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Generating features 

This chapter covers 
 Extracting features from raw data 

 Transforming features to make them more useful 

 Selecting among the features you’ve created 

 How to organize feature-generation code 

This chapter is the next step on our journey through the components, or phases, of 
a machine learning system, shown in figure 4.1. The chapter focuses on turning 
raw data into useful representations called features. The process of building systems 
that can generate features from 
data, sometimes called feature engi­
neering, can be deceptively com­
plex. Often, people begin with an 
intuitive understanding of what 
they want the features used in a sys­
tem to be, with few plans for how 
those features will be produced. 
Without a solid plan, the process of 
feature engineering can easily get 
off track, as you saw in the Sniffable 
example from chapter 1. Figure 4.1 Phases of machine learning 
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70 CHAPTER 4 Generating features

 In this chapter, I’ll guide you through the three main types of operations in a fea­
ture pipeline: extraction, transformation, and selection. Not all systems do all the 
types of operations shown in this chapter, but all feature engineering techniques can 
be thought of as falling into one of these three buckets. I’ll use type signatures to 
assign techniques to groups and give our exploration some structure, as shown in 
table 4.1. 

Table 4.1 Phases of feature generation 

Phase Input Output 

Extract RawData Feature 

Transform Feature Feature 

Select Set[Feature] Set[Feature] 

Real-world feature pipelines can have very complex structures. You’ll use these 
groupings to help you understand how you can build a feature-generation pipeline in 
the best way possible. As we explore these three types of feature-processing operations, 
I’ll introduce common techniques and design patterns that will keep your machine 
learning system from becoming a tangled, unmaintainable mess. Finally, we’ll consider 
some general properties of data pipelines when discussing the next component of 
machine learning systems discussed in chapter 5, the model-learning pipeline. 

Type signatures 
You may not be familiar with the use of types to guide how you think about and imple­
ment programs. This technique is common in statically typed languages like Scala and 
Java. In Scala, functions are defined in terms of the inputs they take, the outputs they 
return, and the types of both. This is called a type signature. In this book, I mostly use 
a fairly simple form of signature notation that looks like this: Grass => Milk. You can 
read this as, “A function from an input of type Grass to an output of type Milk.” This 
would be the type signature of some function that behaves much like a cow. 

To cover  this enormous scope of functionality, we need to rise  above it all to gain  
some perspective on what features are all about. To that end, we’ll join the team of 
Pidg’n, a microblogging social network for tree-dwelling animals, not too different 
from Twitter.

 We’ll look at how we can take the chaos of a short-form, text-based social network 
and build meaningful representations of that activity. Much like the forest itself, the 
world of features is diverse and rich, full of hidden complexity. We can, however, 
begin to peer through the leaves and capture insights about the lives of tree-dwelling 
animals using the power of reactive machine learning. 
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71 Extracting features 

4.1 Spark ML 
Before we get started building features, I want to introduce you to more Spark func­
tionality. The spark.ml package, sometimes called Spark ML, defines some high-level 
APIs that can be used to create machine learning pipelines. This functionality can 
reduce the amount of machine learning–specific code that you need to implement 
yourself, but using it does involve a change in how you structure your data.

 The Spark ML API uses mostly the same nomenclature for feature extraction, 
transformation, and selection that I use in this chapter, though there are subtle 
differences. If and when you read the Spark ML documentation, you may see something 
called a transformation operation, which I call an extraction operation. These are generally 
minor, unimportant differences that you can ignore. Different technologies name and 
structure this functionality differently, and you’ll see all sorts of different naming 
conventions in the machine learning literature. The type signature–based framework 
for dividing feature-generation functionality that I use in this chapter is just a tool to 
help you implement and organize your code. Once you’ve mastered the feature-
generation concepts in this chapter, you’ll be better equipped to see through 
differences in nomenclature to the similarities in functionality.

 Much of the machine learning functionality in Spark is designed to be used with 
DataFrames, instead of the RDDs that you’ve seen up until this point. DataFrames are 
simply a higher-level API on top of RDDs that give you a richer set of operations. You 
can think of DataFrames as something like tables in relational databases. They have 
different columns, which you can define and then query. Much of the recent progress 
in performance and functionality within Spark has been focused on DataFrames, so to 
get access to the full power of things like MLlib’s machine learning capabilities, you’ll 
need to use DataFrames for some operations. The good news is that they’re very simi­
lar to the RDDs you’ve been working with and tabular data structures you may have 
used in other languages, such as pandas DataFrames in Python or R’s data frames. 

4.2 Extracting features 
Now that I’ve introduced some of the tools, let’s
 
begin to solve the problem. We’ll start our
 
exploration of the feature engineering process
 
at the very beginning, with raw data. In this
 
chapter, you’ll take on the role of Lemmy, an
 
engineer on the Pidg’n data team.
 

Your team knows it wants to build all sorts of 
predictive models about user activity. You’re just 
getting started, though, and all you have are the basics of application data: squawks (text 
posts of 140 characters or less), user profiles, and the follower relationships. This is a rich 
dataset, for sure, but you’ve never put it to much analytical use. To start with, you’ve 
decided to focus on the problem of predicting which new users will become Super 
Squawkers, users with more than a million followers. 
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72 CHAPTER 4 Generating features

 To start this project, you’ll extract some features to use in the rest of your machine 
learning system. I define the process of feature extraction as taking in raw data of 
some sort and returning a feature. Using Scala type signatures, feature extraction can 
be represented like this: RawData => Feature. That type signature can be read as, “A 
function that takes raw data and returns a feature.” If you define a function that satis­
fies that type signature, it might look something like the stub in the following listing. 

Listing 4.1 Extracting features 

def extract(rawData: RawData): Feature = ???
 

Put differently, any output produced from raw data is a potential feature, regardless of 
whether it ever gets used to learn a model.

 The Pidg’n data team has been collecting data since day one of the app as part of 
keeping the network running. You have the complete, unaltered record of all the 
actions ever taken by Pidg’n users, much like the data model discussed in chapter 3. 
Your team has built a few aggregates of that data for basic analytical purposes. Now 
you want to take that system to the next level by generating semantically meaningful 
derived representations of that raw data—features. Once you have features of any 
kind, you can begin learning models to predict user behavior. In particular, you’re 
interested in seeing if you can understand what makes particular squawks and squawk­
ers more popular than others. If a squawker has the potential to become very popular, 
you want to provide them with a more streamlined experience, free of advertisements, 
to encourage them to squawk more.

 Let’s begin by extracting features from the raw data of the text of squawks. You can 
start by defining a simple case class and extracting a single feature for a few squawks. 
Listing 4.2 shows how to extract a feature consisting of the words in the text of a given 
squawk. This implementation will use Spark’s Tokenizer to break sentences into 
words. Tokenization is just one of several common text-processing utilities that come 
built into Spark that make writing code like this fast and easy. For advanced use cases, 
you may want to use a more sophisticated text-parsing library, but having common 
utilities easily available can be very helpful. 

Listing 4.2 Extracting word features from squawks 

Instantiates 
example 

instances of 
squawks 

Case class to hold a basic 
data model of a squawk 

case class Squawk(id: Int, text: String)
 
Creates a DataFrame 
from a sequence 

val squawks = session.createDataFrame(Seq( 
Squawk(123, "Clouds sure make it hard to look 

➥ on the bright side of things."), 
Names Squawk(124, "Who really cares who gets the worm?
 
columns to

➥ I'm fine with sleeping in."), place values in Squawk(125, "Why don't french fries grow on trees?")))
 
a DataFrame 

➥ .toDF("squawkId", "squawk") 
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73 Extracting features 

val tokenizer = new Tokenizer().setInputCol("squawk")
 

➥ .setOutputCol("words") 
Sets up a Tokenizer to 

Executes the 
Tokenizer and 
populates the 

val tokenized = tokenizer.transform(squawks) 

tokenized.select("words", "squawkId").show() 

split the text of squawks 
into words and put them 
in an output column 

words column 
in a DataFrame Prints the results for inspection 

The operations in listing 4.2 give you a DataFrame that contains a column called 
words, which has all the words in the text of the squawk. You could call the values in 
the words column a feature. These values could be used to learn a model. But let’s 
make the semantics of the pipeline clearer using the Scala type system.

 Using the code in listing 4.3, you can define what a feature is and what specific sort 
of feature you’ve produced. Then, you can take the words column from that Data-
Frame and use it to instantiate instances of those feature classes. It’s the same words 
that the Tokenizer produced for you, but now you have richer representations that 
you can use to help build up a feature-generation pipeline. 

Listing 4.3 Extracting word features from squawks 

Type 
parameter to 
hold the type 

of values 
generated by 

feature 

Defines a case 
class for features 

consisting of 
word sequences 

Maps over rows 
and applies a 

function to each 

Gets extracted 
words out of a 

row 

Defines a base trait for 
all types of features 

Requires feature trait FeatureType {
 types to have names 
val name: String
 
type V
 

Defines a base trait for all }
 
features as an extension 
of feature types trait Feature extends FeatureType {
 

val value: V
 
}
 Requires that features have values of 

the type specified in the feature type 
case class WordSequenceFeature(name: String, value: Seq[String])
 

➥ extends Feature { 
type V = Seq[String] Specifies that the type of features being 

}
 generated is a sequence of strings (words) 

val wordsFeatures = tokenized.select("words")
 Selects a words column 
.map(row =>
 from the DataFrame 
WordSequenceFeature("words",
 

row.getSeq[String](0)))
 Creates an instance of 
WordSequenceFeature named words 

wordsFeatures.show()
 

Prints features for inspection 

With this small bit of extra code, you can define your features in a way that’s more 
explicit and less tied to the specifics of the raw data in the original DataFrame. The 
resulting value is an RDD of WordSequenceFeature. You’ll see later how you can 
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74 CHAPTER 4 Generating features 

continue to use this Feature trait with specific case classes defining the different types 
of features in your pipeline.

 Also note that, when operating over the DataFrame, you can use a pure, anony­
mous, higher-order function to create instances of your features. The concepts of 
purity, anonymous functions, and higher-order functions may have sounded quite 
abstract when I introduced them in chapter 1. But now that you’ve seen them put to 
use in several places, I hope it’s clear that they can be very simple to write. Now that 
you’ve gotten some Scala and Spark programming under your belt, I hope you’re 
finding it straightforward to think of data transformations like feature extraction in 
terms of pure functions with no side effects. 

You and the rest of the Pidg’n data team could now use these features in the next 
phase of the machine learning pipeline—model learning—but they probably 
wouldn’t be good enough to learn a model of Super Squawkers. These initial word 
features are just the beginning. You can encode far more of your understanding of 
what makes a squawker super into the features themselves.

 To be clear, there are sophisticated model-learning algorithms, such as neural net­
works, that require very little feature engineering on the data that they consume. You 
could use the values you’ve just produced as features in a model-learning process. But 
many machine learning systems will require you to do far more with your features 
before using them in model learning if you want acceptable predictive performance. 
Different model-learning algorithms have different strengths and weaknesses, as we’ll 
explore in chapter 5, but all of them will benefit from having base features trans­
formed in ways that make the process of model learning simpler. We need to move on 
to see how to make features out of other features. 

4.3 Transforming features 
Now that you’ve extracted some basic features, let’s figure out how to make them use­
ful. This process of taking a feature and producing a new feature from it is called fea­
ture transformation. In this section, I’ll introduce you to some common transform 
functions and discuss how they can be structured. Then I’ll show you a very important 
class of feature transformations: transforming features into concept labels.

 What is feature transformation? In the form of a type signature, feature transfor­
mation can be expressed as Feature => Feature, a function that takes a feature and 
returns a feature. A stub implementation of a transformation function (sometimes 
called a transform) is shown in the next listing. 

Listing 4.4 Transforming features 

def transform(feature: Feature): Feature = ???
 

In the case of the Pidg’n data team, you’ve decided to build on your previous feature-
engineering work by creating a feature consisting of the frequencies of given words in 
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75 Transforming features 

a squawk. This quantity is sometimes called a term frequency. Spark has built-in function­
ality that makes calculating this value easy. 

Listing 4.5 Transforming words to term frequencies 

Instantiates an instance of a class 
Defines

 an output
 to put term 

frequencies in 

val hashingTF = new HashingTF() 
.setInputCol("words") 
.setOutputCol("termFrequencies") 

to calculate term frequencies Defines an input column 
to read from when 
consuming DataFrames 

Prints term 
frequencies 

val tfs = hashingTF.transform(tokenized) Executes the transformation 

for inspection tfs.select("termFrequencies").show() 

It’s worth noting that the hashingTF implementation of term frequencies was imple­
mented to consume the DataFrame you previously produced, not the features you 
designed later. Spark ML’s concept of a pipeline is focused on connecting operations 
on DataFrames, so it can’t consume the features you produced before without more 
conversion code. 

Feature hashing 
The use of the term hashing in the Spark library refers to the technique of feature 
hashing. Although it’s not always used in feature-generation pipelines, feature hash­
ing can be a critically important technique for building large numbers of features. In 
text-based features like term frequencies, there’s no way of knowing a priori what all 
the possible features could be. Squawkers can write anything they want in a squawk 
on Pidg’n. Even an English-language dictionary wouldn’t contain all the slang terms 
squawkers might use. Free-text input means that the universe of possible terms is 
effectively infinite. 

One solution is to define a hash range of the size of the total number of distinct features 
you want to use in your model. Then you can apply a deterministic hashing function 
to each input to produce a distinct value within the hash range, giving you a unique 
identifier for each feature. For example, suppose hash("trees") returns 65381. That 
value will be passed to the model-learning function as the identifier of the feature. 
This might not seem much more useful than just using "trees" as the identifier, but 
it is. When I discuss prediction services in chapter 7, I’ll talk about why you’ll want 
to be able to identify features that the system has possibly never seen before. 

Let’s take a look at how Spark ML’s DataFrame-focused API is intended to be used in 
connecting operations like this. You won’t be able to take full advantage of Spark ML 
until chapter 5, where you’ll start learning models, but it’s still useful for feature gen­
eration. Some of the preceding code can be reimplemented using a Pipeline from 
Spark ML. That will allow you to set the tokenizer and the term frequency operations 
as stages within a pipeline. 
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76 CHAPTER 4 Generating features 

Listing 4.6 Using Spark ML pipelines 

Instantiates a new pipeline 
Sets the two stages 

val pipeline = new Pipeline()
 of this pipeline 
.setStages(Array(tokenizer, hashingTF))
 

val pipelineHashed = pipeline.fit(squawksDF)
 Executes the pipeline 

println(pipelineHashed.getClass)
 Prints the type of the result of 
the pipeline, a PipelineModel 

This Pipeline doesn’t result in a set of features, or even a DataFrame. Instead, it 
returns a PipelineModel, which in this case won’t be able to do anything useful, 
because you haven’t learned a model yet. We’ll revisit this code in chapter 5, where we 
can go all the way from feature generation through model learning. The main thing 
to note about this code at this point is that you can encode a pipeline as a clear 
abstraction within your application. A large fraction of machine learning work 
involves working with pipeline-like operations. With the Spark ML approach to pipe­
lines, you can be very explicit about how your pipeline is composed by setting the 
stages of the pipeline in order. 

4.3.1 Common feature transforms 

Sometimes you don’t have library implementations of the feature transform that you 
need. A given feature transform might have semantics that are specific to your appli­
cation, so you’ll often need to implement feature transforms yourself.

 Consider how you could build a feature to indicate that a given Pidg’n user was a 
Super Squawker (user with more than a million followers). The feature-extraction 
process will give you the raw data about the number of followers a given squawker has. 
If you used the number of followers as a feature, that would be called a numerical fea­
ture. That number would be an accurate snapshot of the data from the follower 
graph, but it wouldn’t necessarily be easy for all model-learning algorithms to use. 
Because your intention is to express the idea of a Super Squawker, you could use a far 
simpler representation: a Boolean value representing whether or not the squawker 
has more than a million followers.

 The squirrel, a rather ordinary user, has very few followers. But the sloth is an ter­
rific Super Squawker. To produce meaningful features about the differences between 
these two squawkers, you’ll follow the same process of going from raw data, to 
numeric features, and then to Boolean features. This series of data transformations is 
shown for the two users in figure 4.2. 
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77 Transforming features 

Specifies 
that 

these are 
Boolean 
features 

Raw 
numbers 

of 
followers 

for the 
squirrel 
and the 

sloth 

Figure 4.2 Feature transformations 

The following listing shows how to implement this approach to binarization to pro­
duce a Super Squawker feature. 

Listing 4.7 Binarizing a numerical feature 

Specifies that these Case class representing a numerical 
are integer features feature where the value is an integer 

case class IntFeature(name: String, value: Int) extends Feature {
 
type V = Int 

} Case class representing a Boolean feature 

case class BooleanFeature(name: String, value: Boolean) extends Feature {
 
type V = Boolean
 

Function that takes a numeric integer feature }
 
and threshold and returns a Boolean feature 

def binarize(feature: IntFeature, threshold: Double): BooleanFeature = {
 
BooleanFeature("binarized-" + feature.name, feature.value > threshold)
 

} 
Constant Adds the name of the 

val SUPER_THRESHOLD = 1000000 defining the 
cutoff for a 

transform function to the 
resulting feature name 

val squirrelFollowers = 12 
val slothFollowers = 23584166 

squawker to 
be super Numeric integer feature

 representing the number of followers 
val squirrelFollowersFeature = IntFeature("followers", squirrelFollowers)
 
val slothFollowersFeature = IntFeature("followers", slothFollowers)
 

val squirrelIsSuper = binarize(squirrelFollowers, SUPER_THRESHOLD)
 
val slothIsSuper = binarize(slothFollowers, SUPER_THRESHOLD)
 

Boolean feature indicating the Boolean feature indicating 
squirrel is not a Super Squawker the sloth is a Super Squawker 
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78 CHAPTER 4 Generating features 

The binarize function is a good example of a reusable transform function. It also 
ensures the resulting feature is somewhat self-describing by appending the name of 
the transform function to the resulting feature. Ensuring that we can identify the 
operations that were applied to produce a feature is an idea we’ll revisit in later chap­
ters. Finally, note that the transformation function binarize is a pure function.

 Using only pure functions in feature transforms is an important part of establish­
ing a coherent structure for feature-generation code. Separating feature extraction 
and feature transformation within a code base can be difficult, and the boundaries 
between the two can be hard to draw. Ideally, any I/O or side-effecting operations 
should be contained in the feature-extraction phase of the pipeline, with all transfor­
mations’ functionality being implemented as pure functions. As you’ll see later, pure 
transforms are simple to scale and easy to reuse across features and feature-extraction 
contexts (model learning and predicting).

 There’s a huge range of commonly used transformation functions. Similar to bina­
rization, some approaches reduce continuous values to discrete labels. For example, a 
feature designed to express the time of day when a squawk was posted might not use 
the full timestamp. Instead, a more useful representation could be to transform all 
times into a limited set of labels, as shown in table 4.2. 

Table 4.2 Transforming times into time labels 

Time Label 

7:02 Morning 

12:53 Midday 

19:12 Night 

The implementation of a transform to do this is trivial and is naturally a pure 
function.

 There’s another variation on reducing continuous data to labels, called binning, in 
which the source feature is reduced to some arbitrary label defined by the range of 
values that it falls into. For example, you could take the number of squawks a given 
user has made and reduce it to one of three labels indicating how active the squawker 
is, as shown in table 4.3. 

Table 4.3 Binning 

Squawks Label Activity level 

7 

1,204 

2,344,910 

0_99 

1000_99999 

1000000_UP 

Least active squawkers 

Moderately active squawkers 

Most active squawkers 
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79 Transforming features 

Again, an implementation of such a transform would be trivial and naturally a pure 
function. Transforms should be easy to write and should correspond closely to their 
formulation in mathematical notation. When it comes to implementing transforms, 
you should always abide by the KISS principle: Keep It Simple, Sparrow. Reactive 
machine learning systems are hard enough to implement without implementing com­
plicated transforms. Usually, an overly long transform implementation is a smell that 
someone has laid a rotten egg. In a few special cases, you may want to implement 
something like a transformer with more involved semantics. We’ll consider such cir­
cumstances later in this chapter and later in the book. 

4.3.2 Transforming concepts 

Before we leave the topic of transformations, we need to consider one very common 
and critical class of feature transformations: the ones that produce concepts. As men­
tioned in chapter 1, concepts are the things that a machine learning model is trying to 
predict. Although some machine learning algorithms can learn models of continuous 
concepts, such as the number of squawks a given user will write over the course of the 
next month, many machine learning systems are built to perform classification. In 
classification problems, the learning algorithm is trying to learn a discrete number of 
class labels, not continuous values. In such systems, the concept has to be produced 
from the raw data, during feature extraction, and then reduced to a class label via 
transformation. Concept class labels aren’t exactly the same thing as features, but 
often the difference is just a matter of how we use the piece of data. Typically, and ide­
ally, the same code that might binarize a feature will also binarize a concept.

 Building on the code in listing 4.7, in the next listing, take the Boolean feature 
about Super Squawkers and produce a Boolean concept label that classifies squawkers 
into super or not. 

Listing 4.8 Creating concept labels from features 

Defines labels as 
subtypes of features 

trait Label extends Feature
 

case class BooleanLabel(name: String, value: Boolean) extends Label {
 
type V = Boolean
 

Creates a case class for 
}
 Boolean labels 

def toBooleanLabel(feature: BooleanFeature) = {
 Defines a simple conversion 
BooleanLabel(feature.name, feature.value)
 function from Boolean features 

}
 to Boolean labels 

val squirrelLabel = toBooleanLabel(squirrelIsSuper)
 Converts Super 
val slothLabel = toBooleanLabel(slothIsSuper)
 Squawker feature 

values into 
Seq(squirrelLabel, slothLabel).foreach(println)
 concept labels 

Prints label values 
for inspection 
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80 CHAPTER 4 Generating features 

In this code, you’ve defined concept labels as a special subtype of features. That’s not 
how features and labels are generally discussed, but it can be a helpful convention for 
code reuse in machine learning systems. Whether you intend to do so or not, any 
given feature value could be used as a concept label if it represents the concept class 
to be learned. The Label trait in listing 4.8 doesn’t change the underlying structure of 
the data in a feature, but it does allow you to annotate when you’re using a feature as 
a concept label. The rest of the code is quite simple, and you arrive at the same con­
clusion again: people just aren’t that interested in what squirrels have to say. 

4.4 Selecting features 
Again, you find yourself in the same situation: if you’ve done all the work so far, you 
might now be finished. You could use the features you’ve already produced to learn a 
model. But sometimes it’s worthwhile to perform additional processing on features 
before beginning to learn a model. In the previous two phases of the feature-generation 
process, you produced all the features you might want to use to learn a model, some­
times called a feature set. Now that you have that feature set, you could consider throwing 
some of those features in the trash.

 The process of choosing from a feature set which features to use is known as feature 
selection. In type-signature form, it can be expressed Set[Feature] => Set[Feature], a 
function that takes a set of features and returns another set of features. The next listing 
shows a stub implementation of a feature selector. 

Listing 4.9 A feature selector 

def select(featureSet: Set[Feature]): Set[Feature] = ???
 

Why would you ever want to discard features? Aren’t they useful and valuable? In the­
ory, a robust machine learning algorithm could take as input feature vectors contain­
ing arbitrary numbers of features and learn a model of the given concept. In reality, 
providing a machine learning algorithm with too many features is just going to make 
it take longer to learn a model and potentially degrade that model’s performance. 
You can find yourself needing to choose among features quite easily. By varying the 
parameters used in the transformation process, you could create an infinite number 
of features with a very small amount of code.

 Using a modern distributed data-processing framework like Spark makes handling 
arbitrarily sized datasets easy. It’s definitely to your benefit to consider a huge range of 
features during the feature extraction and transformation phases of your pipeline. 
And once you’ve produced all the features in your feature set, you can use some of the 
facilities in Spark to cut that feature set down to just those features that your model-
learning algorithm will use to learn the model. There are implementations of feature-
selection functionality in other machine learning libraries; Spark’s MLlib is one of 
many options and certainly not the oldest one. For some cases, the feature-selection 
functionality provided by MLlib might not be sufficient, but the principles of feature 
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81 Selecting features 

selection are the same whether you use a library implementation or something more 
bespoke. If you end up writing your own version of feature selection, it will still be con­
ceptually similar to MLlib’s implementations.

 Using the Spark functionality will again require you to leave behind your feature-case 
classes and the guarantees of static typing to use the machine learning functionality 
implemented around the high-level DataFrame API. To begin, you’ll need to construct 
a DataFrame of training instances. These instances will consist of three parts: an arbitrary 
identifier, a feature vector, and a concept label. The following listing shows how to build 
up this collection of instances. Instead of using real features, you’ll use some synthetic 
data, which you can imagine being about various properties of Squawkers. 

Listing 4.10 A DataFrame of instances 

Defines a collection of instances 
val instances = Seq(
 

(123, Vectors.dense(0.2, 0.3, 16.2, 1.1), 0.0),
 
(456, Vectors.dense(0.1, 1.3, 11.3, 1.2), 1.0),
 

Names for (789, Vectors.dense(1.2, 0.8, 14.5, 0.5), 0.0)
 
features )
 

and label 

Hardcodes some 
synthetic feature 
and concept label 
data 

columns val featuresName = "features" Creates a DataFrame 

Sets the name of 
val labelName = "isSuper" from the instances 

collection 
each column in val instancesDF = session.createDataFrame(instances)
 
the DataFrame .toDF("id", featuresName, labelName)
 

Once you have a DataFrame of instances, you can take advantage of the feature-selection 
functionality built into MLlib. You can apply a chi-squared statistical test to rank the 
impact of each feature on the concept label. This is sometimes called feature importance. 
After the features are ranked by this criterion, the less impactful features can be dis­
carded prior to model learning. The next listing shows how you can select the two most 
important features from your feature vectors. 

Listing 4.11 Chi-squared-based feature selection 

Creates a new feature selector Sets the number 

Sets the
 of features to 

column where 
val selector = new ChiSqSelector()
 

retain to 2 .setNumTopFeatures(2)
 
features are .setFeaturesCol(featuresName)
 

.setLabelCol(labelName)
 Sets the column where 

.setOutputCol("selectedFeatures")
 concept labels are 
to place results, 
Sets the column 

val selectedFeatures = selector.fit(instancesDF)
 Fits a chi-squared the selected 
.transform(instancesDF)
 model to the data features 

selectedFeatures.show()
 Selects the most important 
features and returns a new Prints the resulting 
DataFrame DataFrame for inspection 
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82 CHAPTER 4 Generating features 

As you can see, having standard feature-selection functionality available at a library 
call makes feature selection pretty convenient. If you had to implement chi-squared­
based feature selection yourself, you’d find that the implementation was a lot longer 
than the code you just wrote. 

4.5 Structuring feature code 
In this chapter, you’ve written example implementations of all the most common 
components of a feature-generation pipeline. As you’ve seen, some of these compo­
nents are simple and easy to build, and you could probably see yourself building quite 
a few of them without any difficulty. If you’ve Kept It Simple, Sparrow, you shouldn’t 
be intimidated by the prospect of producing lots of feature extraction, transforma­
tion, and selection functionality in your system. Or should you?

 Within a machine learning system, feature-generation code can often wind up being 
the largest part of the codebase by some measures. A typical Scala implementation 
might have a class for each extraction and transformation operation, and that can 
quickly become unwieldy as the number of classes grows. To prevent feature-generation 
code from becoming a confusing grab bag of various arbitrary operations, you need to 
start putting more of your understanding of the semantics of feature generation into the 
structure of your implementation of feature-generation functionality. The next section 
introduces one such strategy for structuring your feature-generation code. 

4.5.1 Feature generators 

At the  most basic level, you need to define an implementation of what is a unit  of  
feature-generation functionality. Let’s call this a feature generator. A feature generator 
can encompass either extraction or both extraction and transformation operations. 
The implementation of the extraction and transformation operations may not be very 
different from what you’ve seen before, but these operations will all be encapsulated 
in an independently executable unit of code that produces a feature. Your feature 
generators will be things that can take raw data and produce features that you want to 
use to learn a model.

 Let’s implement your feature generators using a trait. In Scala, traits are used to 
define behaviors in the form of a type. A typical trait will include the signatures and 
possibly implementations of methods that define the common behavior to the trait. 
Scala traits are very similar to interfaces in Java, C++, and C# but are much easier and 
more flexible to use than interfaces in any of those languages.

 For the purpose of this section, let’s say that your raw data, from the perspective of 
your feature-generation system, consists of squawks. Feature generation will be the 
process of going from squawks to features. The corresponding feature-generator trait 
can be defined. 
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83 Structuring feature code 

Listing 4.12 A feature-generator trait 

trait Generator {
 

def generate(squawk: Squawk): Feature
 

}
 

The Generator trait defines a feature generator to be an object that implements a 
method, generate, that takes a squawk and returns a feature. This is a concrete way of 
defining the behavior of feature generation. A given implementation of feature gener­
ation might need all sorts of other functionality, but this is the part that will be com­
mon across all implementations of feature generation. Let’s look at one 
implementation of this trait.

 Your team is interested in understanding how squawk length affects squawk popu­
larity. There’s an intuition that even 140 characters is too much to read for some 
squawkers, such as hummingbirds. They just get bored too quickly. Conversely, vul­
tures have been known to stare at the same squawk for hours on end, so long posts are 
rarely a problem for them. For you to be able to build a recommendation model that 
will surface relevant content to these disparate audiences, you’ll need to encode some 
of the data around squawk length as a feature. This can easily be implemented using 
the Generator trait.

 As discussed before, the idea of length can be captured using the technique of bin­
ning to reduce your numeric data to categories. There’s not much difference between 
a 72-character squawk and a 73-character squawk; you’re just trying to capture the 
approximate size of a squawk. You’ll divide squawks into three categories based on 
length: short, moderate, and long. You’ll define your thresholds between the catego­
ries to be at the thirds of the total possible length. Implemented according to your 
Generator trait, you get something like the following listing. 

Listing 4.13 A categorical feature generator 

Defines a generator as an object 
that extends the Generator trait 

object SquawkLengthCategory extends Generator {
 

val ModerateSquawkThreshold = 47
 
val LongSquawkThreshold = 94
 

private def extract(squawk: Squawk): IntFeature = {
 
IntFeature("squawkLength", squawk.text.length)
 

}
 

Constant thresholds 
to compare against 

Extracting: uses the length 
of the squawk to instantiate 
an IntFeature 

private def transform(lengthFeature: IntFeature): IntFeature = {
 

Transforming: takes the 
IntFeature of length, returns 

the IntFeature of category 
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84 CHAPTER 4 Generating features 

Uses a pattern-matching structure 
to determine which category the Returns Int for a category 
squawk length falls into (for ease of use in model 

learning) 
val squawkLengthCategory = lengthFeature match {
 

case IntFeature(_, length) if length < ModerateSquawkThreshold => 1
 
case IntFeature(_, length) if length < LongSquawkThreshold => 2
 
case _ => 3 
  

Returns a category of 3, a long }
 
squawk, in all other cases 

IntFeature("squawkLengthCategory", squawkLengthCategory)
 Returns a 
}
 category as a 

new IntFeature 
def generate(squawk: Squawk): IntFeature = {
 

transform(extract(squawk))
 Generating: extracts a feature from 
}
 the squawk and then transforms it 

}
 to a categorical IntFeature 

This generator is defined in terms of a singleton object. You don’t need to use instances 
of a class, because all the generation operations are themselves pure functions.

 Internal to your implementation of the feature generator, you still used a concept 
of extraction and transformation, even though you now only expose a generate 
method as the public API to this object. Though that may not always seem necessary, it 
can be helpful to define all extraction and transformation operations in a consistent 
manner using feature-based type signatures. This can make it easier to compose and 
reuse code.

 Reuse of code is a huge issue in feature-generation functionality. In a given system, 
many feature generators will be performing operations very similar to each other.

 A given transform might be used dozens of times if it’s factored out and reusable. 
If you don’t think about such concerns up front, you may find that your team has 
reimplemented some transform, like averaging five different times in subtly different 
ways across your feature-generation codebase. That can lead to tricky bugs and 
bloated code.

 You don’t want your feature-generation code to be messier than a tree full of mar­
mosets! Let’s take a closer look at the structure of your generator functionality. The 
transform function in listing 4.13 was doing something you might wind up doing a lot 
in your codebase: categorizing according to some threshold. Let’s look at it again. 

Listing 4.14 Categorization using pattern matching 

private def transform(lengthFeature: IntFeature): IntFeature = {
 
val squawkLengthCategory = lengthFeature match {
 

case IntFeature(_, length) if length < ModerateSquawkThreshold => 1
 
case IntFeature(_, length) if length < LongSquawkThreshold => 2
 
case _ => 3
 

}
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85 Structuring feature code 

You definitely shouldn’t be implementing a comparison against thresholds more than 
once, so let’s find a way to pull that code out and make it reusable. It’s also weird that 
you had to define the class label integers yourself. Ideally, you’d just have to worry 
about your thresholds and nothing else.

 Let’s pull out the common parts of this code for reuse and make it more general in 
the process. The code in the next listing shows one way of doing this. It’s a little dense, 
so we’ll walk through it in detail. 

Listing 4.15 Generalized categorization 

Returns an 
anonymous 

categorization 
function that takes 
Int as an argument 

Singleton object to 
hold a pure function 

Only takes a list of 
thresholds as input 

object CategoricalTransforms {
 

def categorize(thresholds: List[Int]): (Int) => Int = {
 
(dataPoint: Int) => {
 

thresholds.sorted
 Zips up a list of thresholds 
and corresponding indices .zipWithIndex
 

.find {
 (used as category labels) 

Ensures that a list of thresholds 
is sorted, because categorization 
relies on it 

case (threshold, i) => dataPoint < threshold
 
Finds an entry that satisfies
 }.getOrElse((None, -1))
 

the case clause predicate ._2
 
}
 

Takes a second }
 
element out of a }
 

tuple, which is the 
category label (in 

integer form) 

Gets a matching 
value out of an 

option or returns a 
sentinel value of –1 
when matching fails 

Defines a 
passing case 

as being when 
a data point is 

less than the 
threshold 

This solution uses a few techniques that you may not have seen before. For one, this 
function’s return type is (Int) => Int, a function that takes an integer and returns an 
integer. In this case, the function returned will categorize a given integer according to 
the thresholds previously provided.

 The thresholds and categories are also zipped together so they can be operated on 
as a pair of related values (in the form of a tuple). Zipping, or convolution as it’s some­
times called, is a powerful technique that’s commonly used in Scala and other lan­
guages in the functional programming tradition. The name zip comes from the 
similarity to the action of a zipper. In this case, you’re using a special sort of zip opera­
tion that conveniently provides you indices corresponding to the number the ele­
ments in the collection being zipped over. This approach to producing indices is far 
more elegant than C-style iteration using a mutable counter, which you may have seen 
in other languages, such as Java and C++. 

After zipping over the values, you use another new function, find, with which you 
can define the element of a collection you’re looking for in terms of a predicate. Predi­
cates are Boolean functions that are either true or false, depending on their values. 
They’re commonly used in mathematics, logic, and various forms of programming 
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86 CHAPTER 4 Generating features 

such as logic and functional programming. In this usage, the predicate gives you a 
clear syntax for defining what constitutes falling into a category bucket.

 This code also deals with uncertainty in external usage in ways that you haven’t 
before. Specifically, it sorts the categories, because they might not be provided in a 
sorted list, but your algorithm relies on operating on them in order. Also, the find 
function returns an Option because the find operation may or may not find a match­
ing value. In this case, you use the value –1 to indicate an unusable category, but how 
a categorization failure should be handled depends a lot on how the functionality will 
be integrated in the client generator code. When you factor out common feature 
transforms to shared functions like this, you should take into account the possibilities 
of future broad usage of the transform. By implementing it with these extra guaran­
tees, you reduce the chances that someone will use your categorization functionality 
in the future and not get the results they wanted.

 The code in listing 4.15 might be a bit harder to understand than the original 
implementation in listings 4.13 and 4.14. Your refactored version does more work to 
give you a more general and robust version of categorization. You may not expect 
every implementer of a feature generator to go through this much work for a simple 
transform, but because you’ve factored out this functionality to shared, reusable code, 
they don’t have to. Any feature-generation functionality needing to categorize values 
according to a list of thresholds can now call this function. The transform from list­
ings 4.13 and 4.14 can now be replaced with the very simple version in listing 4.16. You 
still have a relatively complex implementation of categorization in listing 4.15, but 
now, that complex implementation has been factored out to a separate component, 
which is more general and reusable. As you can see in the next listing, the callers of 
that functionality, like this transform function, can be quite simple. 

Listing 4.16 Refactored categorization transform 

import CategoricalTransforms.categorize
 

private def transform(lengthFeature: IntFeature): IntFeature = {
 
val squawkLengthCategory = categorize(Thresholds)
 

➥ (lengthFeature.value) 
IntFeature("squawkLengthCategory", squawkLengthCategory) 

}
 

Creates the categorization function and 
applies it to the value for categorization 

Once you have dozens of categorical features, this sort of design strategy will make 
your life a lot easier. Categorization is now simple to plug in and easy to refactor  
should you decide to change how you want it implemented. 

4.5.2 Feature set composition 

You’ve seen how you can choose among the features you produced, but there’s actu­
ally a zeroth step that’s necessary in some machine learning systems. Before you even 
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87 Structuring feature code 

begin the process of feature generation, you may want to choose which feature gener­
ators should be executed. Different models need different features provided to them. 
Moreover, sometimes you need to apply specific overrides to your normal usage of 
data because of business rules, privacy concerns, or legal reasons. 

In the case of Pidg’n, you have some unique challenges due to your global scale. Dif­
ferent regions have different regulatory regimes governing the use of their citizens’ 
data. Recently, a new government has come to power in the rainforests of Panama.

 The new minister of commerce, an implacable poison-dart frog, has announced 
new regulation restricting the use of social-media user data for non-rainforest pur­
poses. After consultation with your lawyers, you decide that the new law means that 
features using data from rainforest users should only be used in the context of models 
to be applied on recommendations for residents of the rainforest.

 Let’s look at what impact this change might have on your codebase. To make things 
a bit more concise, let’s define a simple trait to allow you to make simplified generators 
quickly. This will be a helper to allow you to skip over generator-implementation details 
that aren’t relevant to feature-set composition. The next listing defines a stub feature 
generator that returns random integers. 

Listing 4.17 A stub feature-generator trait 

Implementation of the generate method 
for implementers of trait to use trait StubGenerator extends Generator {
 

def generate(squawk: Squawk) = {
 
IntFeature("dummyFeature", Random.nextInt())
 Returns random integers 

}
 
}
 

Using this simple helper trait, you can now explore some of the possible impacts that 
the rainforest data-usage rules might have on your feature-generation code. Let’s say the 
code responsible for assembling your feature generators looks like the following listing. 

Listing 4.18 Initial feature set composition 

User-data 
feature 

generator 
that must 

be changed 

Normal feature generator about the 
language the squawk was written in Normal feature 

generator about 
whether the squawk 
contains an image 

object SquawkLanguage extends StubGenerator {}
 

object HasImage extends StubGenerator {}
 

object UserData extends StubGenerator {}
 

val featureGenerators = Set(SquawkLanguage, HasImage, UserData)
 

Set of all the feature generators 
to execute to produce data 
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88 CHAPTER 4 Generating features 

Figure 4.3 Multiple 
feature-generator sets 

Now you need to restructure this code to have one feature set produced for your normal, 
global models and one feature set for your rainforest models, as shown in figure 4.3. The 
following listing shows an approach to defining these two different sets of feature 
generators. 

Listing 4.19 Multiple feature sets 

User-data feature generator that will 
only access non-rainforest data User-data feature 

object GlobalUserData extends StubGenerator {} generator that 
will only access 

object RainforestUserData extends StubGenerator {} rainforest data 

val globalFeatureGenerators = Set(SquawkLanguage, HasImage, 

➥ GlobalUserData) 

val rainforestFeatureGenerators = Set(SquawkLanguage, HasImage,
 

➥ RainforestUserData) 
Set of features available to Set of features available to be used on rainforest models be used on global models 

You could stop with this implementation if you chose. As long as the rainforest feature 
generators are being used for rainforest models, you’ve done what the frog asked. But 
there are reasons to keep working on this problem. Machine learning systems are 
incredibly complicated to implement. Common feature-generation functionality can 
get reused in all sorts of places. The implementation in listing 4.19 is correct, but with 
Pidg’n’s rapid growth, new engineers unfamiliar with this data-usage issue might 
refactor this code in such a way as to misuse rainforest feature data.

 Let’s see if you can make misusing this data even harder by defining a trait that 
allows you to mark code as having rainforest user data in it. 
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89 Structuring feature code 

Listing 4.20 Ensuring correct usage of rainforest data 

Says all instances 
of this trait must 

execute the 
following code 

Prints a message 
explaining disallowed 
usage in the event of 

not being in the 
rainforest context 

Retrieves the 
rainforest 

environment 
variable 

Defines a trait for the 
usage of rainforest data 

trait
 

➥ RainforestData {
 
self =>
 
require(rainforestContext(),
 

Requires that rainforest 
environment validation 
passes 

s"${self.getClass} uses rainforest data outside of a
 

➥ rainforest context.") Validation method ensuring 
that the code is being called 
in the rainforest context private def rainforestContext() = {
 

val environment = Option(System.getenv("RAINFOREST"))
 
environment.isDefined && environment.get.toBoolean
 

}
 
}
 Checks that the value 

exists and is true 
object SafeRainforestUserData extends StubGenerator
 

Defines a feature ➥ with RainforestData {} 

generator for 
the rainforest val safeRainforestFeatureGenerators = Set(SquawkLanguage, 

user data ➥ HasImage, SafeRainforestUserData) 
Assembles feature generators 
to use for the rainforest data 

This code will throw an exception unless you’ve explicitly defined an environment 
variable RAINFOREST and set it to TRUE. If you want to see this switch in action, you can 
export that variable in a terminal window, if you’re using macOS or Linux. 

Listing 4.21 Exporting an environment variable 

export RAINFOREST=TRUE
 

Then you can execute the code from listing 4.20 again, in the same terminal window, 
without getting exceptions. That’s similar to how you can use this in your production 
feature-generation jobs. Using any of several different mechanisms in your 
configuration, build, or job-orchestration functionality, you can ensure that this variable 
is set properly for rainforest feature-generation jobs and not set for global feature-
generation jobs. A new engineer creating a new feature-generation job for some other 
purpose would have no reason to set this variable. If that engineer misused the rainforest 
feature generator, that misuse would immediately manifest the first time the job was 
executed in any form. 

Configuration 
Using environment variables is one of many different methods to configure compo­
nents of your machine learning system. It has the advantage of being simple to get 
started with and broadly supported. 
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90	 CHAPTER 4 Generating features 

(continued) 
As your machine learning system grows in complexity, you’ll want to ensure that you 
have a well-thought-out plan for dealing with configuration. After all, properties of your 
machine learning system set as configurations can determine a lot about whether it 
remains responsive in the face of errors or changes in load. Part 3 of this book 
addresses most of these issues, where we consider the challenges of operating a 
machine learning system. The good news is that you’ll find a lot of versatile tools from 
the Scala and big data ecosystems that will help you tame some of the complexity of 
dealing with configurations. 

4.6 Applications 
You’re probably not an arboreal animal, and you may not even operate a microblog­
ging service. But if you’re doing machine learning, you’re probably building features 
at some point.

 In advertising systems, you can build features that capture users’ past interactions 
with various types of products. If a user spends all afternoon looking at different lap­
tops, you probably want to show them an ad for a laptop or maybe a case, but an ad for 
a sweater wouldn’t make a lot of sense. That feature about which types of products the 
user had been looking at would help the machine-learned model figure that out and 
make the right recommendation.

 At a political polling organization, you could build features pertaining to the 
demographics of different voters. Things like the average income, education, and 
home property value could be encoded into features about voting districts. Then 
those features could be used to learn models about which party a given voting district 
is likely to vote for.

 The applications of features are as endless as the applications of machine learning 
as a technique. They allow you to encode human intelligence about the problem in a 
way that a model-learning algorithm can use that intelligence. Machine learning sys­
tems are not black-box systems that perform magic tricks. You, the system developer, 
are the one instructing it how to solve the problem, and features are a big part of how 
you encode that information. 

4.7 Reactivities 
This chapter covered a lot, but if you’re still interested in learning more about fea­
tures, there’s definitely more to explore. Here are some reactivities to take you even 
deeper into the world of features: 

 Implement two or more feature extractors of your own. To do this, you’ll probably want 
to choose some sort of base dataset to work with. If you don’t have anything mean­
ingful at hand, you can often use text files and then extract features from the text. 
Spark has some basic text-processing functionality built in, which you may find 
helpful. Alternatively, random numbers organized into tabular data can work just 
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as well for an activity like this. If you do want to use real data, the UCI Machine 
Learning Repository at https://archive.ics.uci.edu/ml/index.php is one of the 
best sources of datasets. Whatever data you use, the point is to decide for yourself 
what might be some interesting transformations to apply to this dataset. 

 Implement feature-selection functionality. Using the feature extractors you created in 
the previous reactivity (or some other extractors), define some basis for includ­
ing or excluding a given feature within the final output. This could include cri­
teria like the following: 
–	 Proportion of nonzero values. 
–	 Number of distinct values. 
–	 Externally defined business rule/policy. The goal is to ensure  that the  

instances produced by your feature-extraction functionality only include the 
features that you define as valid. 

 Evaluate the reactivity of an existing feature-extraction pipeline. If you did the previous 
two exercises, you can evaluate your own implementation. Alternatively, you can 
examine examples from open source projects like Spark. As you examine the 
feature-extraction pipeline, ask yourself questions like the following: 
–	 Can I find the feature-transform function? Is it implemented as a pure func­

tion, or does it have some sort of side effects? Can I easily reuse this trans­
form in other feature extractors? 

–	 How will bad inputs be handled? Will errors be returned to the user? 
–	 How will  the pipeline behave when it  has to handle a thousand records? A 

million? A billion? 
–	 What can I discern about the feature extractors from the persisted output? 

Can I determine when the features were extracted? With which feature 
extractors? 

–	 How could I use these feature extractors to make a prediction on a new  
instance of unseen data? 

Summary 
 Like chicks cracking through eggs and entering the world of real birds, features 

are our entry points into the process of building intelligence into a machine 
learning system. Although they haven’t always gotten the attention they 
deserve, features are a large and crucial part of a machine learning system. 

 It’s easy to begin writing feature-generation functionality. But that doesn’t mean 
your feature-generation pipeline should be implemented with anything less than 
the same rigor you’d apply to your real-time predictive application. Feature-
generation pipelines can and should be awesome applications that live up to all 
the reactive traits. 

 Feature extraction is the process of producing semantically meaningful, derived 
representations of raw data. 
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92	 CHAPTER 4 Generating features 

 Features can be transformed in various ways to make them easier to learn from. 
 You can select among all the features you have to make the model-learning pro­

cess easier and more successful. 
 Feature extractors and transformers should be well structured for composition 

and reuse. 
 Feature-generation pipelines should be assembled into a series of immutable 

transformations (pure functions) that can easily be serialized and reused. 
 Features that rely on external resources should be built with resilience in mind. 

We’re not remotely done with features. In chapter 5, you’ll use features in the learn­
ing of models. In chapter 6, you’ll generate features when you make predictions about 
unseen data. Beyond that, in part 3 of the book, we’ll get into more-advanced aspects 
of generating and using features. 
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manning.com/books/machine-learning-systems 
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“This book doesn’t just cover 

tools; it covers the whole 

job of building an entire 


machine learning system.
—From the Foreword by ”
 

Sean Owen 

Director of Data Science, Cloudera
 

“A helpful guide for data 
engineers building resilient 
machine learning systems.

—Jonathan Woodard, AT&T ” 

“A fantastic entry to the 

world of robust machine 

learning systems that will 


  scale with your business.”
 —Tommy O’Dell
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“You cannot afford to ignore 

this book!”
 —José San Leandro, OSOCO
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