
M A N N I N G

Designs that scale

SAMPLE CHAPTER

Jeff Smith
Foreword by Sean Owen

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

Machine Learning Systems

by Jeff Smith

Chapter 4

Copyright 2018 Manning Publications

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

brief contents

PART 1 FUNDAMENTALS OF REACTIVE MACHINE LEARNING...................1

1 ■ Learning reactive machine learning 3

2 ■ Using reactive tools 23

PART 2 BUILDING A REACTIVE MACHINE LEARNING SYSTEM................41

3 ■ Collecting data 43

4 ■ Generating features 69

5 ■ Learning models 93

6 ■ Evaluating models 117

7 ■ Publishing models 135

8 ■ Responding 149

PART 3 OPERATING A MACHINE LEARNING SYSTEM.........................165

9 ■ Delivering 167

10 ■ Evolving intelligence 177

iii

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

Generating features

This chapter covers
 Extracting features from raw data

 Transforming features to make them more useful

 Selecting among the features you’ve created

 How to organize feature-generation code

This chapter is the next step on our journey through the components, or phases, of
a machine learning system, shown in figure 4.1. The chapter focuses on turning
raw data into useful representations called features. The process of building systems
that can generate features from
data, sometimes called feature engi­
neering, can be deceptively com­
plex. Often, people begin with an
intuitive understanding of what
they want the features used in a sys­
tem to be, with few plans for how
those features will be produced.
Without a solid plan, the process of
feature engineering can easily get
off track, as you saw in the Sniffable
example from chapter 1. Figure 4.1 Phases of machine learning

69

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

70 CHAPTER 4 Generating features

 In this chapter, I’ll guide you through the three main types of operations in a fea­
ture pipeline: extraction, transformation, and selection. Not all systems do all the
types of operations shown in this chapter, but all feature engineering techniques can
be thought of as falling into one of these three buckets. I’ll use type signatures to
assign techniques to groups and give our exploration some structure, as shown in
table 4.1.

Table 4.1 Phases of feature generation

Phase Input Output

Extract RawData Feature

Transform Feature Feature

Select Set[Feature] Set[Feature]

Real-world feature pipelines can have very complex structures. You’ll use these
groupings to help you understand how you can build a feature-generation pipeline in
the best way possible. As we explore these three types of feature-processing operations,
I’ll introduce common techniques and design patterns that will keep your machine
learning system from becoming a tangled, unmaintainable mess. Finally, we’ll consider
some general properties of data pipelines when discussing the next component of
machine learning systems discussed in chapter 5, the model-learning pipeline.

Type signatures
You may not be familiar with the use of types to guide how you think about and imple­
ment programs. This technique is common in statically typed languages like Scala and
Java. In Scala, functions are defined in terms of the inputs they take, the outputs they
return, and the types of both. This is called a type signature. In this book, I mostly use
a fairly simple form of signature notation that looks like this: Grass => Milk. You can
read this as, “A function from an input of type Grass to an output of type Milk.” This
would be the type signature of some function that behaves much like a cow.

To cover this enormous scope of functionality, we need to rise above it all to gain
some perspective on what features are all about. To that end, we’ll join the team of
Pidg’n, a microblogging social network for tree-dwelling animals, not too different
from Twitter.

 We’ll look at how we can take the chaos of a short-form, text-based social network
and build meaningful representations of that activity. Much like the forest itself, the
world of features is diverse and rich, full of hidden complexity. We can, however,
begin to peer through the leaves and capture insights about the lives of tree-dwelling
animals using the power of reactive machine learning.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

71 Extracting features

4.1 Spark ML
Before we get started building features, I want to introduce you to more Spark func­
tionality. The spark.ml package, sometimes called Spark ML, defines some high-level
APIs that can be used to create machine learning pipelines. This functionality can
reduce the amount of machine learning–specific code that you need to implement
yourself, but using it does involve a change in how you structure your data.

 The Spark ML API uses mostly the same nomenclature for feature extraction,
transformation, and selection that I use in this chapter, though there are subtle
differences. If and when you read the Spark ML documentation, you may see something
called a transformation operation, which I call an extraction operation. These are generally
minor, unimportant differences that you can ignore. Different technologies name and
structure this functionality differently, and you’ll see all sorts of different naming
conventions in the machine learning literature. The type signature–based framework
for dividing feature-generation functionality that I use in this chapter is just a tool to
help you implement and organize your code. Once you’ve mastered the feature-
generation concepts in this chapter, you’ll be better equipped to see through
differences in nomenclature to the similarities in functionality.

 Much of the machine learning functionality in Spark is designed to be used with
DataFrames, instead of the RDDs that you’ve seen up until this point. DataFrames are
simply a higher-level API on top of RDDs that give you a richer set of operations. You
can think of DataFrames as something like tables in relational databases. They have
different columns, which you can define and then query. Much of the recent progress
in performance and functionality within Spark has been focused on DataFrames, so to
get access to the full power of things like MLlib’s machine learning capabilities, you’ll
need to use DataFrames for some operations. The good news is that they’re very simi­
lar to the RDDs you’ve been working with and tabular data structures you may have
used in other languages, such as pandas DataFrames in Python or R’s data frames.

4.2 Extracting features
Now that I’ve introduced some of the tools, let’s

begin to solve the problem. We’ll start our

exploration of the feature engineering process

at the very beginning, with raw data. In this

chapter, you’ll take on the role of Lemmy, an

engineer on the Pidg’n data team.

Your team knows it wants to build all sorts of
predictive models about user activity. You’re just
getting started, though, and all you have are the basics of application data: squawks (text
posts of 140 characters or less), user profiles, and the follower relationships. This is a rich
dataset, for sure, but you’ve never put it to much analytical use. To start with, you’ve
decided to focus on the problem of predicting which new users will become Super
Squawkers, users with more than a million followers.

www.itbook.store/books/9781617293337

http:spark.ml
https://itbook.store/books/9781617293337

72 CHAPTER 4 Generating features

 To start this project, you’ll extract some features to use in the rest of your machine
learning system. I define the process of feature extraction as taking in raw data of
some sort and returning a feature. Using Scala type signatures, feature extraction can
be represented like this: RawData => Feature. That type signature can be read as, “A
function that takes raw data and returns a feature.” If you define a function that satis­
fies that type signature, it might look something like the stub in the following listing.

Listing 4.1 Extracting features

def extract(rawData: RawData): Feature = ???

Put differently, any output produced from raw data is a potential feature, regardless of
whether it ever gets used to learn a model.

 The Pidg’n data team has been collecting data since day one of the app as part of
keeping the network running. You have the complete, unaltered record of all the
actions ever taken by Pidg’n users, much like the data model discussed in chapter 3.
Your team has built a few aggregates of that data for basic analytical purposes. Now
you want to take that system to the next level by generating semantically meaningful
derived representations of that raw data—features. Once you have features of any
kind, you can begin learning models to predict user behavior. In particular, you’re
interested in seeing if you can understand what makes particular squawks and squawk­
ers more popular than others. If a squawker has the potential to become very popular,
you want to provide them with a more streamlined experience, free of advertisements,
to encourage them to squawk more.

 Let’s begin by extracting features from the raw data of the text of squawks. You can
start by defining a simple case class and extracting a single feature for a few squawks.
Listing 4.2 shows how to extract a feature consisting of the words in the text of a given
squawk. This implementation will use Spark’s Tokenizer to break sentences into
words. Tokenization is just one of several common text-processing utilities that come
built into Spark that make writing code like this fast and easy. For advanced use cases,
you may want to use a more sophisticated text-parsing library, but having common
utilities easily available can be very helpful.

Listing 4.2 Extracting word features from squawks

Instantiates
example

instances of
squawks

Case class to hold a basic
data model of a squawk

case class Squawk(id: Int, text: String)

Creates a DataFrame
from a sequence

val squawks = session.createDataFrame(Seq(
Squawk(123, "Clouds sure make it hard to look

➥ on the bright side of things."),
Names Squawk(124, "Who really cares who gets the worm?

columns to

➥ I'm fine with sleeping in."), place values in Squawk(125, "Why don't french fries grow on trees?")))

a DataFrame

➥ .toDF("squawkId", "squawk")

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

73 Extracting features

val tokenizer = new Tokenizer().setInputCol("squawk")

➥ .setOutputCol("words")
Sets up a Tokenizer to

Executes the
Tokenizer and
populates the

val tokenized = tokenizer.transform(squawks)

tokenized.select("words", "squawkId").show()

split the text of squawks
into words and put them
in an output column

words column
in a DataFrame Prints the results for inspection

The operations in listing 4.2 give you a DataFrame that contains a column called
words, which has all the words in the text of the squawk. You could call the values in
the words column a feature. These values could be used to learn a model. But let’s
make the semantics of the pipeline clearer using the Scala type system.

 Using the code in listing 4.3, you can define what a feature is and what specific sort
of feature you’ve produced. Then, you can take the words column from that Data-
Frame and use it to instantiate instances of those feature classes. It’s the same words
that the Tokenizer produced for you, but now you have richer representations that
you can use to help build up a feature-generation pipeline.

Listing 4.3 Extracting word features from squawks

Type
parameter to
hold the type

of values
generated by

feature

Defines a case
class for features

consisting of
word sequences

Maps over rows
and applies a

function to each

Gets extracted
words out of a

row

Defines a base trait for
all types of features

Requires feature trait FeatureType {
 types to have names
val name: String

type V

Defines a base trait for all }

features as an extension
of feature types trait Feature extends FeatureType {

val value: V

}
 Requires that features have values of

the type specified in the feature type
case class WordSequenceFeature(name: String, value: Seq[String])

➥ extends Feature {
type V = Seq[String] Specifies that the type of features being

}
 generated is a sequence of strings (words)

val wordsFeatures = tokenized.select("words")
 Selects a words column
.map(row =>
 from the DataFrame
WordSequenceFeature("words",

row.getSeq[String](0)))
 Creates an instance of
WordSequenceFeature named words

wordsFeatures.show()

Prints features for inspection

With this small bit of extra code, you can define your features in a way that’s more
explicit and less tied to the specifics of the raw data in the original DataFrame. The
resulting value is an RDD of WordSequenceFeature. You’ll see later how you can

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

74 CHAPTER 4 Generating features

continue to use this Feature trait with specific case classes defining the different types
of features in your pipeline.

 Also note that, when operating over the DataFrame, you can use a pure, anony­
mous, higher-order function to create instances of your features. The concepts of
purity, anonymous functions, and higher-order functions may have sounded quite
abstract when I introduced them in chapter 1. But now that you’ve seen them put to
use in several places, I hope it’s clear that they can be very simple to write. Now that
you’ve gotten some Scala and Spark programming under your belt, I hope you’re
finding it straightforward to think of data transformations like feature extraction in
terms of pure functions with no side effects.

You and the rest of the Pidg’n data team could now use these features in the next
phase of the machine learning pipeline—model learning—but they probably
wouldn’t be good enough to learn a model of Super Squawkers. These initial word
features are just the beginning. You can encode far more of your understanding of
what makes a squawker super into the features themselves.

 To be clear, there are sophisticated model-learning algorithms, such as neural net­
works, that require very little feature engineering on the data that they consume. You
could use the values you’ve just produced as features in a model-learning process. But
many machine learning systems will require you to do far more with your features
before using them in model learning if you want acceptable predictive performance.
Different model-learning algorithms have different strengths and weaknesses, as we’ll
explore in chapter 5, but all of them will benefit from having base features trans­
formed in ways that make the process of model learning simpler. We need to move on
to see how to make features out of other features.

4.3 Transforming features
Now that you’ve extracted some basic features, let’s figure out how to make them use­
ful. This process of taking a feature and producing a new feature from it is called fea­
ture transformation. In this section, I’ll introduce you to some common transform
functions and discuss how they can be structured. Then I’ll show you a very important
class of feature transformations: transforming features into concept labels.

 What is feature transformation? In the form of a type signature, feature transfor­
mation can be expressed as Feature => Feature, a function that takes a feature and
returns a feature. A stub implementation of a transformation function (sometimes
called a transform) is shown in the next listing.

Listing 4.4 Transforming features

def transform(feature: Feature): Feature = ???

In the case of the Pidg’n data team, you’ve decided to build on your previous feature-
engineering work by creating a feature consisting of the frequencies of given words in

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

75 Transforming features

a squawk. This quantity is sometimes called a term frequency. Spark has built-in function­
ality that makes calculating this value easy.

Listing 4.5 Transforming words to term frequencies

Instantiates an instance of a class
Defines

 an output
 to put term

frequencies in

val hashingTF = new HashingTF()
.setInputCol("words")
.setOutputCol("termFrequencies")

to calculate term frequencies Defines an input column
to read from when
consuming DataFrames

Prints term
frequencies

val tfs = hashingTF.transform(tokenized) Executes the transformation

for inspection tfs.select("termFrequencies").show()

It’s worth noting that the hashingTF implementation of term frequencies was imple­
mented to consume the DataFrame you previously produced, not the features you
designed later. Spark ML’s concept of a pipeline is focused on connecting operations
on DataFrames, so it can’t consume the features you produced before without more
conversion code.

Feature hashing
The use of the term hashing in the Spark library refers to the technique of feature
hashing. Although it’s not always used in feature-generation pipelines, feature hash­
ing can be a critically important technique for building large numbers of features. In
text-based features like term frequencies, there’s no way of knowing a priori what all
the possible features could be. Squawkers can write anything they want in a squawk
on Pidg’n. Even an English-language dictionary wouldn’t contain all the slang terms
squawkers might use. Free-text input means that the universe of possible terms is
effectively infinite.

One solution is to define a hash range of the size of the total number of distinct features
you want to use in your model. Then you can apply a deterministic hashing function
to each input to produce a distinct value within the hash range, giving you a unique
identifier for each feature. For example, suppose hash("trees") returns 65381. That
value will be passed to the model-learning function as the identifier of the feature.
This might not seem much more useful than just using "trees" as the identifier, but
it is. When I discuss prediction services in chapter 7, I’ll talk about why you’ll want
to be able to identify features that the system has possibly never seen before.

Let’s take a look at how Spark ML’s DataFrame-focused API is intended to be used in
connecting operations like this. You won’t be able to take full advantage of Spark ML
until chapter 5, where you’ll start learning models, but it’s still useful for feature gen­
eration. Some of the preceding code can be reimplemented using a Pipeline from
Spark ML. That will allow you to set the tokenizer and the term frequency operations
as stages within a pipeline.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

76 CHAPTER 4 Generating features

Listing 4.6 Using Spark ML pipelines

Instantiates a new pipeline
Sets the two stages

val pipeline = new Pipeline()
 of this pipeline
.setStages(Array(tokenizer, hashingTF))

val pipelineHashed = pipeline.fit(squawksDF)
 Executes the pipeline

println(pipelineHashed.getClass)
 Prints the type of the result of
the pipeline, a PipelineModel

This Pipeline doesn’t result in a set of features, or even a DataFrame. Instead, it
returns a PipelineModel, which in this case won’t be able to do anything useful,
because you haven’t learned a model yet. We’ll revisit this code in chapter 5, where we
can go all the way from feature generation through model learning. The main thing
to note about this code at this point is that you can encode a pipeline as a clear
abstraction within your application. A large fraction of machine learning work
involves working with pipeline-like operations. With the Spark ML approach to pipe­
lines, you can be very explicit about how your pipeline is composed by setting the
stages of the pipeline in order.

4.3.1 Common feature transforms

Sometimes you don’t have library implementations of the feature transform that you
need. A given feature transform might have semantics that are specific to your appli­
cation, so you’ll often need to implement feature transforms yourself.

 Consider how you could build a feature to indicate that a given Pidg’n user was a
Super Squawker (user with more than a million followers). The feature-extraction
process will give you the raw data about the number of followers a given squawker has.
If you used the number of followers as a feature, that would be called a numerical fea­
ture. That number would be an accurate snapshot of the data from the follower
graph, but it wouldn’t necessarily be easy for all model-learning algorithms to use.
Because your intention is to express the idea of a Super Squawker, you could use a far
simpler representation: a Boolean value representing whether or not the squawker
has more than a million followers.

 The squirrel, a rather ordinary user, has very few followers. But the sloth is an ter­
rific Super Squawker. To produce meaningful features about the differences between
these two squawkers, you’ll follow the same process of going from raw data, to
numeric features, and then to Boolean features. This series of data transformations is
shown for the two users in figure 4.2.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

77 Transforming features

Specifies
that

these are
Boolean
features

Raw
numbers

of
followers

for the
squirrel
and the

sloth

Figure 4.2 Feature transformations

The following listing shows how to implement this approach to binarization to pro­
duce a Super Squawker feature.

Listing 4.7 Binarizing a numerical feature

Specifies that these Case class representing a numerical
are integer features feature where the value is an integer

case class IntFeature(name: String, value: Int) extends Feature {

type V = Int

} Case class representing a Boolean feature

case class BooleanFeature(name: String, value: Boolean) extends Feature {

type V = Boolean

Function that takes a numeric integer feature }

and threshold and returns a Boolean feature

def binarize(feature: IntFeature, threshold: Double): BooleanFeature = {

BooleanFeature("binarized-" + feature.name, feature.value > threshold)

}
Constant Adds the name of the

val SUPER_THRESHOLD = 1000000 defining the
cutoff for a

transform function to the
resulting feature name

val squirrelFollowers = 12
val slothFollowers = 23584166

squawker to
be super Numeric integer feature

 representing the number of followers
val squirrelFollowersFeature = IntFeature("followers", squirrelFollowers)

val slothFollowersFeature = IntFeature("followers", slothFollowers)

val squirrelIsSuper = binarize(squirrelFollowers, SUPER_THRESHOLD)

val slothIsSuper = binarize(slothFollowers, SUPER_THRESHOLD)

Boolean feature indicating the Boolean feature indicating
squirrel is not a Super Squawker the sloth is a Super Squawker

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

78 CHAPTER 4 Generating features

The binarize function is a good example of a reusable transform function. It also
ensures the resulting feature is somewhat self-describing by appending the name of
the transform function to the resulting feature. Ensuring that we can identify the
operations that were applied to produce a feature is an idea we’ll revisit in later chap­
ters. Finally, note that the transformation function binarize is a pure function.

 Using only pure functions in feature transforms is an important part of establish­
ing a coherent structure for feature-generation code. Separating feature extraction
and feature transformation within a code base can be difficult, and the boundaries
between the two can be hard to draw. Ideally, any I/O or side-effecting operations
should be contained in the feature-extraction phase of the pipeline, with all transfor­
mations’ functionality being implemented as pure functions. As you’ll see later, pure
transforms are simple to scale and easy to reuse across features and feature-extraction
contexts (model learning and predicting).

 There’s a huge range of commonly used transformation functions. Similar to bina­
rization, some approaches reduce continuous values to discrete labels. For example, a
feature designed to express the time of day when a squawk was posted might not use
the full timestamp. Instead, a more useful representation could be to transform all
times into a limited set of labels, as shown in table 4.2.

Table 4.2 Transforming times into time labels

Time Label

7:02 Morning

12:53 Midday

19:12 Night

The implementation of a transform to do this is trivial and is naturally a pure
function.

 There’s another variation on reducing continuous data to labels, called binning, in
which the source feature is reduced to some arbitrary label defined by the range of
values that it falls into. For example, you could take the number of squawks a given
user has made and reduce it to one of three labels indicating how active the squawker
is, as shown in table 4.3.

Table 4.3 Binning

Squawks Label Activity level

7

1,204

2,344,910

0_99

1000_99999

1000000_UP

Least active squawkers

Moderately active squawkers

Most active squawkers

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

79 Transforming features

Again, an implementation of such a transform would be trivial and naturally a pure
function. Transforms should be easy to write and should correspond closely to their
formulation in mathematical notation. When it comes to implementing transforms,
you should always abide by the KISS principle: Keep It Simple, Sparrow. Reactive
machine learning systems are hard enough to implement without implementing com­
plicated transforms. Usually, an overly long transform implementation is a smell that
someone has laid a rotten egg. In a few special cases, you may want to implement
something like a transformer with more involved semantics. We’ll consider such cir­
cumstances later in this chapter and later in the book.

4.3.2 Transforming concepts

Before we leave the topic of transformations, we need to consider one very common
and critical class of feature transformations: the ones that produce concepts. As men­
tioned in chapter 1, concepts are the things that a machine learning model is trying to
predict. Although some machine learning algorithms can learn models of continuous
concepts, such as the number of squawks a given user will write over the course of the
next month, many machine learning systems are built to perform classification. In
classification problems, the learning algorithm is trying to learn a discrete number of
class labels, not continuous values. In such systems, the concept has to be produced
from the raw data, during feature extraction, and then reduced to a class label via
transformation. Concept class labels aren’t exactly the same thing as features, but
often the difference is just a matter of how we use the piece of data. Typically, and ide­
ally, the same code that might binarize a feature will also binarize a concept.

 Building on the code in listing 4.7, in the next listing, take the Boolean feature
about Super Squawkers and produce a Boolean concept label that classifies squawkers
into super or not.

Listing 4.8 Creating concept labels from features

Defines labels as
subtypes of features

trait Label extends Feature

case class BooleanLabel(name: String, value: Boolean) extends Label {

type V = Boolean

Creates a case class for
}
 Boolean labels

def toBooleanLabel(feature: BooleanFeature) = {
 Defines a simple conversion
BooleanLabel(feature.name, feature.value)
 function from Boolean features

}
 to Boolean labels

val squirrelLabel = toBooleanLabel(squirrelIsSuper)
 Converts Super
val slothLabel = toBooleanLabel(slothIsSuper)
 Squawker feature

values into
Seq(squirrelLabel, slothLabel).foreach(println)
 concept labels

Prints label values
for inspection

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

80 CHAPTER 4 Generating features

In this code, you’ve defined concept labels as a special subtype of features. That’s not
how features and labels are generally discussed, but it can be a helpful convention for
code reuse in machine learning systems. Whether you intend to do so or not, any
given feature value could be used as a concept label if it represents the concept class
to be learned. The Label trait in listing 4.8 doesn’t change the underlying structure of
the data in a feature, but it does allow you to annotate when you’re using a feature as
a concept label. The rest of the code is quite simple, and you arrive at the same con­
clusion again: people just aren’t that interested in what squirrels have to say.

4.4 Selecting features
Again, you find yourself in the same situation: if you’ve done all the work so far, you
might now be finished. You could use the features you’ve already produced to learn a
model. But sometimes it’s worthwhile to perform additional processing on features
before beginning to learn a model. In the previous two phases of the feature-generation
process, you produced all the features you might want to use to learn a model, some­
times called a feature set. Now that you have that feature set, you could consider throwing
some of those features in the trash.

 The process of choosing from a feature set which features to use is known as feature
selection. In type-signature form, it can be expressed Set[Feature] => Set[Feature], a
function that takes a set of features and returns another set of features. The next listing
shows a stub implementation of a feature selector.

Listing 4.9 A feature selector

def select(featureSet: Set[Feature]): Set[Feature] = ???

Why would you ever want to discard features? Aren’t they useful and valuable? In the­
ory, a robust machine learning algorithm could take as input feature vectors contain­
ing arbitrary numbers of features and learn a model of the given concept. In reality,
providing a machine learning algorithm with too many features is just going to make
it take longer to learn a model and potentially degrade that model’s performance.
You can find yourself needing to choose among features quite easily. By varying the
parameters used in the transformation process, you could create an infinite number
of features with a very small amount of code.

 Using a modern distributed data-processing framework like Spark makes handling
arbitrarily sized datasets easy. It’s definitely to your benefit to consider a huge range of
features during the feature extraction and transformation phases of your pipeline.
And once you’ve produced all the features in your feature set, you can use some of the
facilities in Spark to cut that feature set down to just those features that your model-
learning algorithm will use to learn the model. There are implementations of feature-
selection functionality in other machine learning libraries; Spark’s MLlib is one of
many options and certainly not the oldest one. For some cases, the feature-selection
functionality provided by MLlib might not be sufficient, but the principles of feature

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

81 Selecting features

selection are the same whether you use a library implementation or something more
bespoke. If you end up writing your own version of feature selection, it will still be con­
ceptually similar to MLlib’s implementations.

 Using the Spark functionality will again require you to leave behind your feature-case
classes and the guarantees of static typing to use the machine learning functionality
implemented around the high-level DataFrame API. To begin, you’ll need to construct
a DataFrame of training instances. These instances will consist of three parts: an arbitrary
identifier, a feature vector, and a concept label. The following listing shows how to build
up this collection of instances. Instead of using real features, you’ll use some synthetic
data, which you can imagine being about various properties of Squawkers.

Listing 4.10 A DataFrame of instances

Defines a collection of instances
val instances = Seq(

(123, Vectors.dense(0.2, 0.3, 16.2, 1.1), 0.0),

(456, Vectors.dense(0.1, 1.3, 11.3, 1.2), 1.0),

Names for (789, Vectors.dense(1.2, 0.8, 14.5, 0.5), 0.0)

features)

and label

Hardcodes some
synthetic feature
and concept label
data

columns val featuresName = "features" Creates a DataFrame

Sets the name of
val labelName = "isSuper" from the instances

collection
each column in val instancesDF = session.createDataFrame(instances)

the DataFrame .toDF("id", featuresName, labelName)

Once you have a DataFrame of instances, you can take advantage of the feature-selection
functionality built into MLlib. You can apply a chi-squared statistical test to rank the
impact of each feature on the concept label. This is sometimes called feature importance.
After the features are ranked by this criterion, the less impactful features can be dis­
carded prior to model learning. The next listing shows how you can select the two most
important features from your feature vectors.

Listing 4.11 Chi-squared-based feature selection

Creates a new feature selector Sets the number

Sets the
 of features to

column where
val selector = new ChiSqSelector()

retain to 2 .setNumTopFeatures(2)

features are .setFeaturesCol(featuresName)

.setLabelCol(labelName)
 Sets the column where

.setOutputCol("selectedFeatures")
 concept labels are
to place results,
Sets the column

val selectedFeatures = selector.fit(instancesDF)
 Fits a chi-squared the selected
.transform(instancesDF)
 model to the data features

selectedFeatures.show()
 Selects the most important
features and returns a new Prints the resulting
DataFrame DataFrame for inspection

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

82 CHAPTER 4 Generating features

As you can see, having standard feature-selection functionality available at a library
call makes feature selection pretty convenient. If you had to implement chi-squared­
based feature selection yourself, you’d find that the implementation was a lot longer
than the code you just wrote.

4.5 Structuring feature code
In this chapter, you’ve written example implementations of all the most common
components of a feature-generation pipeline. As you’ve seen, some of these compo­
nents are simple and easy to build, and you could probably see yourself building quite
a few of them without any difficulty. If you’ve Kept It Simple, Sparrow, you shouldn’t
be intimidated by the prospect of producing lots of feature extraction, transforma­
tion, and selection functionality in your system. Or should you?

 Within a machine learning system, feature-generation code can often wind up being
the largest part of the codebase by some measures. A typical Scala implementation
might have a class for each extraction and transformation operation, and that can
quickly become unwieldy as the number of classes grows. To prevent feature-generation
code from becoming a confusing grab bag of various arbitrary operations, you need to
start putting more of your understanding of the semantics of feature generation into the
structure of your implementation of feature-generation functionality. The next section
introduces one such strategy for structuring your feature-generation code.

4.5.1 Feature generators

At the most basic level, you need to define an implementation of what is a unit of
feature-generation functionality. Let’s call this a feature generator. A feature generator
can encompass either extraction or both extraction and transformation operations.
The implementation of the extraction and transformation operations may not be very
different from what you’ve seen before, but these operations will all be encapsulated
in an independently executable unit of code that produces a feature. Your feature
generators will be things that can take raw data and produce features that you want to
use to learn a model.

 Let’s implement your feature generators using a trait. In Scala, traits are used to
define behaviors in the form of a type. A typical trait will include the signatures and
possibly implementations of methods that define the common behavior to the trait.
Scala traits are very similar to interfaces in Java, C++, and C# but are much easier and
more flexible to use than interfaces in any of those languages.

 For the purpose of this section, let’s say that your raw data, from the perspective of
your feature-generation system, consists of squawks. Feature generation will be the
process of going from squawks to features. The corresponding feature-generator trait
can be defined.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

83 Structuring feature code

Listing 4.12 A feature-generator trait

trait Generator {

def generate(squawk: Squawk): Feature

}

The Generator trait defines a feature generator to be an object that implements a
method, generate, that takes a squawk and returns a feature. This is a concrete way of
defining the behavior of feature generation. A given implementation of feature gener­
ation might need all sorts of other functionality, but this is the part that will be com­
mon across all implementations of feature generation. Let’s look at one
implementation of this trait.

 Your team is interested in understanding how squawk length affects squawk popu­
larity. There’s an intuition that even 140 characters is too much to read for some
squawkers, such as hummingbirds. They just get bored too quickly. Conversely, vul­
tures have been known to stare at the same squawk for hours on end, so long posts are
rarely a problem for them. For you to be able to build a recommendation model that
will surface relevant content to these disparate audiences, you’ll need to encode some
of the data around squawk length as a feature. This can easily be implemented using
the Generator trait.

 As discussed before, the idea of length can be captured using the technique of bin­
ning to reduce your numeric data to categories. There’s not much difference between
a 72-character squawk and a 73-character squawk; you’re just trying to capture the
approximate size of a squawk. You’ll divide squawks into three categories based on
length: short, moderate, and long. You’ll define your thresholds between the catego­
ries to be at the thirds of the total possible length. Implemented according to your
Generator trait, you get something like the following listing.

Listing 4.13 A categorical feature generator

Defines a generator as an object
that extends the Generator trait

object SquawkLengthCategory extends Generator {

val ModerateSquawkThreshold = 47

val LongSquawkThreshold = 94

private def extract(squawk: Squawk): IntFeature = {

IntFeature("squawkLength", squawk.text.length)

}

Constant thresholds
to compare against

Extracting: uses the length
of the squawk to instantiate
an IntFeature

private def transform(lengthFeature: IntFeature): IntFeature = {

Transforming: takes the
IntFeature of length, returns

the IntFeature of category

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

84 CHAPTER 4 Generating features

Uses a pattern-matching structure
to determine which category the Returns Int for a category
squawk length falls into (for ease of use in model

learning)
val squawkLengthCategory = lengthFeature match {

case IntFeature(_, length) if length < ModerateSquawkThreshold => 1

case IntFeature(_, length) if length < LongSquawkThreshold => 2

case _ => 3

Returns a category of 3, a long }

squawk, in all other cases

IntFeature("squawkLengthCategory", squawkLengthCategory)
 Returns a
}
 category as a

new IntFeature
def generate(squawk: Squawk): IntFeature = {

transform(extract(squawk))
 Generating: extracts a feature from
}
 the squawk and then transforms it

}
 to a categorical IntFeature

This generator is defined in terms of a singleton object. You don’t need to use instances
of a class, because all the generation operations are themselves pure functions.

 Internal to your implementation of the feature generator, you still used a concept
of extraction and transformation, even though you now only expose a generate
method as the public API to this object. Though that may not always seem necessary, it
can be helpful to define all extraction and transformation operations in a consistent
manner using feature-based type signatures. This can make it easier to compose and
reuse code.

 Reuse of code is a huge issue in feature-generation functionality. In a given system,
many feature generators will be performing operations very similar to each other.

 A given transform might be used dozens of times if it’s factored out and reusable.
If you don’t think about such concerns up front, you may find that your team has
reimplemented some transform, like averaging five different times in subtly different
ways across your feature-generation codebase. That can lead to tricky bugs and
bloated code.

 You don’t want your feature-generation code to be messier than a tree full of mar­
mosets! Let’s take a closer look at the structure of your generator functionality. The
transform function in listing 4.13 was doing something you might wind up doing a lot
in your codebase: categorizing according to some threshold. Let’s look at it again.

Listing 4.14 Categorization using pattern matching

private def transform(lengthFeature: IntFeature): IntFeature = {

val squawkLengthCategory = lengthFeature match {

case IntFeature(_, length) if length < ModerateSquawkThreshold => 1

case IntFeature(_, length) if length < LongSquawkThreshold => 2

case _ => 3

}

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

85 Structuring feature code

You definitely shouldn’t be implementing a comparison against thresholds more than
once, so let’s find a way to pull that code out and make it reusable. It’s also weird that
you had to define the class label integers yourself. Ideally, you’d just have to worry
about your thresholds and nothing else.

 Let’s pull out the common parts of this code for reuse and make it more general in
the process. The code in the next listing shows one way of doing this. It’s a little dense,
so we’ll walk through it in detail.

Listing 4.15 Generalized categorization

Returns an
anonymous

categorization
function that takes
Int as an argument

Singleton object to
hold a pure function

Only takes a list of
thresholds as input

object CategoricalTransforms {

def categorize(thresholds: List[Int]): (Int) => Int = {

(dataPoint: Int) => {

thresholds.sorted
 Zips up a list of thresholds
and corresponding indices .zipWithIndex

.find {
 (used as category labels)

Ensures that a list of thresholds
is sorted, because categorization
relies on it

case (threshold, i) => dataPoint < threshold

Finds an entry that satisfies
 }.getOrElse((None, -1))

the case clause predicate ._2

}

Takes a second }

element out of a }

tuple, which is the
category label (in

integer form)

Gets a matching
value out of an

option or returns a
sentinel value of –1
when matching fails

Defines a
passing case

as being when
a data point is

less than the
threshold

This solution uses a few techniques that you may not have seen before. For one, this
function’s return type is (Int) => Int, a function that takes an integer and returns an
integer. In this case, the function returned will categorize a given integer according to
the thresholds previously provided.

 The thresholds and categories are also zipped together so they can be operated on
as a pair of related values (in the form of a tuple). Zipping, or convolution as it’s some­
times called, is a powerful technique that’s commonly used in Scala and other lan­
guages in the functional programming tradition. The name zip comes from the
similarity to the action of a zipper. In this case, you’re using a special sort of zip opera­
tion that conveniently provides you indices corresponding to the number the ele­
ments in the collection being zipped over. This approach to producing indices is far
more elegant than C-style iteration using a mutable counter, which you may have seen
in other languages, such as Java and C++.

After zipping over the values, you use another new function, find, with which you
can define the element of a collection you’re looking for in terms of a predicate. Predi­
cates are Boolean functions that are either true or false, depending on their values.
They’re commonly used in mathematics, logic, and various forms of programming

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

86 CHAPTER 4 Generating features

such as logic and functional programming. In this usage, the predicate gives you a
clear syntax for defining what constitutes falling into a category bucket.

 This code also deals with uncertainty in external usage in ways that you haven’t
before. Specifically, it sorts the categories, because they might not be provided in a
sorted list, but your algorithm relies on operating on them in order. Also, the find
function returns an Option because the find operation may or may not find a match­
ing value. In this case, you use the value –1 to indicate an unusable category, but how
a categorization failure should be handled depends a lot on how the functionality will
be integrated in the client generator code. When you factor out common feature
transforms to shared functions like this, you should take into account the possibilities
of future broad usage of the transform. By implementing it with these extra guaran­
tees, you reduce the chances that someone will use your categorization functionality
in the future and not get the results they wanted.

 The code in listing 4.15 might be a bit harder to understand than the original
implementation in listings 4.13 and 4.14. Your refactored version does more work to
give you a more general and robust version of categorization. You may not expect
every implementer of a feature generator to go through this much work for a simple
transform, but because you’ve factored out this functionality to shared, reusable code,
they don’t have to. Any feature-generation functionality needing to categorize values
according to a list of thresholds can now call this function. The transform from list­
ings 4.13 and 4.14 can now be replaced with the very simple version in listing 4.16. You
still have a relatively complex implementation of categorization in listing 4.15, but
now, that complex implementation has been factored out to a separate component,
which is more general and reusable. As you can see in the next listing, the callers of
that functionality, like this transform function, can be quite simple.

Listing 4.16 Refactored categorization transform

import CategoricalTransforms.categorize

private def transform(lengthFeature: IntFeature): IntFeature = {

val squawkLengthCategory = categorize(Thresholds)

➥ (lengthFeature.value)
IntFeature("squawkLengthCategory", squawkLengthCategory)

}

Creates the categorization function and
applies it to the value for categorization

Once you have dozens of categorical features, this sort of design strategy will make
your life a lot easier. Categorization is now simple to plug in and easy to refactor
should you decide to change how you want it implemented.

4.5.2 Feature set composition

You’ve seen how you can choose among the features you produced, but there’s actu­
ally a zeroth step that’s necessary in some machine learning systems. Before you even

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

87 Structuring feature code

begin the process of feature generation, you may want to choose which feature gener­
ators should be executed. Different models need different features provided to them.
Moreover, sometimes you need to apply specific overrides to your normal usage of
data because of business rules, privacy concerns, or legal reasons.

In the case of Pidg’n, you have some unique challenges due to your global scale. Dif­
ferent regions have different regulatory regimes governing the use of their citizens’
data. Recently, a new government has come to power in the rainforests of Panama.

 The new minister of commerce, an implacable poison-dart frog, has announced
new regulation restricting the use of social-media user data for non-rainforest pur­
poses. After consultation with your lawyers, you decide that the new law means that
features using data from rainforest users should only be used in the context of models
to be applied on recommendations for residents of the rainforest.

 Let’s look at what impact this change might have on your codebase. To make things
a bit more concise, let’s define a simple trait to allow you to make simplified generators
quickly. This will be a helper to allow you to skip over generator-implementation details
that aren’t relevant to feature-set composition. The next listing defines a stub feature
generator that returns random integers.

Listing 4.17 A stub feature-generator trait

Implementation of the generate method
for implementers of trait to use trait StubGenerator extends Generator {

def generate(squawk: Squawk) = {

IntFeature("dummyFeature", Random.nextInt())
 Returns random integers

}

}

Using this simple helper trait, you can now explore some of the possible impacts that
the rainforest data-usage rules might have on your feature-generation code. Let’s say the
code responsible for assembling your feature generators looks like the following listing.

Listing 4.18 Initial feature set composition

User-data
feature

generator
that must

be changed

Normal feature generator about the
language the squawk was written in Normal feature

generator about
whether the squawk
contains an image

object SquawkLanguage extends StubGenerator {}

object HasImage extends StubGenerator {}

object UserData extends StubGenerator {}

val featureGenerators = Set(SquawkLanguage, HasImage, UserData)

Set of all the feature generators
to execute to produce data

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

88 CHAPTER 4 Generating features

Figure 4.3 Multiple
feature-generator sets

Now you need to restructure this code to have one feature set produced for your normal,
global models and one feature set for your rainforest models, as shown in figure 4.3. The
following listing shows an approach to defining these two different sets of feature
generators.

Listing 4.19 Multiple feature sets

User-data feature generator that will
only access non-rainforest data User-data feature

object GlobalUserData extends StubGenerator {} generator that
will only access

object RainforestUserData extends StubGenerator {} rainforest data

val globalFeatureGenerators = Set(SquawkLanguage, HasImage,

➥ GlobalUserData)

val rainforestFeatureGenerators = Set(SquawkLanguage, HasImage,

➥ RainforestUserData)
Set of features available to Set of features available to be used on rainforest models be used on global models

You could stop with this implementation if you chose. As long as the rainforest feature
generators are being used for rainforest models, you’ve done what the frog asked. But
there are reasons to keep working on this problem. Machine learning systems are
incredibly complicated to implement. Common feature-generation functionality can
get reused in all sorts of places. The implementation in listing 4.19 is correct, but with
Pidg’n’s rapid growth, new engineers unfamiliar with this data-usage issue might
refactor this code in such a way as to misuse rainforest feature data.

 Let’s see if you can make misusing this data even harder by defining a trait that
allows you to mark code as having rainforest user data in it.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

89 Structuring feature code

Listing 4.20 Ensuring correct usage of rainforest data

Says all instances
of this trait must

execute the
following code

Prints a message
explaining disallowed
usage in the event of

not being in the
rainforest context

Retrieves the
rainforest

environment
variable

Defines a trait for the
usage of rainforest data

trait

➥ RainforestData {

self =>

require(rainforestContext(),

Requires that rainforest
environment validation
passes

s"${self.getClass} uses rainforest data outside of a

➥ rainforest context.") Validation method ensuring
that the code is being called
in the rainforest context private def rainforestContext() = {

val environment = Option(System.getenv("RAINFOREST"))

environment.isDefined && environment.get.toBoolean

}

}
 Checks that the value

exists and is true
object SafeRainforestUserData extends StubGenerator

Defines a feature ➥ with RainforestData {}

generator for
the rainforest val safeRainforestFeatureGenerators = Set(SquawkLanguage,

user data ➥ HasImage, SafeRainforestUserData)
Assembles feature generators
to use for the rainforest data

This code will throw an exception unless you’ve explicitly defined an environment
variable RAINFOREST and set it to TRUE. If you want to see this switch in action, you can
export that variable in a terminal window, if you’re using macOS or Linux.

Listing 4.21 Exporting an environment variable

export RAINFOREST=TRUE

Then you can execute the code from listing 4.20 again, in the same terminal window,
without getting exceptions. That’s similar to how you can use this in your production
feature-generation jobs. Using any of several different mechanisms in your
configuration, build, or job-orchestration functionality, you can ensure that this variable
is set properly for rainforest feature-generation jobs and not set for global feature-
generation jobs. A new engineer creating a new feature-generation job for some other
purpose would have no reason to set this variable. If that engineer misused the rainforest
feature generator, that misuse would immediately manifest the first time the job was
executed in any form.

Configuration
Using environment variables is one of many different methods to configure compo­
nents of your machine learning system. It has the advantage of being simple to get
started with and broadly supported.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

90	 CHAPTER 4 Generating features

(continued)
As your machine learning system grows in complexity, you’ll want to ensure that you
have a well-thought-out plan for dealing with configuration. After all, properties of your
machine learning system set as configurations can determine a lot about whether it
remains responsive in the face of errors or changes in load. Part 3 of this book
addresses most of these issues, where we consider the challenges of operating a
machine learning system. The good news is that you’ll find a lot of versatile tools from
the Scala and big data ecosystems that will help you tame some of the complexity of
dealing with configurations.

4.6 Applications
You’re probably not an arboreal animal, and you may not even operate a microblog­
ging service. But if you’re doing machine learning, you’re probably building features
at some point.

 In advertising systems, you can build features that capture users’ past interactions
with various types of products. If a user spends all afternoon looking at different lap­
tops, you probably want to show them an ad for a laptop or maybe a case, but an ad for
a sweater wouldn’t make a lot of sense. That feature about which types of products the
user had been looking at would help the machine-learned model figure that out and
make the right recommendation.

 At a political polling organization, you could build features pertaining to the
demographics of different voters. Things like the average income, education, and
home property value could be encoded into features about voting districts. Then
those features could be used to learn models about which party a given voting district
is likely to vote for.

 The applications of features are as endless as the applications of machine learning
as a technique. They allow you to encode human intelligence about the problem in a
way that a model-learning algorithm can use that intelligence. Machine learning sys­
tems are not black-box systems that perform magic tricks. You, the system developer,
are the one instructing it how to solve the problem, and features are a big part of how
you encode that information.

4.7 Reactivities
This chapter covered a lot, but if you’re still interested in learning more about fea­
tures, there’s definitely more to explore. Here are some reactivities to take you even
deeper into the world of features:

 Implement two or more feature extractors of your own. To do this, you’ll probably want
to choose some sort of base dataset to work with. If you don’t have anything mean­
ingful at hand, you can often use text files and then extract features from the text.
Spark has some basic text-processing functionality built in, which you may find
helpful. Alternatively, random numbers organized into tabular data can work just

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

Summary	 91

as well for an activity like this. If you do want to use real data, the UCI Machine
Learning Repository at https://archive.ics.uci.edu/ml/index.php is one of the
best sources of datasets. Whatever data you use, the point is to decide for yourself
what might be some interesting transformations to apply to this dataset.

 Implement feature-selection functionality. Using the feature extractors you created in
the previous reactivity (or some other extractors), define some basis for includ­
ing or excluding a given feature within the final output. This could include cri­
teria like the following:
–	 Proportion of nonzero values.
–	 Number of distinct values.
–	 Externally defined business rule/policy. The goal is to ensure that the

instances produced by your feature-extraction functionality only include the
features that you define as valid.

 Evaluate the reactivity of an existing feature-extraction pipeline. If you did the previous
two exercises, you can evaluate your own implementation. Alternatively, you can
examine examples from open source projects like Spark. As you examine the
feature-extraction pipeline, ask yourself questions like the following:
–	 Can I find the feature-transform function? Is it implemented as a pure func­

tion, or does it have some sort of side effects? Can I easily reuse this trans­
form in other feature extractors?

–	 How will bad inputs be handled? Will errors be returned to the user?
–	 How will the pipeline behave when it has to handle a thousand records? A

million? A billion?
–	 What can I discern about the feature extractors from the persisted output?

Can I determine when the features were extracted? With which feature
extractors?

–	 How could I use these feature extractors to make a prediction on a new
instance of unseen data?

Summary
 Like chicks cracking through eggs and entering the world of real birds, features

are our entry points into the process of building intelligence into a machine
learning system. Although they haven’t always gotten the attention they
deserve, features are a large and crucial part of a machine learning system.

 It’s easy to begin writing feature-generation functionality. But that doesn’t mean
your feature-generation pipeline should be implemented with anything less than
the same rigor you’d apply to your real-time predictive application. Feature-
generation pipelines can and should be awesome applications that live up to all
the reactive traits.

 Feature extraction is the process of producing semantically meaningful, derived
representations of raw data.

www.itbook.store/books/9781617293337

https://archive.ics.uci.edu/ml/index.php
https://itbook.store/books/9781617293337

92	 CHAPTER 4 Generating features

 Features can be transformed in various ways to make them easier to learn from.
 You can select among all the features you have to make the model-learning pro­

cess easier and more successful.
 Feature extractors and transformers should be well structured for composition

and reuse.
 Feature-generation pipelines should be assembled into a series of immutable

transformations (pure functions) that can easily be serialized and reused.
 Features that rely on external resources should be built with resilience in mind.

We’re not remotely done with features. In chapter 5, you’ll use features in the learn­
ing of models. In chapter 6, you’ll generate features when you make predictions about
unseen data. Beyond that, in part 3 of the book, we’ll get into more-advanced aspects
of generating and using features.

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

MACHINE LEARNING/SOFTWARE ENGINEERING

Machine Learning Systems

Jeff Smith

I
f you’re building machine learning models to be used on a
small scale, you don’t need this book. But if you’re a de­
veloper building a production-grade ML application that

needs quick response times, reliability, and good user experi­
ence, this is the book for you. It collects principles and prac­
tices of machine learning systems that are dramatically easier to
run and maintain, and that are reliably better for users.

Machine Learning Systems: Designs that scale teaches you to
design and implement production-ready ML systems. You’ll
learn the principles of reactive design as you build pipelines
with Spark, create highly scalable services with Akka, and use
powerful machine learning libraries like MLib on massive
datasets. The examples use the Scala language, but the same
ideas and tools work in Java, as well.

What’s Inside
● Working with Spark, MLlib, and Akka
● Reactive design patterns
● Monitoring and maintaining a large-scale system
● Futures, actors, and supervision

Readers need intermediate skills in Java or Scala. No prior
machine learning experience is assumed.

Jeff Smith builds large-scale machine learning systems using
Scala, Akka, and Spark.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/machine-learning-systems

See first page

“This book doesn’t just cover

tools; it covers the whole

job of building an entire

machine learning system.
—From the Foreword by ”

Sean Owen

Director of Data Science, Cloudera

“A helpful guide for data
engineers building resilient
machine learning systems.

—Jonathan Woodard, AT&T ”

“A fantastic entry to the

world of robust machine

learning systems that will

 scale with your business.”
 —Tommy O’Dell

Virtual Gaming Worlds

“You cannot afford to ignore

this book!”
 —José San Leandro, OSOCO

M A N N I N G $44.99 / Can $59.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617293337

https://itbook.store/books/9781617293337

