many likes these pupdates will receive. Again,
we could take a historical average, which would give us 23 likes per pupdate in this
case. Or we could use a model. That model would have to be applied to some recent
sample of data to get an idea of the likes that recent traffic has been getting. The
result of this model is that the average pupdate will receive 28 likes.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

19 Reactive machine learning

Figure 1.12 Model of likes by hour

Now, we need to combine this information in some way. Table 1.3 shows the predic
tions we could use in our final prediction.

Table 1.3 Possible prediction values

Model type Pupdates Likes/Pupdate

Historical 6,500 23

Machine-learned 7,250 28

We could decide to answer that the expected number of likes in the next hour is
6,500 x 23 = 149,500 using the historical values. Or we could decide to use the
machine-learned model and get a value of 7,250 x 28 = 203,300. We could even
decide to combine the historical number of pupdates with the model-based predic
tion of likes per pupdate to get 6,500 x 28 = 182,000. These different views of our
uncertain data can be thought of as possible worlds.

 We don’t know which of these worlds we will ultimately find ourselves in during the
next hour of traffic on Sniffable, but we can make decisions with this information,
such as ensuring that the servers are prepared to handle more than 200,000 likes in
the next hour. Possible worlds will form the basis for the queries we’ll make of all the
uncertain data that is present in our machine learning system. There are limits to the
applicability of this strategy, because infinite data can produce infinite possible worlds.
But by building our data models and queries with the concept of possible alternative
worlds, we’ll be able to more effectively reason about the real range of potential out
comes in our system.

 Using all the strategies that I’ve discussed, it’s easy to imagine the Sniffable team
refactoring the Pooch Predictor system into something much more powerful. The reac
tive machine learning approach makes it possible to build a machine learning system

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

20	 CHAPTER 1 Learning reactive machine learning

that has fewer problems and allows for evolution and improvement. It’s definitely a dif
ferent approach than we saw in the original Pooch Predictor example, and this
approach is grounded on a firmer footing. Reactive machine learning unites ideas from
distributed systems, functional programming, uncertain data, and other fields in a
coherent, pragmatic approach to building real-world machine learning systems.

1.2.4 When not to use reactive machine learning

It’s fair to ask whether all machine learning systems should be built using the reactive
approach. The answer is no.

 During the design and implementation of a machine learning system, it’s benefi
cial to consider the principles of reactive machine learning. Machine learning prob
lems by definition have to do with reasoning about uncertainty. Thinking in terms of
immutable facts and pure functions is a useful perspective for implementing any sort
of application.

 But the approach discussed in this book is a way to easily build sophisticated systems,
and some machine learning systems don’t need to be sophisticated. Some systems won’t
benefit from using a message-passing semantic that assumes several independently
executing processes. A research prototype is a perfect example of a machine learning
system that doesn’t need the powerful capabilities of a reactive machine learning
system. When you’re building a temporary system, I recommend bending or breaking
all the rules I lay out in this book. The prudent approach to building potentially
disposable machine learning systems is to make far more extreme compromises than in
the reactive approach. If you’re building such a temporary system, see my guide to
building machine learning systems at hackathons: http://mng.bz/981c.

Summary
 Even simple machine learning systems can fail.
 Machine learning should be viewed as an application, not as a technique.
 A machine learning system is composed of five components, or phases:

–	 The data-collection component ingests data from the outside world into the
machine learning system.

–	 The data-transformation component transforms raw data into useful derived
representations of that data: features and concepts.

–	 The model-learning component learns models from the features and concepts.
– The model-publishing component makes a model available to make predictions.
– The model-serving component connects models to requests for predictions.

 The reactive systems design paradigm is a coherent approach to building better
systems:
–	 Reactive systems are responsive, resilient, elastic, and message-driven.
–	 Reactive systems use the strategies of replication, containment, and supervi

sion as concrete approaches for maintaining the reactive traits.

www.itbook.store/books/9781617293337

http://mng.bz/981c
https://itbook.store/books/9781617293337

Summary	 21

 Reactive machine learning is an extension of the reactive systems approach that
addresses the specific challenges of building machine learning systems:
–	 Data in a machine learning system is effectively infinite. Laziness, or delay of

execution, is a way of conceiving of infinite flows of data, rather than finite
batches. Pure functions without side effects help manage infinite data by
ensuring that functions behave predictably, regardless of context.

–	 Uncertainty is intrinsic and pervasive in the data of a machine learning sys
tem. Writing all data in the form of immutable facts makes it easier to reason
about views of uncertain data at points in time. Different views of uncertain
data can be thought of as possible worlds that can be queried across.

In the next chapter, I’ll introduce some of the technologies and techniques used to
build reactive machine learning systems. You’ll see how reactive programming tech
niques allow you to deal with complex system dynamics without complex code. I’ll
also introduce two powerful frameworks, Akka and Spark, that you can use to build
incredibly sophisticated reactive systems easily and quickly.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

MACHINE LEARNING/SOFTWARE ENGINEERING

Machine Learning Systems

Jeff Smith

I
f you’re building machine learning models to be used on a
small scale, you don’t need this book. But if you’re a de
veloper building a production-grade ML application that

needs quick response times, reliability, and good user experi
ence, this is the book for you. It collects principles and prac
tices of machine learning systems that are dramatically easier to
run and maintain, and that are reliably better for users.

Machine Learning Systems: Designs that scale teaches you to
design and implement production-ready ML systems. You’ll
learn the principles of reactive design as you build pipelines
with Spark, create highly scalable services with Akka, and use
powerful machine learning libraries like MLib on massive
datasets. The examples use the Scala language, but the same
ideas and tools work in Java, as well.

What’s Inside
● Working with Spark, MLlib, and Akka
● Reactive design patterns
● Monitoring and maintaining a large-scale system
● Futures, actors, and supervision

Readers need intermediate skills in Java or Scala. No prior
machine learning experience is assumed.

Jeff Smith builds large-scale machine learning systems using
Scala, Akka, and Spark.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/machine-learning-systems

See first page

“This book doesn’t just cover

tools; it covers the whole

job of building an entire

machine learning system.
—From the Foreword by ”

Sean Owen

Director of Data Science, Cloudera

“A helpful guide for data
engineers building resilient
machine learning systems.

—Jonathan Woodard, AT&T ”

“A fantastic entry to the

world of robust machine

learning systems that will

 scale with your business.”
 —Tommy O’Dell

Virtual Gaming Worlds

“You cannot afford to ignore

this book!”
 —José San Leandro, OSOCO

M A N N I N G $44.99 / Can $59.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

